
Genes and molecular pathways underpinning ciliopathies

Jeremy F. Reiter1 and Michel R. Leroux2,§

1Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of 
California, San Francisco, San Francisco, CA 94158

2Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development 
and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

Motile and non-motile (primary) cilia are nearly ubiquitous cellular organelles. The dysfunction of 

cilia causes diseases known as ciliopathies. The number of reported ciliopathies (currently 35) is 

increasing, as is the number of established (187) and candidate (241) ciliopathy-associated genes. 

The characterization of ciliopathy-associated proteins and phenotypes has improved our 

knowledge of ciliary functions. In particular, investigating ciliopathies has helped us to understand 

the molecular mechanisms by which the cilium-associated basal body functions in early 

ciliogenesis, as well as how the transition zone functions in ciliary gating, and how intraflagellar 

transport enables cargo trafficking and signalling. Both basic biological and clinical studies are 

uncovering novel ciliopathies and the ciliary proteins involved. The assignment of these proteins to 

different ciliary structures, processes and ciliopathy subclasses (first order and second order) 

provides insights into how this versatile organelle is built, compartmentalized and functions in 

diverse ways that are essential for human health.

Many people are introduced to cilia together with microscopy. A compound microscope — 

or, increasingly, a smartphone fitted with a ball lens — allows young schoolchildren to see 

protists such as Paramecium using cilia (also known as flagella) to swim. Antonie van 

Leeuwenhoek first observed these thin ‘nimbly moving feet’, and even early microscopists 

appreciated that cilia can exist as either solitary or multiple structures on a single eukaryotic 

cell, and that they can be either motile or immotile (FIG. 1); these criteria are still used to 

discriminate between different types of cilia.

Like protists, most vertebrate cells have either a single non-motile (‘primary’) cilium or 

multiple cilia, as found in kidney and olfactory epithelial cells, respectively. Cilia can be 

either actively motile, as observed at the embryonic node or in sperm, or immotile, as in 

photoreceptor cells or olfactory neurons. Immotile cilia function in transducing signals from 

the environment or from other cells, whereas motile cilia propel cells (such as sperm cells) 

or move extracellular fluids (for example, to clear mucus and debris from the lung) (FIG. 1).
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The dysfunction of motile or immotile cilia is associated with a wide range of human 

diseases that are known as ciliopathies (FIG. 2). As the physiological consequences of 

defects in motile and immotile cilia are different, we discuss these two classes of ciliopathies 

separately (BOX 1). In addition, we distinguish between first-order ciliopathies, which are 

caused by the disruption of ciliary proteins, and second-order ciliopathies which result from 

the disruption of non-ciliary proteins that are required for ciliary function (BOX 1).

Many ciliary proteins are known to have essential roles in human physiology, signalling and 

development, and their importance is striking when we consider their collective contribution 

to the ciliopathy disease spectrum. Supplementary information S1 (table) lists 187 genes that 

have been implicated in 35 established ciliopathies, and at least another 241 genes that have 

been associated with ciliary structures and/or functions that could potentially result in known 

or novel ciliopathies if disrupted in humans.

In this Review, we briefly describe the structural features of motile and non-motile cilia, and 

how they are assembled to form discrete, compartmentalized organelles. We then summarize 

the functions of these two classes of cilia, and elaborate on how the impairment of different 

cilium-associated processes and structures — namely, signalling, ciliogenesis, 

compartmentalization (or gating) and dynamic trafficking — results in ciliopathies with 

distinct phenotypes. We also discuss evidence that nonciliary proteins influence ciliary 

functions, and that some ciliary proteins can have non-ciliary roles. Finally, we conclude by 

describing approaches for identifying the full complement of ciliary and ciliopathy-

associated proteins.

Conserved ciliary structures

The first details of ciliary structure were described in the mid-20th century, using 

transmission electron microscopy (TEM). The ability to resolve subcellular structures led to 

the realization that cilia from diverse organisms and tissues can look different and can have 

different accessory substructures, but can also have many structural commonalities.

Basal body and axoneme

The most stereotypical features of cilia are the basal body and the axoneme1,2 (FIG. 1). The 

basal body describes the mother centriole when it is associated with a cilium. Most basal 

bodies comprise a barrel of nine triplet microtubules, subdistal appendages and nine strut-

like structures, known as distal appendages or transition fibres, which connect to the 

membrane at the base of the cilium. The skeleton of the ciliary shaft, or axoneme, consists of 

doublet microtubules that originate from the basal body. Additional structures that are often 

found in motile cilia include a central pair of microtubules and axonemal inner and outer 

dynein arms that power ciliary movement (FIG. 1). Given their intimate relationship1,2, the 

basal body and cilium are considered in this Review as a functional unit.

Transition zone: compartmentalisation of signalling and motility functions

To move and/or to function as a signalling device, cilia must contain the motility and/or 

signal transduction machineries, and must have a composition that is distinct from the rest of 

the cell3–5 (FIGS 1,3). Unlike most other organelles, the ciliary membrane is contiguous 
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with the plasma membrane. To achieve such compartmentalization and to thus maintain the 

distinct composition of the cilium, the proximal-most region of the axoneme consists of a 

transition zone (FIG. 1) that controls which proteins can enter and leave the cilium4,5. The 

transition zone features prominent Y-shaped structures that connect the ciliary membrane to 

the underlying axoneme and that are thought to form or to organize a diffusion barrier for 

membrane-associated soluble proteins6–10.

Control of selective entry into cilia probably involves other structural and functional 

features. For example, septins may form part of the membrane diffusion barrier11, and the 

basal body distal appendages may prevent the inappropriate entry of vesicles into the cilia. 

Furthermore, a sieve-like functionality at the base of the cilium — potentially within the 

transition zone — controls the access of soluble proteins, restricting the entry of large (~70 

kDa) proteins into the ciliary compartment6,12–14. It is unclear whether the different gate 

components have partially overlapping functions or how they help to regulate the entry of 

distinct ciliary components.

Key stages of ciliogenesis

As early as 1959, a study of vertebrate ciliary photoreceptor biogenesis described the key 

steps in ciliogenesis15. In brief, the mother centriole is modified to become a basal body and 

attaches to the plasma membrane through its distal appendages; the transition zone (known 

as the connecting cilium in photoreceptor cells (FIG. 4)) then forms, and finally, the rest of 

the axoneme extends out from the cell body (FIGS 4,5).

