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Abstract

Aging is a fundamental aspect of life, yet also one of the most confounding. In individual cells, 

aging results in a progressive decline which affects all organelles and reduces a cell’s ability to 

maintain homeostasis. Because of the interconnected nature of cellular systems, the failure of even 

a single organelle can have cascading effects. We are just beginning to understand the dramatic 

physiological changes that occur during aging. Because most aging research has focused on 

population dynamics, or differences between wild-type and mutant populations, single-cell 

behavior has been largely overlooked. An open question is whether aging cells are defined by 

predictable sequences of physiological changes, or whether they proceed along divergent aging 

trajectories defined by whichever system begins to fail first. Can aging be best characterized by a 

cell-cycle like model with stereotyped states all cells progress through, or a Waddington landscape 

with divergent trajectories? Here we present work on understanding the changing physiological 

states of aging cells, why it will impact systems and synthetic biologists, and how the systems 

community can contribute significantly to the study of aging.

“Happy families are all alike; every unhappy family is unhappy in its own way.”

-Leo Tolstoy

Introduction

In a healthy, young cell, all systems operate properly, but aging has a multitude of targets to 

choose from, and the failure of even a single process can result in death. This abundance of 

opportunities to fail can be clearly seen in the widely varying lifespans of clonal organisms. 

Even for isogenic populations of single-celled budding yeast that are grown in identical 

environments, the lifespans will vary by over an order of magnitude [1]. The same is true for 

genetically and environmentally identical multicellular animals [2]. The fact that a 

population of seemingly identical individuals can have such disparate lifespans demonstrates 

the complexity of the aging process. Although cells have powerful networks to maintain 

homeostasis, the many ways cellular systems can fail means that any collection of young 

cells will be far more similar than any collection of middle-aged or old cells. With 
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increasing age, the variation between cells is likely to increase significantly, suggesting that 

old cells will have more divergent responses to an environmental stimulus, and that the 

behavior of synthetic circuits will be more varied and unpredictable. Understanding how 

cells proceed through different physiological states will thus aid not just our understanding 

of the biology of aging – but how natural and synthetic circuits behave in an aging cellular 

chassis.

As systems begin to fail, how do homeostatic networks compensate for these failures, and do 

cells proceed through different physiological states based on which systems failed first? 

Detailed studies of individual aging cells are, for the first time, starting to grapple with the 

concept of divergent aging trajectories. Critically important aspects of this are the molecular 

identification of distinct subsets of aging cells and the penetrance within the population of 

different aging phenotypes. Here we will focus on the budding yeast S. cerevisiae, as it is 

both one of the most widely studied aging models and extremely popular within the systems 

biology community. The majority of the physiological changes discussed here, however, 

represent hallmarks of aging that are present in widely divergent organisms [3]. Thus, it 

seems likely that much of what we are able to decipher about modes of failure during aging 

in yeast will be relevant in more complex animals and even people.

Replicative aging

Budding yeast cells go through asymmetric divisions where the mother cell produces a 

newborn daughter cell [4,5]. Because this is a morphologically asymmetric division unlike 

fission yeast or bacteria, there is a clearly distinguished mother cell, which can be tracked as 

it divides (Fig 1A). During each cell cycle the mother cell retains damaged proteins, 

dysfunctional mitochondria and aberrant genomic material which allows daughter cells to be 

rejuvenated and begin life healthy [6]. As mother cells continue to divide, this accumulated 

damage takes a toll, and the cell cycle slows leading to senescence and death (Fig 1A). The 

number of daughter cells that each individual mother is able to produce before reaching 

senescence is defined as that cell’s replicative lifespan (Fig 1B). Although a fascinating 

system in its own right, studies on the replicative aging of budding yeast have uncovered 

many genetic modifiers of lifespan that are conserved even up through mammals [3,6–9]. 

Furthermore, although we know that complex systems such as stem cells undergo cell 

intrinsic changes during aging that affect cell behavior [10–12], there are limited in vivo 
models of stem cell aging. Thus, understanding the principles of how cell physiology 

changes and affects cellular behavior in a simple, unicellular model organism can provide 

valuable insight that might not otherwise be possible.

