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Abstract

Each year thousands of individuals require surgical removal of their larynx (voice box) due to 

trauma or disease, and thereby require an alternative voice source or assistive device to verbally 

communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech 

articulation remain intact. Surface electromyographic (sEMG) activity of speech musculature can 

be recorded from the neck and face, and used for automatic speech recognition to provide speech-

to-text or synthesized speech as an alternative means of communication. This is true even when 

speech is mouthed or spoken in a silent (subvocal) manner, making it an appropriate 

communication platform after laryngectomy. In this study, 8 individuals at least 6 months after 

total laryngectomy were recorded using 8 sEMG sensors on their face (4) and neck (4) while 

reading phrases constructed from a 2,500-word vocabulary. A unique set of phrases were used for 

training phoneme-based recognition models for each of the 39 commonly used phonemes in 

English, and the remaining phrases were used for testing word recognition of the models based on 

phoneme identification from running speech. Word error rates were on average 10.3% for the full 

8-sensor set (averaging 9.5% for the top 4 participants), and 13.6% when reducing the sensor set to 

4 locations per individual (n=7). This study provides a compelling proof-of-concept for sEMG-

based alaryngeal speech recognition, with the strong potential to further improve recognition 

performance.
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I. Introduction

Human speech is a natural and efficient means of communication, yet millions of people 

around the world with severe speech disorders are unable to communicate effectively 

through vocalization. Instead, depending on the nature of the speech disorder, they must rely 

on augmentative and alternative communication (AAC) devices or software. These include 

artificial voice sources after loss of laryngeal function and/or speech synthesizers for 

individuals unable to articulate speech sounds. Unfortunately, these alternative 

communication solutions typically provide unnatural sounding vocalization or require the 

involvement of the user’s hands, thus complicating everyday interactions and making them 

unwieldy. One technology that has been leveraged for assisting those with speech disorders 

is automatic speech recognition (ASR), in which acoustic speech is translated into a 

sequence of speech tokens, typically words, using pattern classification techniques. ASR 

performance for those with normal speech function has achieved accuracies approaching 

100%, permitting effective commercial applications and integration into portable speech-

based human-machine interfaces. However, as successful as ASR has been for the general 

population, research on ASR of disordered speech is limited [1][2][3][4][5] and has almost 

exclusively focused on recognition of acoustic speech. Individuals who have lost the ability 

to speak normally cannot make full use of ASR interfaces, even if their language function is 

intact. ASR performance also degrades rapidly in the presence of acoustic noise, rendering it 

unsuitable for use in acoustically harsh environments, and it lacks privacy when used as a 

computer interface.

For the specific condition of voice rehabilitation after total laryngectomy, current options are 

fraught with limitations, including poor skill acquisition and intelligibility with esophageal 

speech [7], poor tissue viability or health issues often precluding the use of trachea-

esophageal (TE) speech [8][9], and mechanical sounds coupled with the need to dedicate 

one hand for electrolarynx (EL) speech [10][11]. Furthermore, none of these options 

produce natural-sounding speech. These ASR and voice rehabilitation deficiencies call for 

an alternative form of speech recognition that does not rely on acoustic speech and can 

provide an interface for natural-sounding speech synthesis. The case for this approach is 

further bolstered by the advent of new technology that enables the creation of personalized 

synthetic voices using only small audio segments [12].

A number of biosignal modalities have been studied in the context of developing non-

acoustic speech communication systems, including ultrasound, optical imagery, 

electropalatography, electroencephalography (EEG), and surface electromyography (sEMG) 

(see [13] for a comprehensive review of these studies). sEMG-based speech recognition 

provides a particularly attractive alternative platform through which individuals can 

communicate via synthesized ASR-to-speech or interact with computers via ASR-to-text. 

sEMG-based ASR operates on signals generated by the face and neck musculature, which 

are recorded from sensors placed on the face and neck skin surface. As such, it can be 

performed non-invasively while an individual produces audible speech or simply “mouths” 

their speech (i.e. so-called subvocal speech recognition where no voice is produced), and can 

thus augment or completely replace audible speech after laryngectomy or other causes of 

Meltzner et al. Page 2

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



voice or speech disorders. Studies to advance sEMG-based subvocal speech recognition are 

relatively few in number and were initially limited to developing algorithms from isolated 

words among normal speakers [14][15][16],[18]. Other work has pushed the technology 

towards continuous speech recognition, with promising results, albeit on limited 

vocabularies [21][22]. More recently, studies have attempted to leverage advances in Deep 

Learning to improve recognition performance [23][24].