Therefore, the separation of the ciliary compartment from the cell body by the transition 

zone occurs early during ciliogenesis4,10 (FIG. 4a). The axoneme is then constructed and 

maintained by the intraflagellar transport (IFT) machinery16 (FIG. 5a). The IFT machinery 

comprises several subcomplexes, including heterotrimeric kinesin-2, which moves 

anterogradely from the transition fibres to the ciliary tip, and dynein-2, which moves 

retrogradely to return the IFT complex to the base. The IFT complex that binds to the motors 

consists of two core subcomplexes, IFT-A and IFT-B, and an accessory module that contains 

Bardet–Biedl syndrome (BBS) proteins (known as the BBSome) (FIG. 5a); together, these 

IFT components traffic various ciliary proteins, including α-/β-tubulin ‘building blocks’ of 

the axoneme and signalling proteins17,18. There is some evidence that the transition zone 

proteins work together with the IFT trafficking machinery to dynamically deliver or to 

remove ciliary components19, which warrants further investigation.

Motile ciliopathies

Motile cilia on different cell types have different waveforms and functions20. Similar to 

choanoflagellates, sperm use a specialized cilium (flagellum) to locomote. Other motile cilia 

do not propel cells but instead move the overlying fluid. Such cilia are found on airway 

epithelial cells, oviduct cells, ependymal cells that line the brain ventricles, and on the node, 

which is a transient developmental structure that is crucial for left–right axis 

determination21.
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Primary Ciliary Dyskinesia (PCD)

Impaired ciliary motility almost exclusively results in a motile ciliopathy (BOX 1) that is 

known as primary ciliary dyskinesia (PCD)20 (FIG. 3). PCD results in situs inversus (a left–

right patterning anomaly), chronic bronchitis, sinusitis and atelectasis (attributable to 

defective clearance of lung mucus) and male infertility (owing to defective sperm 

locomotion)20. Less common manifestations of PCD include decreased female fertility 

(resulting from improper oocyte transport through the oviducts) and a disposition to 

headaches and hydrocephalus (presumably resulting from impaired cerebrospinal fluid 

movement by ependymal cilia).

PCD is an inherited autosomal recessive disease. It is usually caused by the impaired 

formation or function of the inner or outer dynein arms, dynein regulatory complex or 

central pair, all of which are required for ciliary motility20, and does not normally affect 

ciliary signalling (FIG. 1). As in many ciliopathies, PCD displays considerable genetic 

heterogeneity, and mutations in at least 37 separate loci have been linked to the syndrome 

(FIG. 3; see Supplementary information S1 (table)). Such heterogeneity probably reflects the 

complexity of the structures required to generate ciliary motility.

First-order and second-order PCD ciliopathies

Most forms of PCD are linked to genes that encode ciliary components that are directly 

required for motility, and thus can be considered first-order ciliopathies (BOX 1). However, 

not all PCD-associated genes encode ciliary proteins. For example, mutations in DNAAF2, 
DNAAF3 and DYX1C1 cause PCD but encode cytoplasmic proteins that are involved in the 

pre-assembly of axonemal dynein complexes before their import into cilia22–24. PCDs that 

are a result of the loss of these non-ciliary components are examples of second-order 

ciliopathies (BOX 1).

Sensory ciliopathies

Sensory ciliopathies result specifically from defects in the sensory and/or signalling 

functions of cilia, and are primarily caused by defects in non-motile cilia (although either 

motile or non-motile cilia can be involved) (FIG. 3).

Defects in primary cilium structure or signalling cause sensory ciliopathies

Although motile cilia also have sensory capabilities, such as sensing noxious chemicals in 

the respiratory airway25, the phenotypic presentations of PCD are distinct from those 

exhibited when nonmotile primary cilia functions are disrupted. Metazoan non-motile 

primary cilia have evolved different sensory modalities for environmental cues and 

intercellular cues. Therefore, defects in primary cilia function lead to more varied sensory, 

physiological and developmental anomalies than do defects in motile cilia (FIGS 1,3). 

Sensory ciliopathies have several possible molecular aetiologies, including impaired cilium 

formation or maintenance; abrogation of ciliary signal transduction pathway components; or 

trafficking defects that prevent the signalling machinery from being localized to, or removed 

from, cilia.
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Sensory ciliopathies can impair the perception of environmental cues

Different cell types make use of different forms of ciliary signalling. The determinants of 

this ciliary signalling specificity are only beginning to be understood, but are probably 

determined by the nature of the signal transduction machinery that is expressed by different 

cell types.

For example, in the human retina, photoreceptor cells that are responsible for vision express 

proteins that are specialized for phototransduction. In the photoreceptor outer segment, 

which is part of a modified cilium26, light interacts with opsin to activate cGMP-specific 

phosphodiesterase via the G protein transducin; this reduces intracellular levels of cGMP 

and leads to the closing of ion channels on the cell membrane. Consequent decreases in the 

intracellular calcium concentration outside the outer segment then promote neurotransmitter 

release. Therefore, for vision, the cilium is the site of both signal reception and initial 

transduction, with the subsequent transmission of the information to the cell body being 

required for interpretation and communication with other cells.

Similarly, in olfaction27, an odorant is detected by its G protein-coupled receptor (GPCR) on 

the ciliary membrane. However, instead of being transmitted via cGMP, the activation of the 

olfactory receptor stimulates an adenylate cyclase (ADCY3) to generate a different second 

messenger, cAMP. In further contrast to vision, olfaction uses the G protein Golf and opens 

ion channels to trigger an action potential. Thus, although the machinery is different, sight 

and smell rely on conceptually similar mechanisms for signal reception and transduction.

Defects in ciliary signalling through opsins and olfactory receptors are linked to sensory 

ciliopathies such as retinal degeneration and anosmia (olfaction impairment), 

respectively26–28. Three different molecular aetiologies for a sensory ciliopathy can be 

observed in retinal degeneration (retinitis pigmentosa (RP)): cilium formation or length 

control may be impaired29; an enzyme that lowers ciliary cGMP concentration may be 

disrupted30; or mislocalization of opsin or other phototransduction components may 

occur31,32. In these cases, the ciliary defects promote apoptotic cell death through a 

mechanism that is unknown but may involve the accumulation of opsin in the endoplasmic 

reticulum and the subsequent activation of the unfolded protein response33.

Sensory defects can also result from anomalies in the structure or signalling functions of 

olfactory epithelial cell cilia34. In olfactory cells, mistrafficking of ciliary proteins does not 

cause apoptosis but impairs their function, resulting in anosmia. Consistently, anosmia is one 

hallmark of ciliopathies, such as BBS35 or those caused by transition zone dysfunction36.

Impaired ciliary signalling impacts development

Sensory ciliopathies extend beyond defects in interpreting environmental cues. Primary cilia 

also regulate intercellular signalling pathways (FIG. 1) that, when impaired, result in defects 

that affect physiology (for example, weight control) or the function of various organs, 

including the heart, kidney, skeleton and brain (FIG. 2).