Changes and Physiological States During Aging

Aging drives a large number of changes of key physiological parameters within cells (Fig 

1C). Fundamental cell properties that are reported to change with age in yeast include 

increasing cell size and cell division time [13,14], alkalization of cytoplasmic and organelle 

pH [15], increasing oxidation and oxidative damage [16,17], loss of mitochondrial 

respiratory capacity [18] and selective destruction of mitochondria [19], loss of mating 

competency [20], accumulation of damaged or misfolded proteins [17,21], fragmentation of 
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the nucleolus [22], and increasing genomic instability particularly near the ribosomal DNA 

[23]. These changes are highly interlinked and have been suggested to act in a causal fashion 

driving successive failures in related systems. Within a single cell, any of these changes will 

be mediated by homeostatic networks, but could also cause failures in interacting 

components as the cell attempts to compensate [24]. For example, a reduction in 

mitochondrial membrane potential that leads to a reduction of available ATP, would in turn 

affect the ability of proton pumps to function and result in a change to cellular pH. Thus, 

within these physiological variables, a number of them are likely to be highly correlated 

[24,25]. A physiological aging state would therefore be defined by the specific changes in a 

subset of physiological parameters that occur together.

Until recently, technological limitations have prevented the study of the ways in which 

related systems fail within single cells [26]. Although many experiments have assessed 

phenotypic changes in aging cells, they have largely been performed in a cross-sectional 

fashion where aging cells are isolated from a population [15,18,19,21,27–33]. Thus, the 

relationship between these spontaneous physiological changes and lifespan has remained 

cloudy. Only with the development of microfluidic systems in recent years has it become 

possible to watch individual cells throughout their entire lifespans, and observe whether 

changes in one network are linked to failures in another [16,34–38].

The physiological changes that occur during aging can be broadly categorized into four 

groups: 1) volume and transport, 2) energetics and compartmentalization, 3) protein damage, 

and 4) genomic/nuclear stability (Fig 1C). The first category, volume, is one of the most 

distinctive changes that occurs, as budding yeast cells will grow continuously, in a near-

linear volumetric fashion, over their whole life. Although regulation of cell size in budding 

and division has been extensively explored in young cells [39], how this volumetric growth 

of 2–3 fold affects cell physiology – and whether it is actively regulated or a passive by-

product of aging – has yet to be explored. Simplistically, this continuous growth changes the 

surface to volume ratio, likely forcing cells to prioritize which transporters are in the plasma 

membrane and increasing the timescale for diffusion. The second category, energetics and 

compartmentalization, has been primarily studied with a focus on mitochondrial energetics 

[18,19,40] or on the breakdown of asymmetric inheritance between mothers and daughters 

[27,33,41–43]. Many organelles rely on energetic gradients across the membranes, and while 

the alkalization of the vacuole during aging has been well studied [15,18,19], age-related 

changes in other organelles such as the nucleus with the RAN-GTP/GDP gradient and 

nuclear pore function have been less well characterized [29,44–46]. The third category of 

changes, protein damage, encompasses all protein related failures including transcriptional 

regulation. Most work in aging yeast has focused on the accumulation of HSP104 aggregates 

as chaperones bind damaged proteins in aging cells [47–49]. Intriguingly, individual protein 

levels seem to become less regulated during aging as well [18,29], suggesting that there may 

be significant differences between the proteome of individual aged cells. In the fourth 

category, a significant portion of research has focused on reduced silencing resulting from 

chromatin changes in aging cells [30,31,50–52] and the accumulation of rDNA circles which 

are created as a result of double stranded breaks and homologous recombination during 

aging [23,53–55]. Although whether the rates of large-scale genome changes such as 

chromothripsis or kataegis increase during aging is of significant interest as a result of recent 
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findings [56,57], so far no similar work has been done with yeast. Detailed studies of 

telomerase inactive mutants and the effects of on aging have been performed however [58].

Do Distinct Aging Trajectories Exist?