Our work in this field has focused on the development of the Mouthed-speech 
Understanding and Transcription Engine (MUTE), primarily for providing covert “silent” 

communication for Defense applications. Our initial study used 11 sEMG sensors coupled 

with a Markov model (HMM)-based recognition system that was trained and tested on a 

vocabulary of 65 isolated words during vocal and subvocal (mouthed) speech modes [27]. 

Our results from n=9 speakers indicated the feasibility of achieving sEMG-based 

recognition accuracy for the mouthed speaking mode that was comparable to the vocal 

speech mode (accuracy of 86.7% and 92.1%, respectively).

Our more recent studies have advanced the algorithm development with an emphasis on 

significantly expanding the vocabulary set, achieving continuous speech recognition rather 

than the isolated word recognition of our prior work [25][34], and improving sensor set 

reduction to achieve a 4-sensor capability for ease of use. Our subvocal isolated word and 

continuous speech recognition capability from a 2,000-word vocabulary was reported on 

n=8 subjects [25]. The subvocal speech data corpus covered commonly used English words, 

including the TIMIT Acoustic Continuous Speech Data Corpus [29], Special Operation 

military commands [30], a Common Phrases set [31], a Text Message set [32], and a digits 

and date String set. Software algorithms using a variety of advanced signal processing 

technology were developed and tested using this data corpus to deliver a subvocal speech 

recognition engine, whose performance averaged 88.1% when tested on words not in the 

training vocabulary. These performance metrics significantly outpace those reported by other 

groups working in this field [15][18][19][20]. Details of how these accomplishments were 

achieved are summarized in Section II below, and in our prior publications [25][26][27][28]

[34].

The results of these studies suggested that sEMG-based speech recognition could enable 

speech-based communication for those who cannot communicate acoustically. As such, we 

also applied this technology towards recognizing the speech of those with speech disorders 

caused by cerebral palsy, traumatic brain injury (TBI) and stroke, and found there was great 

potential of using sEMG-based recognition for disordered speech, so long as the disordered 

speech articulatory patterns were reproduced consistently [26].

This latter finding suggests that sEMG-based recognition could be well suited as a means of 

assistive communication for persons living with laryngectomy. Those who have undergone a 

total laryngectomy typically have intact (or mostly intact) articulatory abilities that approach 

that of healthy talkers, and they are accustomed to speaking in a subvocal manner (i.e. 

without engaging their vocal folds and making use of laryngeal proprioceptive feedback), 

perhaps hastening their use of mouthed speech as a communication modality. Furthermore, 

our prior work has demonstrated that sEMG-based ASR does not necessarily depend on 
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recording locations altered by total laryngectomy (e.g. the ventromedial neck surface – see 

Methods). As such, we sought to adapt our sEMG technology to achieve similar 

performance metrics for people with laryngectomy compared to anatomically intact 

individuals while overcoming the challenges inherent with this speaker population. 

Specifically, these challenges include the necessity of achieving comparable performance 

metrics from recording locations that are not dependent on the presence of the larynx or 

associated extrinsic laryngeal and other infrahyoid musculature excised during 

laryngectomy.

II. Methods

A. Data Collection

Subjects—Data were collected from 8 male subjects ranging in age from 57 to 75 (mean = 

64 years). All subjects were fluent and literate in American English and at least 6 months 

after total laryngectomy to ensure that the tissue around the surgical site was healed enough 

to tolerate the multi-hour experiment. All participants voluntarily provided written informed 

consent approved by the Western Institutional Review Board.

Data Corpus—The main data corpus was designed to cover a vocabulary of 2,500 words 

comprised of commonly used English words and phrases, while balancing the frequency of 

phoneme combinations for unforeseen testing words. The text for our data corpus consisted 

of 280 key sentences from a message corpus initially developed at Boston Children’s 

Hospital for message banking by those diagnosed with early stages of ALS [33], and 150 

sentences from the TIMIT-SI corpus [29] (used in our prior experiments [25][34]) to 

comprise the testing component of the revised corpus. The remaining training component 

was taken from the TIMIT-SX (450 sentences) corpus [29] combined with a set of common 

phrases, resulting in a corpus of 980 sentences, 550 used for training and the remainder for 

testing. The sentence tokens were presented in the same order for each subject to ensure that 

the required number of training tokens were obtained in a single session prior to any subjects 

needing to end the experiment due to fatigue or discomfort (during the course of the 

experiments, no subject ended the experiment early). Furthermore, we created a 

supplemental corpus of 280 sentences from the Children’s Hospital Message banking corpus 

to test the efficacy of providing more training data to our models. Two subjects were given 

this supplemental corpus which was used to train the subject-dependent recognition models. 