Although cilia participate in multiple intercellular signalling pathways (FIG. 1), Hedgehog 

signalling is one of the pathways that has been most strongly linked to ciliary function. 
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Hedgehog is a lipoprotein morphogen that participates in the developmental patterning of 

many vertebrate tissues, including the neural tube and limb buds37. We focus below on the 

Hedgehog signal transduction pathway, as its relationship to cilia function may elucidate 

general principles by which other signalling systems use cilia. Many components of the 

Hedgehog signal transduction pathway, including the Hedgehog receptor PTCH1, localize to 

cilia38. Binding of Hedgehog to PTCH1 allows the downstream seven-pass transmembrane 

protein SMO to accumulate inside cilia, where it converts its transcriptional effectors, the 

GLI proteins, from repressors to activators39. GLI proteins regulate transcription in the 

nucleus, but also localize to cilia to function in signalling40,41. As discussed below, both IFT 

(trafficking) and the transition zone (gating) have important roles in dynamically modulating 

the localization of Hedgehog (and other) signalling components to the cilia. Therefore, many 

developmental abnormalities that are associated with syndromic ciliopathies, such as 

polydactyly in BBS and the neural tube defects of Meckel syndrome (MKS), may result 

from compromised ciliary Hedgehog signalling42.

Other ciliary proteins help to modulate the output of Hedgehog signalling. These include the 

GPCR GPR161, disruption of which can cause pituitary stalk interruption syndrome, and the 

EVC–EVC2 complex, dysfunction of which can cause two ciliopathies that are associated 

with skeletal malformations: Ellis–van Creveld syndrome (EVC) and Weyers acrofacial 

dysostosis43–45 (FIG. 3).

Hedgehog signalling in Drosophila melanogaster imaginal discs and cuticle does not require 

cilia, indicating that at least some organisms have evolved ciliumindependent mechanisms 

for Hedgehog signalling37. Cilia form on some sensory neurons in D. melanogaster, 
including those involved in olfaction, and these neurons use cilium-dependent Hedgehog 

signalling46. Thus, within a single organism, a signal transduction pathway can be deployed 

in both ciliary-dependent and ciliary-independent manners. In vitro evidence suggests that 

mammals may also be able to interpret Hedgehog signals through a cilium-independent 

mechanism, with different outputs from those of cilium-dependent signalling47.

Early ciliogenis is linked to ciliopathies

Defects in specific ciliary signal transduction components, such as those required for 

olfaction, phototransduction and Hedgehog signalling, can result in ciliopathies without 

impairing cilium structure. However, many ciliopathies are caused by the disruption of a 

specific aspect of the ciliogenic programme, such as the transcriptional regulation of 

ciliogenesis, basal body formation and the early ciliogenesis pathway, the formation of the 

transition zone (ciliary gate), and the trafficking machinery responsible for building the 

ciliary axoneme.

Initiation of the ciliogenic programme

In metazoans, ciliogenesis is initiated by a transcriptional cascade that involves one or more 

RFX transcription factors, namely, RFX2, RFX3, RFX4 and RFX7 in vertebrates, DAF-19 

in Caenorhabditis elegans and Rfx in D. melanogaster48–55. These transcription factors bind 

to X box regulatory motifs to activate the transcription of many genes that are required to 

build cilia52,55,56. RFX targets include genes that encode components of the transition zone 
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and the IFT–BBSome system. The formation of specialized forms of cilia also requires other 

transcriptional regulators that may cooperate with RFX transcription factors48. Examples 

include forkhead box protein J1 (FOXJ1) for generating motile cilia, GEMC1 (also known 

as GMNC) and MCIDAS for producing multiciliated cells, the homeobox transcription 

factor NOTO for generating nodal cilia, and CRX for producing photoreceptors57–60. CRX 

is associated with two retinal ciliopathies: Leber congenital amaurosis (LCA) and cone–rod 

dystrophy (CRD)61. Recently, the TAp73 isoform of TP73 was found to function upstream 

of RFX and FOXJ1 to contribute to motile multiciliogenesis62. At least two proteins that are 

needed for multiciliated cell differentiation, MCIDAS and the regulator of centriole 

duplication cyclin O (CCNO), underlie motile ciliopathies63,64 (FIG. 3; see Supplementary 

information S1 (table)). Additional regulators of ciliogenesis probably await discovery, and 

it is possible that mutations in gene-regulatory elements or in non-coding genes (BOX 1) 

may also cause ciliopathies.

Basal body and initiation of ciliogenesis

Ciliogenesis has long been known to involve basal body docking to the incipient ciliary 

membrane, after which the transition zone forms and IFT extends the axoneme (FIGS 4,5). 

Further mechanistic details have described, for example, how binding of a ciliary vesicle to 

distal appendages may be a prerequisite for basal body migration to the cell surface65. More 

recent analyses of ciliogenesis have uncovered proteins that functionally connect basal 

bodies via their distal appendages to membranes, including small GTPases that regulate 

vesicular trafficking (such as RAB8 and RAB11)66–68, proteins that shape membranes (such 

as EHD1 and EHD3)69 and proteins that promote membrane fusion (for example, the 

exocyst complex)70,71. Consistent with their essential roles in an early step in ciliogenesis, 

five distal appendage components (CEP164, CEP89, CEP83 (also known as CCDC41), 

FBF1 and SCLT1) are required for ciliogenesis72–74.

Mutations in genes encoding distal appendage components can cause a variety of 

ciliopathies. For example, the disruption of CEP164 or CEP83 causes nephronophthisis 

(NPHP)75,76, a cystic kidney disease, and mutations in SCLT1 may result in orofaciodigital 

syndrome (OFD)77, which is characterized by polydactyly and craniofacial abnormalities 

(FIG. 4).

Other ciliopathy-associated proteins localize to the distal basal body region and are essential 

for distal appendage formation or function (FIG. 4). One such protein, HYLS1, is associated 

with hydrolethalus syndrome, which is a perinatal lethal syndrome that is characterized by 

hydrocephalus and brain malformation, or the milder ciliopathy Joubert syndrome 

(JBTS)78–80. Other proteins include OFD1 (associated with JBTS, RP, OFD and Simpson–

Golabi–Behmel syndrome81–83) and C2CD3 (which is linked to OFD84). Yet another distal 

basal body component, TALPID3 (also known as KIAA0586), supports ciliogenesis and 

underlies some cases of JBTS, hydrolethalus syndrome and short-rib polydactyly 

syndrome85.

How mutations in genes encoding either distal appendage components or distal basal body 

components engender such a pleiotropic range of human syndromes is unclear. 

Hydrolethalus syndrome may result from strong loss-of-function alleles, as the absence of 
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distal appendages in mice severely impairs ciliogenesis and is incompatible with life85. 

Other non-lethal ciliopathies are likely to be caused by hypomorphic alleles or mosaicism 

(BOX 2). For example, null alleles of mouse Ofd1, an X-linked gene, are lethal in males but 

recapitulate many human OFD phenotypes in heterozygous females, which are epigenetic 

mosaics owing to X inactivation81.