Given the delicate choreography that cells engage in with each replication, and the sheer 

number of physiological variables that are disrupted or change during the course of aging, it 

is likely that individual cells follow distinct aging trajectories, at least to some extent. 

Whichever chance event first occurs and undermines one of the physiological variables will 

shift the cell into a new state and potentially determine the primary mode of failure. If true, 

cells could be modeled simplistically as state machine where each state predicts transition 

probabilities to a subsequent, more aged physiological state.

These aging states, and progression through them, could be highly stereotyped with all cells 

moving through the same sequence of states, but at different rates (Fig 2A). Thus, the 

heterogeneity we observe in lifespans and physiology in old cells would be due to cells 

following the same trajectory but located at different points along the trajectory. In this case, 

aging trajectories would be similar to the heterogeneity that arises as a result of the cell 

cycle. All cells follow the same path, but the cell cycle introduces a large amount of extrinsic 

variation in a population because cells are at different points along the stereotyped path. 

Alternatively, however, because entering into a specific physiological state can be caused by 

a chance failure event, any physiological state may only affect a fraction of cells. If a 

specific physiological state predisposes a cell to enter a subsequent state, then the aging 

progression of single cells would be more analogous to a Waddington landscape (Fig 2B). 

At each point in the aging trajectory, as cells enter a new physiological state, they become 

increasingly divergent from cells following alternative trajectories.

Determining which model most accurately represents the cellular aging process will help us 

better understand how lifespan extending interventions function. Do genetic or 

environmental interventions slow aging by reducing the transition probabilities between 

states (Fig 2C), or do they affect both the transition probabilities and which physiological 

states are available to move through (Fig 2D)? If interventions remove specific physiological 

states from the progression, that may provide insight into how interventions can be 

combined to maximize lifespan. Similarly, if interventions reduce transition probabilities, do 

they impact all transition probabilities or only some?

Our limited understanding of aging trajectories can be seen in the surprising effect of dietary 

restriction (low glucose) on wild type, sir2Δ, fob1Δ, and fob1Δsir2Δ cells. Fob1 acts to 

create a unidirectional replication fork block in the rDNA that promotes formation of rDNA 

circles, and Sir2 is a histone deacetylase that enhances rDNA stability and represses 

formation of rDNA circles. Consistent with these functions, deletion of Sir2 shortens 

lifespan, while deletion of Fob1 extends lifespan, and fob1Δsir2Δ double mutant cells have a 

lifespan that is not significantly different from wild type cells. Interestingly, these strains 

behave quite differently in response to calorie restriction; sir2Δ cells receive no benefit, wild 

type cells experience a modest ~15% increase in lifespan, fob1Δ are extended by about 

~30%, and fob1Δsir2Δ cells by about ~60% [59–61]. It was speculated that these differences 
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could arise from the relative importance of rDNA circles (genomic instability) as a 

determinant of lifespan in these different genotypes, with cells lacking fob1Δ less likely to 

experience an aging trajectory involving genomic instability [59]. In these genotypes, we are 

removing or worsening a specific failure mechanism, genomic instability, and this implies 

that death in these populations will be determined by other failure processes (Fig 2D-

bottom). Thus, if caloric restriction acts primarily on one of these alternative types of 

molecular failure (mitochondrial function or pH homeostasis for example), this could 

explain the observed differential effects on lifespan from caloric restriction across these four 

genotypes. More generally, if caloric restriction differentially impacts the probability that 

cells experience specific failures during aging, this could explain the dramatic differences in 

the way that different genetic backgrounds respond to caloric restriction in both yeast and 

mammals [62,63]. Despite being proposed more than a decade ago in yeast [59], this model 

has still not been experimentally tested. By helping to synthesize complex physiological 

phenotypes into different aging trajectories, systems biology can provide an invaluable 

contribution to our knowledge of the biology of aging.