Unlike the case of the main corpus, the supplemental corpus contained some repetitions of 

sentences between training and testing sets. Supplemental corpus results are reported 

separately in section IIIC. The mean sentence length of the entire corpus was 6.8 words per 

sentence.

Data Acquisition—A custom wireless data acquisition system [25] was used to 

simultaneously record sEMG signals from 8 locations on the face and neck (Fig. 1) while 

the subject mouthed the sentence tokens. The custom system consists of 4 active sensor 

“pairs” (each sensor being 10mm × 20mm × 3mm) containing sensing and conditioning 

electronics with double parallel bar electrodes spaced 1 cm apart for differential recording 

relative to a ground reference electrode placed at the lower cervical spine (Fig 2). The sensor 
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pairs were joined by a flexible cable (to accommodate the different contours of the face and 

neck region) and connected to a wireless transceiver which communicates with a Trigno™ 

base station (Delsys Inc, Natick MA). Signals were conditioned for a maximum input range 

of 11mV, bandpass filtered from 20-450 Hz (80 db/dec), sampled at 2000 samples/sec, 

wirelessly transmitted using a custom protocol (<500us inter-sensor latency; <0.5% bit error 

rate), and interfaced over USB to a PC workstation (Dell, Inc. Round Rock, TX).

Sensor locations—The skin area of each sensor location was first prepared using a 

disposable shaver (if needed), alcohol wipes, and repeated tape peels to remove facial hair, 

oils, and exfoliates (respectively). Position and alignment of sensors relative to anatomical 

landmarks on the face and neck relied on templates, as outlined in a previous publication 

[25]. The ventral neck sensor pairs were placed in submental (#1,#2) and ventromedial 

(#3,4) regions, and the face sensors were placed over supralabial (#5,6) and infralabial (#7,8) 

regions (see Fig. 1). A double sided hypoallergenic adhesive tape with cutouts for the 

electrode pairs was used to secure the sensors to the skin.

Sensor locations were selected based on the results of previously conducted sensor location 

and reduction studies, which sought to identify the optimal sensor configuration from among 

the many possible sites of the face and neck involved in speech articulation. Six superficial 

muscle regions across the neck and face were selected to identify one or two sensor 

locations within each region that either had been shown to be effective in prior sEMG speech 

studies [14][15][16][17] or were reliably accessible to prominent speech muscles. The 

results demonstrated that sEMG information from mouthed speech was robust to shifts in 

sensor location across specific labial regions, and there were consistent optimal locations in 

other zones when referenced to the muscle midline [27]. Findings from the sensor mapping 

experiments enabled us to identify 11 appropriate (if not optimal) sensor locations for 

subvocal speech. However, the impracticality of requiring a user to don n=11 sensors 

prompted us to systematically analyze subvocal speech recognition performance from all 

possible subset combinations to identify the best combination(s) of locations to achieve 

WERs comparable to our full set of 11 locations [28]. Word recognition accuracy increased 

rapidly with respect to the number of sensors, eventually plateauing at 5 sensors to within a 

percentage point of the full 11-sensor set. Moreover, 3 of the sensors located on the ventral 

neck were clearly dispensable, which helped us define a reduced set of 8 sensor locations 

that are used in this study. The data collected from the 8 sensor locations were then analyzed 

to identify sensor subsets that produced recognition performance that approximated that of 

the full 8-sensor set (see Results).

Our choice of sensor locations, which were selected based on a combination of anatomical/

physiologically based targeting and systematic quantification, do exhibit some overlap with 

sensor locations used in other studies that use a set of individual electrodes, whether guided 

by purely anatomical and physiological concerns [17][22] or produced from trial and error 

[18]. However, there are two significant differences: 1) our locations tend to target more 

muscles in the labial and submental regions and 2) we use a unilateral sensor set (i.e. the 

sensors are placed on one side of the face) whereas other studies have used a bilateral set. 

An additional study used a unilateral sensor set that took the form of a patch array of 
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electrodes [53]. However, the array was placed in a more lateral position than ours, 

ostensibly due to limitations incurred by the form factor of the patch array.