Centriolar satellites

In addition to the distal centriole, OFD1, C2CD3 and TALPID3 also localize to centriolar 

satellites86–88 (FIG. 4). Various centrosomal and ciliary proteins partially localize to these 

regions, which are found near centrosomes or basal bodies89. Like OFD1 and C2CD3, many 

centriolar satellite proteins are essential for cilium formation89–91. However, it remains 

unclear whether such proteins simply localize within the centriolar satellites before their 

transit to other locations that are directly relevant to ciliogenesis. Some proteins that are 

involved in centriole duplication and microcephaly, a disorder that is mainly associated with 

centrosomal dysfunction and with possible ramifications for ciliary signalling92,93, also 

require centriolar satellites94. Thus, centriolar satellites have roles that are both relevant to, 

and potentially independent of, ciliary function.

In summary, basal body-associated defects can compromise cilium formation or function, 

resulting in diverse ciliopathies that are often characterized by developmental abnormalities 

(FIG. 4). Numerous basal body proteins that are relevant to cilia function have been 

identified95–98, and we anticipate that some of these — as well as centriolar satellite proteins 

— will be implicated in other ciliopathies (Supplementary information S1 (table)).

Transition zone is a hotspot for ciliopathies

Once the basal body has docked to a membrane, the nascent cilium becomes a separate 

compartment that is separated from the cytosol by the transition zone4,5. Like the distal basal 

body, components of the transition zone have been extensively implicated in ciliopathies 

(FIG. 4; see Supplementary information S1 (table)). Transition zone-associated ciliopathies 

have effects that are generally restricted to single organs, such as effects in NPHP, but can 

also have pleiotropic effects, as in MKS4,5.

The transition zone influences ciliary composition

A large network of proteins that are present at the transition zone modulates the composition 

of the cilium in diverse organisms, including vertebrates, C. elegans, D. melanogaster and 

Chlamydomonas reinhardtii6–10,99. The MKS complex and the NPHP complex are the two 

main functional modules of the transition zone, which are associated with, respectively, 

MKS and NPHP ciliopathies10,100. In mammals, the disruption of the MKS complex reduces 

the ciliary abundance of membraneassociated ciliary proteins, including ARL13B, INPP5E, 

ADCY3 and the central Hedgehog signal transduction component SMO8,9,101,102. As 

Hedgehog signalling is crucial for specifying digit number and central nervous system 

development37, compromised SMO localization to cilia may well be sufficient to account for 

several of the ciliopathy-associated developmental defects.
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Transition zone proteins are also crucial for the ciliary localization of polycystin 2 (PKD2), 

which is a transmembrane protein that interacts with PKD1 (REF. 9). As mutations in either 

PKD1 or PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans 

(FIG. 3; see Supplementary information S1 (table)), decreased ciliary localization of PKD2 

may account for the kidney cysts in MKS103. Therefore, although it is possible to build cilia 

without a transition zone9,99, transition zone-associated ciliopathies are probably the result 

of the altered distribution of one or more ciliary signalling proteins.

Transition zone proteins are also critical for the ciliary localisation of PKD2, a 

transmembrane protein that interacts with PKD19. As mutations in either PKD1 or PKD2 
cause autosomal dominant polycystic kidney disease (ADPKD) in humans (Fig. 3; Table 

S1), decreased ciliary localisation of PKD2 may account for the kidney cysts in MKS103. 

Hence, although it is possible to build cilia without a transition zone9,99, transition zone-

associated ciliopathies are probably due to the altered distribution of one or more ciliary 

signalling proteins.

Transition zone involvement in ciliopathies

In addition to MKS, mutations in genes that encode components of the MKS complex are 

associated with JBTS and COACH (cerebellar vermis hypo/aplasia, oligophrenia (mental 

retardation), ataxia, ocular coloboma, and hepatic fibrosis) syndromes, whereas mutations 

that affect the NPHP complex also cause Senior–Løken syndrome (SLSN), which is 

characterized by NPHP with RP (FIG. 4; see Supplementary information S1 (table)). Some 

mutations may bridge these complexes, as exemplified by the minority of JBTS-affected 

individuals who have NPHP and RP in addition to the pathognomonic cerebellar defects104. 

Similar to the basal body-associated ciliopathies discussed above, the phenotypic diversity 

that is caused by transition zone dysfunction may result from alleles of different strengths 

(BOX 2). Perhaps MKSassociated alleles compromise MKS complex function to such an 

extent that ciliogenesis is compromised, whereas JBTS-associated alleles spare ciliogenesis 

but alter ciliary membrane composition (and thus ciliary signalling).

Another non-exclusive possibility to explain the pleiotropy of ciliopathies is the alteration of 

phenotypic outcomes of Mendelian-inherited ciliopathies by modifiers (BOX 2). For 

example, the BBSome, NPHP and MKS complexes may have partially overlapping roles in 

promoting the ciliary localization of membrane proteins, as exemplified by the finding that 

BBS can be caused by mutations in core transition zone proteins such as MKS1 (BBS13, a 

subtype of BBS) and CEP290 (BBS14)105 (FIGS 4,5; see Supplementary information S1 

(table)). Thus, modest effects on one complex may phenocopy the consequences caused by 

the disruption of another complex. In C. elegans and mice, disruption of both the MKS 

complex and the NPHP complex, or both the MKS complex and the BBS complex, has a 

synthetic (synergistic) effect on the phenotypes10,102,106. Whether similar genetic 

interactions affect the manifestations of human ciliopathies will require careful phenotyping 

of large pedigrees.

With their moderate level of allelism and easily quantifiable discrete phenotypic outcomes, 

ciliopathies may represent a particularly tractable ‘sweet spot’ between strictly Mendelian 

and complex polygenic disorders. For example, genome-wide association studies (GWAS) 

Reiter and Leroux Page 9

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cannot account for more than a small proportion of the estimated heritability of polygenic 

traits, leading to searches for the ‘missing heritability’ (REF. 107). At least in ciliopathies, 

specific genetic interactions between distinct functional complexes, such as the MKS and 

NPHP complexes, which GWAS fail to detect, could help to account for this missing 

heritability (BOX 2). In support of this possibility, NPHPor BBS-affected individuals can 

have lesions in multiple genes108,109.

Is the transition zone a lipid gate for ciliary trafficking?

How the transition zone is organized and functions to control ciliary composition is mostly 

unknown, but will be key to understanding various ciliopathies. A plausible hypothesis is 

that structural proteins that form the Y-links organize protein complexes at the transition 

zone membrane (the so-called ciliary necklace) establish a lipid microdomain that is 

involved in partitioning the ciliary domains from the extraciliary domains4,99.