Effects of Physiological States on Natural & Synthetic Networks

The competition for resources is not merely something that occurs between cells or 

organisms. Even within a single cell, cellular subsystems must compete for resources – 

whether it is for ribosomes or specific tRNAs. This has been demonstrated eloquently by 

those studying bacterial growth laws where competition and the distribution of resources 

within cells changes as resource quality or ribosome effectiveness is modified [64–67]. It has 

also been of concern to the synthetic biology community where the presence of exogenous 

circuits can impose a significant burden on the cell and alter cellular function [66,68,69]. As 

cells age, and enter distinct physiological states, this competition within cells and between 

different cellular subsystems is only likely to become exacerbated.

Simplistically, the proper function of any natural or synthetic circuit depends on a large 

number of factors such as the availability of ATP, diffusion rates, or whether key scaffolds 

are preoccupied by other networks. As aging results in increasing protein damage, altered 

diffusion rates due to the increasing volume or molecular crowding, or different amounts of 

gene expression noise from reduced genomic silencing, these physiological changes will 

impact the function of natural and synthetic circuits in different ways. Cells in a state 

defined by reduced proteasome capacity may find it challenging to produce and degrade the 

requisite cyclins to proceed through the cell cycle; in contrast, they may be able to maintain 

ATP levels and thus respond properly to environmental shocks which require the removal of 

excess protons by an ATPase. Broadly, how a specific synthetic or natural circuit copes with 

age related physiological changes will depend on whether the circuit in question is 

vulnerable to the specific disruption [70]. We hypothesize that some circuits will be more 

vulnerable to specific age-associated changes in physiology than others. As synthetic 

biologists engineer circuits for human use, it is important to consider how designs will be 

impacted by the aging human host, and whether this could result in aberrant behavior.
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Concluding thoughts

In spite of the tremendous progress made over the past three decades into the genetic and 

molecular mechanisms that underlie aging, we still have much to learn. In particular, we 

have an extremely limited understanding of how individual cells age and the impact of 

variable cellular aging trajectories on morbidity and mortality in complex animals. The 

changing physiological states cells move through will have important implications for how 

natural and synthetic circuits behave as aging results in reduced energy, or altered diffusion 

rates, among other effects. Grappling with this complicated interplay between emergent 

systems properties should be pursued using simple model organisms that the systems 

community is abundantly familiar with. Coupled with the technological advances in single 

cell sequencing and transcriptomics, and the huge strides the systems biology community 

has made in deciphering single-cell timelapse trajectories, yeast aging research is primed for 

an influx of new ideas and discoveries in this area.
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Crane Highlights

• Aging studies of cell physiology have focused on bulk, cross-sectional 

analysis

• Interconnected systems could result in cascading failures during aging

• Limited understanding of how individual cells progress through aging states

• Do cells follow a single path, or does each cell have a unique trajectory
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Figure 1. 
Replicative aging and physiological failures. A) Budding yeast undergo asymmetric 

divisions in which mother cells retain the majority of damaged proteins and organelles. After 

a number of divisions, a mother cell will stop dividing and die. B) A replicative survival 

curve of budding yeast (BY4742) from the Kaeberlein lab showing the enormous variation 

in lifespan. Isogenic cells, grown in an identical environment, may only bud 3–4 times, or 

50–60. C) Categories of physiological changes that cells undergo as they age. Cells grow 

continuously in volume, experience increased protein damage, organelles like the 

mitochondria become less effective (purple), and in the nucleus there is increasing instability 

with increased rDNA circles (red) and reduced silencing.
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Figure 2. 
Potential aging trajectories and systems models. A) With a “cell-cycle” model of aging, all 

cells move through stereotyped physiological states, but at different rates. The rate of 

progression through each state determines the replicative lifespan of a cell. B) In a 

“Waddington” model of aging, cells can move through a distinct set of physiological states 

that may not overlap. Both the rate of progression through states, and which physiological 

states an individual cell visits determines the lifespan. C) Within a “cell-cycle” model, 

normal cells (top) move through physiological states with certain probabilities, and 

interventions that increase lifespan (bottom) reduce some or all transition probabilities. D) In 

the “Waddington” model of aging, individual cells can proceed along different paths (top), 

and lifespan extending interventions might not only reduce transition probabilities, but also 

change which physiological states cells are likely to visit as they age (bottom).
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