Protocol—A data collection Graphical User Interface (GUI) and infrastructure were 

designed to implement the data corpus protocol in a manner that minimized fatigue of the 

laryngectomy users and allowed them to control the pacing of the sentences they read in a 

subvocal (i.e. mouthed) manner. The infrastructure consisted of a subject prompt GUI on 

one monitor and a signal acquisition GUI on another monitor that were both controlled by a 

software running in Matlab (MathWorks, Natick MA). The signal acquisition GUI was 

integrated with the Delsys data acquisition Software Development Kit to enable the data to 

be collected directly into Matlab. Subvocal prompts were displayed one at a time on the 

screen facing the user, which they advanced after mouthing each sentence. Data from the 

sensors were displayed in real time on the operator screen to identify signal artifacts or 

extraneous contractions requiring these sentences to be repeated See [13] for an example of 

collected signals. Signal noise such as motion artifact occasionally prompted individual 

sensor reapplication with fresh double-sided adhesive interfaces. Participants were 

encouraged to refrain from extraneous head/neck movements during sentence production 

(e.g. coughing, swallowing, and speaking off script), but were free to do these things or take 

stretching or bathroom breaks at any point between subvocal prompts. Participants were also 

asked to indicate when they make errors in mouthing the target sentences so that recordings 

with errors could be replaced by a repetition. Because of the practical limitations of ensuring 

that all subjects complied with the protocol at the time the data were being collected, we also 

adopted a policy of reviewing all raw sensor data post hoc to exclude participants with 1) 

excessive intermittent signal noise indicating poor skin contact or movement artifact, and 2) 

EMG signal amplitudes that consistently fail to exceed the noise level, indicating problems 

with attending to the task of articulating due to somnolence or distraction. One such subject 

was a clear outlier in this regard, and the data from his trials were excluded from further 

analysis. The entire protocol required approximately 3.5-4 hours for completion, including 

multiple stretch breaks to relieve fatigue and boredom. Fig. 1 shows a subject with 

laryngectomy self-operating the acquisition system.

B. Signal Processing and Recognition

We modified and enhanced our previously reported subvocal speech recognition algorithms 

for military applications [25][34] to accommodate a different (and substantially reduced) 

vocabulary set more appropriate for users with laryngectomy. Our goal was to also reduce 

the requisite number of sensors from the 8 locations acquired in our data corpus to a sub-set 

of 4 sensors to simplify usability. Details of the approach are divided into speech activity 

detection, feature extraction, and modelling components below.

1) Speech Activity Detection (SAD)—Speech Activity Detection is a vital component 

of an accurate silent speech recognition system. Our SAD algorithm was specially designed 

to address three main challenges unique to sEMG speech recognition: 1) unlike acoustic 

speech, SAD must simultaneously exploit multiple channels; 2) it must be able to 

distinguish between speech-related activity and non-speech-related activity (the difficulty of 

which is compounded by the fact that speech-related sEMG signals do not always 
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immediately dissipate after articulation is completed); and 3) each speaker’s sEMG signals 

are unique. To address these challenges, other studies have approached data-segmentation 

using hand labeling or acoustic cues in a voiced model [14][16][23][24] generated from 

simultaneously recorded acoustic data. This approach, however, is not applicable to our case, 

as we recorded silent, continuous data, without any acoustic cues to provide a realistic test 

faithful to the anticipated real-life application for mouthed speech recognition. These 

qualities of our experiments also preclude the use of a machine-learning based start/stop 

classifier as there are no ground-truth data to train a model.

Instead, we developed an sEMG-based Speech Activity Detection (SAD) algorithm that 

adopted a two-level finite state machine approach that is based on a previous MUTE 

application [34]. The goal of this SAD is to safely remove as much silence and noise as 

possible from the signals (without inadvertently truncating the speech-related activity) and 

allow the ASR system to model the rest. The SAD algorithm incorporates a multi-channel 

decision logic, which takes advantage of the fact that speech production typically involves 

the simultaneous activation of multiple muscles and is thus able to ignore noise in any single 

channel. To balance the trade-off between simplicity (desired for real-time implementation) 

and robustness, our current SAD algorithm is based on the following principles: 1) using a 

short time-windowed signal (between 25ms and 50ms depending on the most effective 

setting for a given subject) to compute local statistics; 2) continual background noise and 

real signal statistics tracking on each channel; and 3) a global decision based on the best 

sub-set of all sEMG channels. The SAD algorithm operates on two levels of finite state 

machines. The first level consists of a finite state machine for each channel, which 

determines the channel’s speech state. An active/inactive decision is made on each 

windowed time instance, t, by comparing current statistics with minimum background and 

maximum signal statistics. The higher-level machine, as described in [34], combines each 

channel’s states to make the global start of speech (SoS) and end of speech (EoS) decision. 

This SAD algorithm continuously adapts to the background signal level and the speaker/

utterance specific maximum energy level for each channel. For a full 8-channel sEMG 

sensor set, our empirical study identified that channel subset {1,5,7,8}, (see Fig. 1 for 

respective locations), is the most effective for SAD decision making and is used in our full 

sensor set experiments. Fig. 3 shows an example of the output of the SAD, in this case, for 

the production of “I’m not ready yet.” Note that because the SAD looks for simultaneous 

multi-channel activity, isolated, single channel sEMG bursts (e.g. in Channel 7) do not 

trigger the speech onset detection. Further details about this SAD can be found in [34].