The presence of a barrier at the base of cilia implies that there are trafficking systems 

involved in transiting this partition. One such trafficking system, which we refer to here as 

lipidated protein intraflagellar targeting (LIFT), is specific for proteins that are modified 

with lipids (for example, farnesylation and myristoylation). LIFT involves several 

components, including UNC119, PDE6D, RP2, ARL3 and ARL13B30,110, and is disrupted 

in ciliopathies such as RP, rod–cone dystrophy and JBTS (FIG. 5; see Supplementary 

information S1 (table)). Interestingly, JBTS is associated with multiple transition zone 

proteins100,102,111–113, suggesting a functional association between the transition zone and 

this lipidated protein trafficking system. Another key trafficking system that transits the 

transition zone is IFT.

IFT–BBSome trafficking defects in ciliopathies—In 1993, the Rosenbaum laboratory 

observed that in C. reinhardtii flagella, particles moved bidirectionally between the basal 

body and the tip of the axoneme114. The machinery involved in this process, IFT, was 

subsequently found to be powered by kinesin and dynein molecular motors, and to comprise 

two ‘core’ multiprotein subcomplexes (IFT-A and IFT-B), as well as an associated BBSome 

complex that mediates ciliary cargo transport16,18,115 (FIG. 5).

Most IFT subcomplex A/B subunits are linked to ciliopathies

In vertebrates, IFT is essential for cilium biogenesis and, consequently, embryonic 

development16,18,116. Many mouse mutations that affect IFT components cause embryonic 

midor late-gestation arrest with mispatterning of Hedgehog-dependent tissues, such as the 

neural tube and limb buds116. In humans, mutations in IFT genes that cause ciliopathies 

often affect the skeletal system (FIG. 5; see mation S1 (table)). Mutations in genes encoding 

several components of the IFT retrograde motor dynein-2 (DYNC2H1, DYNC2LI1, 

TCTEX1D2, WDR34 and WDR60) and the IFT-A subcomplex (IFT43, IFT121 (also known 

as WDR35), IFT122, IFT139 (also known as TTC21B), IFT140 and IFT144) are associated 

with several skeletal ciliopathies, including Jeune asphyxiating thoracic dystrophy (JATD), 

cranioectodermal dysplasia (CED; also known as Sensenbrenner syndrome) and short-rib 

polydactyly syndrome117–125. Mutations in IFT subunits are also linked to other diseases, 

including RP, NPHP and SLSN126,127 (Supplementary information S1 (table)).
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The disruption of several IFT-B subunits is similarly associated with an overlapping subset 

of ciliopathies (FIG. 5). For example, hypomorphic mutations in IFT172 result in the 

skeletal ciliopathies JATD and Mainzer–Saldino syndrome128, or VACTERL (vertebral 

anomalies, anal atresia, cardiac defects, tracheoesophageal fistula and/or esophageal atresia, 

renal and radial anomalies and limb defects) associated with hydrocephalus129. Mutations in 

IFT52 and IFT80 also cause skeletal ciliopathies130,131. The disruption of IFT57 is 

associated with OFD, as well as short stature and brachymesophalangia132.

To understand the molecular basis of different IFTassociated ciliopathies, researchers are 

studying how mutations in different IFT subunits cause defects in the transport of specific 

cargo16,115. For example, the IFT-Aassociated protein TULP3 facilitates the transport of 

specific GPCRs to cilia133. LZTFL1 and IFT27, which are both associated with the IFT-B 

subcomplex, are implicated in the transport of Hedgehog signalling proteins134,135. Of note, 

both LZTFL1 and IFT27 are linked to BBS in humans136,137.

Possible additional links between IFT proteins and ciliopathies

Mouse models suggest that genes encoding other IFT components are good candidates for 

orphan ciliopathies (Supplementary information S1 (table)). For example, mouse IFT46 is 

essential for brain, neural tube and heart development138. A hypomorphic mutation in mouse 

Ift88 results in kidney cyst formation, suggesting that cilia modulate kidney epithelial 

growth and organization139. IFT components (DYNC2H1, IFT74 and IFT140) were also 

uncovered in a mouse mutagenesis screen for congenital heart defects140. Of note, these 

were among a high proportion of ciliary genes to be identified, which confirms the 

importance of motile and non-motile cilia, and the specification of left–right asymmetry, in 

the origin of congenital heart defects141,142.

BBS proteins: connecting signalling defects to ciliopathies

BBS arises from the disruption of BBSome components (BBS1, BBS2, BBS4, BBS5, BBS7 

and BBS8), or disruption of BBSome trafficking (ARL6; also known as BBS3)143 or 

assembly (BBS6, BBS10 and BBS12)42 (FIG. 5; see Supplementary information S1 (table)). 

The broad phenotypic range of BBS — which includes retinal degeneration, cystic kidneys, 

obesity, polydactyly and cognitive impairment — may be explained by its crucial role in the 

transport of diverse ciliary cargoes.

Three BBS-dependent cargoes are dopamine receptor 1 (DR1)144, somatostatin receptor 3 

(SSTR3)145 and melanin-concentrating hormone receptor 1 (MCHR1)145. Aberrant ciliary 

protein localization is the probable aetiology of BBS-associated phenotypes; for example, 

polydactyly may arise from impaired Hedgehog signalling146. However, many clinical 

presentations still have unclear molecular aetiologies and could be multifactorial. For 

example, obesity in BBS may result from hypothalamic dysfunction and satiety defects 

owing to the mislocalization of the NPY receptor MCHR1 and, potentially, the 

mislocalization of the leptin receptor145,147,148. Similarly, retinal degeneration may be 

caused by inefficient opsin trafficking31.
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Regulation of IFT-BBSome trafficking and links to ciliopathies

Understanding the molecular basis of ciliopathies will require a deeper understanding of 

how IFT particles and the BBSome assemble and function to regulate the trafficking of 

ciliary cargoes, including GPCRs. Evidence that several IFT and BBSome proteins are 

evolutionarily related to vesicle coat proteins may be instructive, as protein functions may 

have parallels to vesicle trafficking18,149,150. The study of ciliopathies is likely to identify 

new core or regulatory players in these processes and to lead to important insights. For 

example, kinases that influence cilium length by regulating IFT include ICK, MAK and 

MOK, with ICK associated with lethal endocrine-cerebro-osteodysplasia and shortrib 

polydactyly syndrome, and MAK associated with RP151,152 (FIGS 3,5). Mutations in NEK1 
cause short-rib polydactyly syndrome with brain malformations and kidney cysts153, 

pointing to an additional possible association between this NIMA-related kinase and IFT. 

The ciliopathy-associated ciliogenesis and planar polarity effector (CPLANE) complex, 

which participates in basal body recruitment of the IFT machinery, was recently associated 

with JBTS, OFD and SRPS154; this respresents another example of how the genetics of 

ciliopathies and cell biological insights into ciliogenesis inform each other.