As one of our goals was to reduce the required sensor set to a maximum of 4 channels, the 

SAD needed to be adapted to the reduced channel availability. As such, during the reduced 

sensor set recognition experiments, the SAD was modified to operate on all of the available 

channels that were being tested.

2) sEMG Feature Extraction—Our approach employs Mel-frequency cepstral coefficient 

(MFCC) features as a baseline method of sEMG feature extraction because they proved 

effective in our MUTE development. The sEMG signals were first subject to DC offset 

removal as this is an artifact of the electronics and has no physiological significance. For 

feature extraction, a Hamming window was used with length and shift adapted for each 
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speaker, followed by cepstral analysis resulting in a 7-dimension cepstral feature set. The 

algorithm to generate the MFCCs was modified to account for the characteristics of sEMG 

signals (e.g. smaller bandwidth than acoustic speech) [25], resulting in the use of 15 

filterbanks. The mean and variance normalization was applied and then the delta cepstral 

features were computed. The 8 sEMG channel cepstral features were concatenated to form 

the final 112-dimension feature vector. The default setting used a window size of 50ms and 

window shift of 25ms. However, because window size and shift was found to have a 

significant impact on performance, we applied a speaker adaptive window size and frame 

rate (see Results for description).

Because the high-dimensional multi-channel sEMG feature sets are highly correlated and 

redundant, we applied the well-known heteroscedastic linear discriminant analysis (HLDA) 

feature dimension reduction technique and maximum likelihood linear transform (MLLT) 

feature adaptation to enhance the discriminative power of the feature set [34][36]. HLDA 

utilizes 3 left frames and 3 right frames as context. MLLT uses HMM tri-phone tied-state as 

classes. Thus, the 112-dimension input feature vector is augmented by a factor of 6 (to 

include the 3 left and right frames) prior to being transformed into a 30-dimension 

discriminative feature space. The resulting 30-dimension feature vectors are then used for 

training the recognition model.

3) sEMG Recognition Modeling—We designed a subvocal speech recognition 

algorithm that applies advances in the field of acoustic speech recognition to the silent 

speech recognition domain [16]. In our previous work [25][34] we developed the 

architecture to build phoneme-based recognition models through a series of processing 

stages, each designed to address specific aspects of the model complexity. In this study we 

improved upon our previous architecture by migrating our algorithm into the KALDI speech 

processing toolkit [37][38] and developing new subject-specific models that adapt to unique 

characteristics of subvocal speech that may vary across individuals after laryngectomy.

Our approach to subvocal speech processing is based on the recognition of the underlying 

combinations of phonemes that comprise different words. The algorithm starts by modelling 

each of the commonly used 39 phonemes for English (and one silent/noise mode) with a 

three-state left-to-right hidden Markov model. The first step trains a monophone model for 

each subject with a total of 120 states across the 40 phoneme models. Each state shares a 

mixture of Gaussian distributions with a total of 1800 distributions for the 112-dimension 

sEMG feature vector. The second step builds context-dependent phoneme models, called 

triphone models, to account for the impact of left and right phonemes on the center 

phoneme. A data driven decision tree (using the KALDI toolkit decision tree algorithm) is 

then used to cluster the triphone models for the observed training data and create triphone 

models for new phoneme combinations not seen during training. The final triphone system 

has 500 tied states. We then applied a subspace Gaussian mixture model (SGMM) approach, 

such that all phonetic states share a common GMM with varying means and mixture weights 

within the subspace [37]. This allows a more compact representation and improved 

performance on the relatively small amounts of training data available for subvocal speech 

recognition. For this study, the common GMM was trained with 200 mixtures. The final 

SGMM model had 800 leaves and 1200 sub-states. We then apply per-utterance adaptation 
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using feature-space maximum likelihood linear regression (FMLLR) to better align the 

SGMM for each triphone model. By adapting to subject-specific changes of subvocal 

speech, the FMLLR algorithm increases the probability of recognizing variations of the 

same triphone across multiple subvocal utterances. This processing stage is critical for 

retaining accurate word-recognition while testing on words previously unseen in the training 

data. Recognition “scores” for each vocabulary word or utterance (for each subject) are 

tabulated from the HMMs and a decision process is applied to identify the highest scoring 

possibility. Performance is averaged and plotted in tabular form.