Second-order ciliopathies

Most ciliogenic and ciliopathy proteins are components of the cilium, basal body or 

centriolar satellites. We use the term first-order ciliopathies for those associated with these 

proteins to reflect their local requirement at the basal body or cilium (BOX 1). However, 

non-ciliary proteins can also participate in ciliary functions and can be associated with 

ciliopathies. For example, transcription factors (such as RFX2, RFX3 and RFX4) that 

regulate the expression of ciliary genes are not cilium-localized but are crucial for cilium 

formation and function48. As another example, some ciliary complexes must be pre-

assembled in the cytosol before being incorporated into the cilium. The PCD-associated 

proteins DNAAF2, DNAAF3 and DYX1C1 mediate the cytosolic assembly of axonemal 

dynein complexes that are crucial for ciliary motility22–24. These ciliopathies can be 

regarded as being secondary (second-order) to ciliary processes (BOX 1).

Second-order ciliopathies will continue to be uncovered. For example, mutations in the gene 

encoding the Golgi-localized glycosyltransferase GALNT11 perturb Notch signalling and 

alter motile and non-motile cilia ratios in Xenopus laevis, leading to laterality and heart 

defects155.

Ciliary proteins with extra-ciliary functions

Given the wide distribution of cilia in extant phyla, the last eukaryotic common ancestor 

(LECA) probably had cilia with essentially complete IFT–BBSome and transition zone 

systems1,156. Interestingly, there is some evidence that, as metazoans evolved specialized 

cell types, ancient ciliary proteins acquired novel functions.

For example, EFHC1 is widely conserved in ciliated eukaryotes that have motile cilia and is 

required for ciliary motility in mammalian cells157. However, C. elegans, which lacks motile 

cilia, has an orthologue of EFHC1 (REF. 158), and the D. melanogaster EFHC1 orthologue 
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regulates the morphogenesis of neurons that lack cilia159. As in C. elegans, mammalian 

EFHC1 is expressed by cells with non-motile cilia, including those in the brain160. The 

function of EFHC1 in neurons is unclear but important, as mutations in this protein 

predispose humans to juvenile epilepsy157. Thus, the ancient roles of EFHC1 within motile 

cilia may have been more recently adapted in several non-ciliary functions that are relevant 

to neuronal or brain function.

Similarly, other ciliary proteins may have acquired extraciliary functions; for example, 

IFT20 may transport PKD2 from the Golgi to the cilium, and may enable trafficking to the 

immunological synapse161,162. When a cytotoxic T cell, which is unciliated, engages a target 

cell, its centrosome docks at the cell periphery using distal appendages, similar to those of 

the basal body. At this subcellular position, the centrosome directs polarized vesicle 

trafficking to create a functional immunological synapse163. Therefore, structures and 

proteins that have been implicated in cilium function — distal appendages, IFT20, and the 

small GTPase RAB29 that colocalizes with RAB8, RAB11 and IFT20 — are also associated 

with immunological synapse assembly and function164. At least in the mouse, the disruption 

of an established ciliary protein — surprisingly, one associated with cilium motility 

(SPAG6) — impairs immune synapse function165.

However, the cytotoxic T cell centrosome does not build a transition zone or extend an 

axoneme, so although there are similarities in the organization of the cilium and the 

immunological synapse and they use some of the same machinery, there are also pronounced 

structural and functional differences. It will be interesting to determine whether other cell 

type-specific centrosome-associated functions represent divergent functions for the ciliary 

machinery. IFT20 may be particularly versatile in its functions as, in addition to its roles in 

trafficking cargo within the cilium and to the immunological synapse, it contributes to 

intracellular transport of collagen166.

Thus, the analysis of proteins with established roles in cilia may need to take into 

consideration the possibility that such proteins participate in other cellular processes in both 

ciliated and non-ciliated cells. Shedding light on the combination of ciliary and cilium-

independent functions of proteins may be helpful in explaining the complete molecular 

aetiology of the associated diseases.

Discovery of ciliopathy-associated proteins

Using the list of manually curated cilium-associated components (the current gold standard) 

published by the SysCilia consortium as a starting point, we compiled a list of 428 human 

proteins that are associated with cilia (by localization and/or function), and found that 187 of 

them are linked to ciliopathies (Supplementary information S1 (table)). Of note, since the 

publication of this gold standard list in 2013, at least 50 additional cilium-associated 

proteins have been identified; approximately 50% are linked to ciliopathies, highlighting the 

crucial importance of cilia in human disease.
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Identification of ciliary proteins and ciliopathy candidates

A wide range of complementary studies aimed at uncovering the ‘ciliome’ suggest that 

additional basal body and ciliary proteins will be discovered, and some of these proteins 

might be associated with one or more ciliopathies. Such studies, compiled in the CilDB 

database167, include proteomics studies of isolated motile and non-motile cilia97,168,169, 

comparative genomics studies of ciliated versus non-ciliated organisms96,150, gene 

expression studies showing the upregulation of genes during cilium formation or changes in 

expression in mutants170,171, and the identification of RFX transcription factor target genes 

(through bioinformatic searches for X-box regulatory motifs and uncovering genes regulated 

by the nematode RFX transcription factor orthologue DAF-19)56,170. The CilDB database 

can be searched using Boolean logic for the presence or absence of a given protein in 

different studies and organisms, and can help to identify candidate ciliary proteins and 

ciliopathy proteins.

The refinement of the ciliome, which now comprises more than 420 proteins (mostly, but not 

exclusively human) (Supplementary information S1 (table)), is on-going. Furthermore, 

studies in model organisms continue to identify ciliopathy candidates and to provide insights 

into ciliary function. For example, the discoveries that C. elegans TMEM-218 functions at 

the transition zone172, and that the mouse Tmem218 mutant exhibits kidney cysts and retinal 

degeneration173, suggest that this gene is an excellent candidate gene to underlie SLSN or a 

related ciliopathy. Interactomes of established ciliary proteins can also identify new ciliary 

proteins and ciliopathy candidates100,174.

The various approaches for identifying ciliary proteins all have limitations. TMEM80, for 

example, was not implicated as a ciliary protein in any study included in the CilDB database 

before being revealed as a transition zone component, based on its homology to known 

ciliary proteins (TMEM17 and TMEM216)172. Thus, complementary and novel approaches 

are useful for identifying new ciliary proteins. A promising technique is proximity-

dependent protein identification, in which a given protein is fused to an enzyme that can tag 

(for example, biotinylate) nearby interaction partners for subsequent identification by mass 

spectrometry98. Similarly, model organism genetic or genome-wide RNA interference 

(RNAi) screens can uncover, in an unbiased manner, new genes that are required for cilia 

function140,175,176.