Although we did not use a statistical language model for the recognition system, we 

employed a finite state transducer (FST) grammar to constrain the decoding graph. The 

grammar was built using a combination of HTK [40], HTK data preparing (HDP) [41][42], 

and the KALDI toolkit. First, the HTK grammar tool HParse was used to generate a standard 

lattice format (SLF) grammar using the text of all the sentences in the test corpus. Second, 

the HDP tool was used to convert the SLF grammar into an AT&T FST format. To assume 

minimum knowledge about the test corpus, uniform weight was given to each arc out of a 

state. Lastly, the KALDI FST tool was used to determinize and minimize the grammar.

4) Phoneme Alignment—One of the larger challenges of silent speech recognition is 

how to accurately perform phoneme alignment without knowing the acoustic ground truth of 

the training data. We approached this problem using a technique employed in many acoustic 

speech recognition systems, whereby the acoustic phoneme level model can be trained using 

continuous utterances without phoneme level labels. The phone alignment is done 

automatically through the Expectation Maximization (EM) algorithm training of phoneme 

hidden Markov models. This technique typically works given enough data as long as the 

utterances are not too long. In our case, the training corpus is designed to cover most 

phoneme combinations and there are many very short utterances. By allowing silence at the 

beginning, ending, and anywhere between words, the EM algorithm starts with uniform 

segmentation of phonemes and iteratively converges to a proper segmentation for each 

utterance during the training process. Generally, we observed that recognition accuracy 

improved as the training progressed with EM iterations.

III. Results

A. Full sensor set results

We computed the WER for different combinations of analysis window size and overlap for 

each subject using the test sentences from the 980-sentence data corpus. The window size 

was varied from 30ms to 50ms (in 10 ms increments) and the overlap was varied from 15ms 

to 25ms (in 5ms increments). The WER for each analysis window/overlap combination is 

presented in Table 1, with the best combination for each subject shown in bold type. We 

found that for each subject, the WER was highly variable across different analysis window 

lengths and overlaps, in some cases varying by as much as 27 percentage points (i.e.: for 

Subject 4). By adapting the window/overlap on a per subject basis we achieved a recognition 

performance WER of 10.3%.
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When averaged across all subjects, we observed the WER was associated with both the 

window length and overlap (Fig 4). On average windows with 25 ms overlap produced the 

highest WERs – ranging from 17.2% to 20.2% – with the greatest standard deviations – 

ranging from 8.8% to 11.5% – regardless of window length. When decreasing the overlap by 

5 ms, both the average and standard deviation of the WER was significantly reduced to as 

little as 11.4%. Further decreasing the overlap to 15 ms yielded relatively slight increases in 

the average WER, indicating windows with 20 ms overlap were optimal for the subjects 

tested. When the window overlap was fixed at 20 ms, the average and standard deviation of 

the WER was inversely related to the window length, decreasing from 13.2±3.8% for a 50 

ms window to 11.4±1.4% for a 30 ms window. Overall, the window/overlap pair of 30ms/

20ms was the most effective for the largest number of subjects (3) providing a mean WER of 

11.4%.

B. Reduced sensor set results

To evaluate the practical usefulness of our silent speech recognition system, we investigated 

the tradeoff between the number of sensors and the accuracy of word recognition. For each 

number of sensors, we tested various combinations of the sensor subsets to identify the 

combination that provided the best performance across all subjects (Fig 5). The optimal 

window size and overlap were used for each subject. We found that the reduction in the 

number of sensors was exponentially related to the increase in word error rate. More 

specifically, as the number of sensors decreased from 8 to 4, the mean WER increased by 

approximately 3.3%. However, as the number of sensors was further reduced to 2, the mean 

WER increased by 14.8 %. These data support the viability for reducing the number of 

sensors from 8 to 4 without incurring relatively large degradations in subvocal speech 

recognition performance.

We further evaluated the performance of different combinations of 4-sensor subsets, with 

special interest in the subset of sensors {5,6,7,8} which are all located on the face (see Fig. 

1) to test the viability of a simpler and more robust interface design. The WERs of the top 5 

performance subsets are shown in Table 2. on a per-subject basis. Overall, there was a small 

variation in performance of these 5 4-sensor subsets (a range of 2.4 percentage points), with 

the most effective being subset {2,5,6,8}, which consists of 3 facial sensors and one 

submental sensor. This subset was the most effective for the largest number of subjects (3) 

and generated the lowest mean WER of 13.6%. Table 2. also identifies the most effective 

subset for each subject, i.e. if a custom subset could be used for each subject. In this case the 

mean WER is 12.2%.

C. Effect of Data Corpus Size

We further analyzed subvocal speech recognition on 2 subjects (5 and 6) who generated an 

augmented data set with 280 additional sentences to quantify the effect of a larger data 

corpus on the recognition performance. We computed the WER for these subjects for the full 

sensor set after training on a total of 550, 690 and 830 sentences; the WERs for each subject 

are presented in Fig 6. It should be noted that the augmented corpus contains some overlap 

with the testing component of the main corpus. Nonetheless, Fig 6 depicts a clear inverse 

relationship between the WER and the number of sentences used for training. Specifically, 
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increasing the training data from 550 to 830 sentences decreased the WER from 12.1% to 

8.8% and 10.9% to 7.7% in subjects 5 and 6 respectively. These data give evidence that 

subvocal speech recognition can be substantially improved with the expansion of training 

data.

IV. Discussion

The results of this study suggest that sEMG-based speech recognition is a viable mode of 

communication for those who are living with laryngectomy. This work falls under one of the 

several use cases for biosignal based communication, namely restoring spoken 

communication [13]. When using the full 8-sensor set coupled with speaker dependent 

processing, we are able to achieve a mean WER of 10.3% on a vocabulary of 2,500 words. 

However, because sensors located on the ventromedial neck (sensors numbered 3 and 4 in 

this study) are recording from substantially altered anatomy in this patient population, we 

investigated the effects of eliminating these sensors, as well as an additional set of two, to 

reduce the total number of requisite sensors by a factor of 2 (from our original set of 8). The 

ideal subset would be localized near the mouth to achieve a single 4-sensor neural interface 

on the face with greater ease of use. We found that the most effective 4-sensor subset varied 

from subject to subject, with a corresponding mean WER of 12.2%. The mean best-

performing subset {2,5,6,8} has 3 out of the 4 sensors located on the face, and generated a 

WER of 13.6%; only a 1.4%-point drop in performance from the personalized best mean. 

The face-only subset {5,6,7,8} produced a mean WER of 15.9%. Collectively, these findings 

indicate that a facial sensor grouping with one submental sensor {1 or 2} would provide the 

most effective overall solution for this group of subjects. Overall, these results demonstrate 

that in spite of the relatively small performance reduction between our original 8-sensor set, 

and the reduced 4-sensor set, the enhanced practicality and simplicity of a 4-sensor facially-

worn neural interface supports its viability for further development.

Unsurprisingly the optimal 4-sensor set for individuals with laryngectomy is not the same as 

the optimal 4-sensor set for healthy individuals. As reported in [25], the best performing 

sensor subset consisted of sensors {1,3,6,7}, i.e. one sensor from each of four targeted areas 

of speech musculature (above and below the oral commissure, submental surface, and 

ventral neck surface). However, while sensors on the face were useful for both the healthy 

and laryngectomy cases, sensors located near the site of surgery {3,4} were of little value to 

subvocal speech recognition for individuals with laryngectomy, whereas sensors 2 and 5 

gained in importance as possible substitutes. Yet, despite the difference in optimal subset 

configurations, the overall performance reduction for both sets of speakers are quite similar 

(4 percentage points for healthy speakers and 5.4 percentage points for speakers with 

laryngectomy).

It is also clear that increasing the amount of training data can significantly improve 

recognition performance. Although the sample size was small, we found that increasing the 

amount of training data by one third led to nearly a one third reduction in the WER across 

both subjects tested with the full sensor set.
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Also of note is the relatively high degree of variability in recognition performance observed 

across the different window parameters. Figure 4 demonstrates that at least some of this 

variability is associated with window length and overlap. Changing the window overlap 

indicated that subvocal speech recognition is determined in part by the frame rate of input 

feature set. Even relatively small changes in overlap such as from 20 to 25 ms can double the 

frame rate resulting in dramatic increases in WER from among the best to the worst 

recognition performance (as can be seen for subject 4). Similarly, the window length 

dependence can be attributed to differences in articulation rate – should the window be too 

large with respect to the modulation of the sEMG signals, then the temporal resolution 

becomes too low to differentiate between subword units. Conversely, too small of a window 

reduces the frequency resolution, thus making the MFCC parameterization ineffective. 

While we could identify an optimal configuration for the analysis window parameters, there 

was enough variability among speakers however to make these configurations non-optimal 

for certain participants. This is consistent with similar findings reported for healthy speakers 

[25]. Thus a more thorough investigation is warranted to better assess the factors influencing 

variability in WER across subjects. Such an investigation would likely require a larger per 

subject data corpus, and would best be conducted with healthy participants more suited for 

extended experimental duration.

With respect to the sensor-set configuration, we found that while the mean best performing 

4-sensor subset comes close to meeting the WER of the best per-subject subset, there are 

instances when there remains a performance gap between the two. This variability is likely 

caused by a combination of diverse articulatory strategies and differences in speaker 

anatomy. Speech production is a many-to-one problem [41],[44] whereby different speakers 

may employ various articulatory strategies to produce the same desired acoustic output. This 

suggests that the relative importance of different speech-production-related muscle groups 

can vary from subject to subject, thus making some sensors more important than others.