Confirmation of novel ciliopathy genes and ciliopathies

As whole-genome sequencing continues to become more tractable, we expect that novel 

mutations that are associated with ciliopathies will be readily identified. Baker and Beales177 

predicted in 2009 that more than 72 syndromes were possible ciliopathies. Some of their 

candidates have since been confirmed to be linked to ciliary dysfunction, including 

hydrolethalus syndrome, which is caused by mutations in TALPID3, KIF7 and HYLS1 
(REFS 78,80,85,178,179). The endocrine-cerebroosteodysplasia syndrome was shown to 

result from mutations in ICK178, which encodes a kinase that is involved in the control of 

IFT180. Walker–Warburg (WWS) syndrome was a suspected but unproven ciliopathy; the 

B3GNT1 (also known as B4GNT1) glycosyltransferase implicated in this disorder is now 

known to influence ciliated cell function in C. elegans175. The 241 candidates listed in 
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Supplementary information S1 (table) may reveal additional connections to known or novel 

ciliary disorders. Functional analysis of novel ciliopathy proteins will further increase our 

knowledge of the signalling, physiological and developmental functions of cilia.

Conclusions and perspectives

The known connections between cilia and human disease will continue to increase, and are 

likely to include additional diseases that are not specifically — or traditionally — thought of 

as ciliopathies, such as cancer and congenital heart defects. Ciliopathy research will provide 

new, valuable insights into the fundamental biology of cilia. Furthermore, the discovery of 

rare disease variants of essential genes may help to unveil unanticipated roles in ciliogenesis. 

For example, mutations in the BUBR1 mitotic spindle checkpoint regulator are associated 

with aneuploidy, cancer predisposition and impaired ciliogenesis181. New tools (beyond 

loss-of-function approaches) may be required to understand whether non-ciliary proteins 

underlying common diseases, such as cancer, have ciliary functions.

Notwithstanding such important advances, understanding the molecular functions of human 

ciliopathyassociated proteins, and deciphering their mechanistic roles within a complex, 

network and pathway, remains challenging, and the use of model organisms to dissect the 

roles of ciliary proteins and to model the effects of mutations remains essential. Studies in 

mammalian (mouse) and vertebrate (zebrafish) model systems must continue to be 

complemented by research in C. elegans and D. melanogaster, and in ciliated protists such as 

C. reinhardtii, Trypanosoma brucei and Tetrahymena thermophila. Connections between 

clinician scientists and model organism researchers through organizations such as the Rare 

Diseases: Models & Mechanisms (RDMM) network182 will help to use human clinical and 

genomic data to uncover how cilia function in physiology and development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GLOSSARY

Dynein-2
Molecular motor involved in the retrograde (tip-to-base) transport of the IFT machinery.

Kinesin-2
Heterotrimeric molecular motor required for the anterograde (base-to-tip) transport of the 

IFT machinery.

Centriolar satellites
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Electron-dense puncta found at the periphery of centrosomes or basal bodies. May function 

as a temporary hub for several proteins that are required for the proper formation and 

function of cilia.

Exocyst complex
Protein complex involved in targeting Golgi-derived vesicles to the plasma membrane.

Mosaicism
Two or more cell populations with different genotypes in one single individual.

Mother centriole
Centriolar structure that is remodeled into a basal body prior to the onset of cilium 

formation.

Septins
Proteins which create barriers between different membrane compartments in several 

contexts, including possibly at the base of cilia.
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Box 1 | Proposed classification scheme for ciliopathies

The term ciliopathy, which was first used in 1984 (REF. 183) and popularized in the 21st 

century184–186, describes human disorders that are caused by ciliary dysfunction. 

Dysfunction of basal body and ciliary proteins can affect both motile cilia and non-motile 

primary cilia, separately or together. Non-ciliary proteins can also contribute to 

ciliopathies, and ciliary proteins can have extraciliary functions that, when impaired, 

cause phenotypes that are unrelated to ciliopathies.

We propose a flexible classification system to describe the various ways in which ciliary 

and non-ciliary proteins relate to ciliopathies (see the figure).

First-order and second-order ciliopathies

• First-order ciliopathies: diseases that are caused by the dysfunction of a 

protein that principally localizes to, and functions within, the basal body 

and/or the ciliary compartment. For example, the disruption of intraflagellar 

transport (IFT) components, which are involved in protein transport to and 

within cilia, can result in the first-order ciliopathy Jeune asphyxiating thoracic 

dystrophy (JATD).

• Second-order ciliopathies: diseases that are caused by mutations in proteins 

that are not localized within cilia but that have a role in cilium formation or 

function. Examples include the cytoplasmic assembly factors for outer arm 

dyneins that are involved in primary ciliary dyskinesia (PCD). Ciliary defects 

that are not caused by mutations in protein-coding genes can also be classified 

as second-order ciliopathies. For example, multicilin (MCIDAS) is a 

transcription factor that regulates genes that are required for ciliary motility63. 

mlR-34-449, which is a micro RNA that regulates the levels of basal body 

proteins that are involved in motile ciliogenesis187, also has a second-order 

ciliary function, although it has not yet been linked to a ciliopathy).

Motile and sensory ciliopathies

• Motile ciliopathies: disorders, such as PCD, which result from impairment of 

ciliary motility.
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• Sensory ciliopathies: diseases that result from defects in the sensory and/or 

signalling functions of cilia. Examples include polycystic kidney disease 

(PKD) and Joubert syndrome (JBTS).

Using this classification scheme, first-order and second-order ciliopathies can be motile 

or sensory. For example, PCD that is caused by mutations in DNAAF4 is a second-order 

motile ciliopathy, whereas PKD is a first-order sensory ciliopathy.

Ciliary proteins with non-ciliary functions that are relevant to disease

• Extraciliary disorder: disruption of a protein with both ciliary and non-ciliary 

functions causes phenotypes that are unrelated to ciliary function. For 

example, the role of IFT20 in collagen trafficking, which was discovered in a 

mouse model166 of a craniofacial skeletal development disorder, may be 

ultimately linked to an extraciliary disorder.
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Box 2 | The complexity of ciliopathies: multigenicity, allelism, cell type 
specificity, redundancy and modifiers

As the number of ciliopathy-associated genes grows and the range and overlap between 

ciliopathy phenotypes increase, it is clear that the relationship between a ciliary gene and 

a ciliopathy is often more complex than a deterministic, Mendelian one-gene-to-one-

phenotype relationship.

For example, a gene can be implicated in multiple ciliopathies with no, or limited, 

phenotypic overlap. A single gene can be linked to multiple phenotypes if the alleles are 

of differing strength. For example, presumed nonsense mutations in CC2D2A may cause 

Meckel syndrome (MKS) (MKS6 subtype), whereas missense mutations in the same 

gene lead to Joubert syndrome (JBTS) (JBTS9 subtype)188, suggesting that MKS and 

JBTS are caused by an allelic series that affects the same essential ciliary function. 

Similarly, different alleles of TMEM231 are associated with MKS, orofaciodigital 

syndrome (OFD) and JBTS, even within one family101,111,189.

Different missense mutations in the same gene can also result in ciliopathies that are 

associated with distinct ciliary functions. For example, hypomorphic mutations that affect 

the core IFT-B protein IFT172 result in a skeletal ciliopathy, whereas other mutations 

cause retinitis pigmentosa (RP) or Bardet–Biedl syndrome (BBS)190. An intriguing 

hypothesis to explain how IFT172 can give rise to disparate ciliopathies is that certain 

mutations do not impair core IFT-B functions but specifically disrupt the association of 

IFT172 with the BBSome and thus cause BBS. Mutations in CEP290 provide another 

example, as they are associated with JBTS, BBS, Leber congenital amaurosis (LCA), 

MKS and Senior–Løken syndrome (SLSN)186,191–193 (Supplementary information S1 

(table)). As it is not clear whether these different ciliopathy-associated mutations form an 

allelic series, it is possible that they affect distinct functions of CEP290 at the transition 

zone172,194 and centriolar satellites88,195 (FIGS 4,5).

Another way in which different mutations in the same gene can result in distinct 

phenotypes is by affecting protein isoforms that have different functions. For example, 

disruption of the BBSome-associated protein ARL6 (also known as BBS3) causes typical 

BBS phenotypes, whereas a longer isoform (BBS3L) is specifically required for 

photoreceptor maintenance in mice and zebrafish196.

Additionally, genetic modifiers influence the clinical manifestation of mutations in 

ciliopathy-associated genes. Such modifiers help to identify genes with overlapping or 

antagonistic functions. For example, mutations in RPGRIP1L, which encodes a transition 

zone component, are associated with MKS, JBTS and COACH (cerebellar vermis hypo/

aplasia, oligophrenia (mental retardation), ataxia, ocular coloboma, and hepatic fibrosis) 

syndrome197,198. Mutations in a paralogue, RPGRIP1, cause isolated retinal phenotypes 

(cone–rod dystrophy (CRD) and LCA)199,200. Caenorhabditis elegans has only one 

orthologue of RPGRIP1L and RPGRIP1, which is crucial for transition zone 

assembly10,99. In mammals, RPGRIP1 and RPGRIP1L might have overlapping 

functions, and non-pathogenic alleles may modify the phenotypes that are caused by the 

pathogenic alleles. Indeed, components of different complexes (transition zone and BBS) 
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have overlapping functions in cilium formation in C. elegans and mice10,99,106. These 

findings in model organisms indicate that the type of alleles, the modifiers present in 

different genetic backgrounds, overlapping protein functions and cell-type specificity can 

all influence the phenotypic outcome, suggesting that similar genetic complexities 

underlie human ciliopathies.
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Figure 1. Structures and functions of motile and non-motile cilia
All cilia extend from a basal body that typically consists of triplet microtubules, and 

subdistal and distal appendages. Distal appendages (also known as transition fibres) tether 

the basal body to the base of the ciliary membrane. Immediately distal to the basal body is 

the transition zone, which contains doublet microtubules that are connected to the ciliary 

membrane via Y-shaped structures. Axonemes (the ciliary backbone) are composed of 

doublet microtubules. In motile cilia, axonemes usually contain associated structures and 

proteins (for example, the central pair and axonemal dyneins) that are required for ciliary 

motility. Nodal cilia are an exception as they are motile but lack a central pair of 

microtubules. Cilia may contain additional subdomains, including singlet microtubules at the 

distal end, and regions with specific protein compositions or functions (for example, the 

inversin domain (INV; involved in signalling). Key cell signalling functions and roles in 

motility are summarized. PKD, polycystin.
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Figure 2. Dysfunctions in motile and/or non-motile cilia cause ciliopathies that encompass most 
human organ systems
The figure shows the different organ systems or tissues that are affected in diverse 

ciliopathies, and the principle phenotypic manifestations of the disease in each organ. 

Ciliopathies that are caused primarily by defects in motile cilia are shown in orange, those 

that result from defects in non-motile (primary) cilia are shown in blue and those associated 

with defects in both types of cilia are shown in green. NPHP, nephronophthisis; PKD, 

polycystic kidney disease.
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Figure 3. Structural and functional features of motile and sensory cilia are associated with 
ciliopathies
a | The major structures of motile and non-motile cilia (also see FIG. 1). b | Major sites of 

action for ciliopathy-associated proteins that are components of motile cilia (motility 

apparatus or transcription factors required for the generation of motile cilia) and sensory 

cilia (axonemal and signalling proteins, ciliary tip proteins or inversin (INV) compartment 

proteins). The asterisks indicate proteins that are also localized to other ciliary regions 

during ciliogenesis (shown in FIG. 4) or ciliary trafficking (shown in FIG. 5). Circled 

numbers indicate one or more ciliopathies that result from defects in the different ciliary 
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compartments and proteins. c | Ciliopathies grouped into major categories that are associated 

with the proteins and ciliary regions shown in part b.

Reiter and Leroux Page 33

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Ciliogenesis and ciliary compartmentalization are associated with ciliopathies
a | The early steps of ciliogenesis. A mother centriole matures into a basal body and 

migrates towards the plasma membrane. The basal body distal appendages interact either 

directly with the plasma membrane, or via an intermediary ciliary vesicle (as shown), and 

the basal body-associated membrane becomes the incipient ciliary membrane. The transition 

zone is the first ultrastructure of the cilium to form. Centriolar satellites have a role in 

ciliogenesis, potentially as an intermediate storage compartment for ciliogenic proteins. b | 

Ciliopathy proteins associated with different sub-compartments of the basal body, the 

centriolar satellites or the ciliary apparatus during and/or after ciliogenesis. Circled numbers 
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indicate which ciliopathies (listed in part c) result from defects in these sub-compartments, 

as well as the organs, tissues or physiological functions that are affected. The asterisks 

indicate proteins that are also localized to other ciliary regions during ciliogenesis or ciliary 

trafficking (shown in FIG. 5). c | Ciliopathies grouped into major categories that are 

associated with the proteins and ciliary compartments shown in part b.

Reiter and Leroux Page 35

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Links between ciliary trafficking and ciliopathies
a | The functional components of two ciliary trafficking pathways: intraflagellar transport 

(IFT) and lipidated protein intraflagellar targeting (LIFT). Ciliary proteins are trafficked 

from the Golgi or cytosol to the base of the cilium, after which they are transported into the 

ciliary compartment. IFT modules that mediate trafficking include anterograde (kinesin-2) 

and retrograde (dynein-2) motors, IFT subcomplexes A and B, and an accessory module that 

contains Bardet–Biedl syndrome (BBS) proteins (the BBSome). b | Ciliopathy proteins that 

constitute, or are regulators of, the IFT and LIFT trafficking systems. Circled numbers 

indicate which ciliopathies (listed in part c) result from defects in these ciliary trafficking 

components. The asterisks indicate proteins that are also localized to other ciliary regions 

during ciliogenesis (shown in FIG. 4) or ciliary trafficking. c | Ciliopathies that result from 

defects in ciliary trafficking grouped into categories according to the tissues affected.
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