Anatomical differences between speakers, whether due to variable muscle size or differences 

in the amount of tissue located between the muscle and the surface sensor, can also affect the 

recorded signals, and hence the relative importance of different sensors. Anatomical 

differences can be exacerbated within the laryngectomy population because the residual 

anatomy is very much a function of the extent of the disease which prompted the surgery, as 

well as the surgical preferences of the surgeon performing the procedure. [45] As such, 

variability in optimal sensor-subsets is not a surprising finding.

We considered imprecision in sensor placement as another cause of inter-subject variability. 

However, as mentioned in Section II.A, our previous investigations demonstrated that the 

information content of the resulting sEMG signal was robust to shifts in sensor location 

provided the sensor was placed somewhere over the body of the target muscle [27]. To 

ensure proper and consistent sensor placement we used a set of templates combined with 

anatomical landmarks to guide sensor location. Furthermore, our experience in using the 

MUTE prototype [25] (which uses the same sensor configuration) in repeated 

demonstrations over the course of several years, has shown that the recognition is highly 

repeatable simply by using sensor templates as placement guides. As such we do not believe 

that a lack of sensor placement consistency is the cause of this performance variability.
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Nevertheless, the relatively small magnitude of the inter-subject variability supports the 

potential for a reduced sensor system to provide practical and usable technology for 

subvocal speech recognition.

A. Limitations of silent speech recognition

The results of this study demonstrate that silent speech recognition has promise as an 

alternative communication device for persons living with laryngectomy. While the 

performance of our system surpasses that reported by previous investigations of subvocal 

speech, it still falls short of matching the recognition rates of commercial acoustic ASR 

systems; all of which operate on much larger continuous vocabularies. As such, future work 

must focus on identifying and addressing the causes of the recognition errors. To this end, 

we have identified three limitations that need to be overcome before this technology can be 

commercialized to the patient population.

1) Data corpus size—The performance of subvocal speech recognition is constrained by 

the limited training data available for each subject. There are a number of reasons for this 

situation. First, collecting large amounts of silent speech data is an intentionally slow 

process so that the data can be collected in the form of reasonable duration tokens that can 

be automatically aligned. Because it is impractical to manually label the silent speech data, 

relying on statistical alignment is a necessity. Our approach was to present the speech at 

sentence level tokens and allow the subjects to self-pace their presentation. This method 

introduces delays between the recitations of the speech tokens, which, over the course of 

roughly 1000 sentences effectively doubles the total time of the experiments. Expecting 

individuals in our study with an average age of 64 years to maintain a consistent level of 

mouthed speech effort over approximately 4 hours of data collection poses a challenge for 

protocol compliance. More accurate results approaching those of ASR could be obtained if 

data collection is spread across multiple, shorter recording sessions even if doing so 

introduces variability related to differences in sensor placement between recordings.

It should also be noted that other studies that have focused on collecting a large sEMG 

speech data set were only able to collect a total of about 1.75 hours’ worth of silent speech 

data from each of 8 subjects over 32 short-duration sessions [46]. This amount pales in 

comparison to the thousands of hours of speech used to train acoustic, large vocabulary ASR 

systems, which may partially explain why sEMG-based ASR has yet to approximate 

acoustic-based ASR. Nevertheless, the significant performance gain that resulted from 

increasing our training corpus by 50% makes it clear that a more efficient means of 

collecting more training data needs to be developed.

2) Missing tongue information—The tongue is one of the most important articulation 

muscle groups. For certain classes of phonemes, placement of the tongue is the only feature 

that distinguishes between them. Yet the nature of the placement of sEMG sensors on the 

surface of the skin impedes direct access to the tongue musculature. It is possible that Sensor 

2, which is located under the chin, is recording some amount of tongue activity; this is 

supported by the fact that Sensor 2 is the only non-facial sensor found in the most effective 

sensor subset. However, there is a significant amount of non-lingual musculature and tissues 
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located between Sensor 2 and the tongue that may limit the amount of tongue related 

information that is being captured. As such, our subvocal recognition system might benefit 

from investigating other sensor modalities of accessing the state of the tongue during speech 

production.

A number of alternative modalities for subvocal speech recognition have been investigated 

that can better measure tongue activity. These include ultrasound [47] impulse radio ultra-

wide band (IR-UWB) radar [48], and permanent magnet articulography (PMA) [50]. While 

these other modalities have shown promise, they either involve the use of large external 

sensors (ultrasound and IR-UWB) or intra-oral sensors that may not be durable in the long 

term (PMA). Additionally, our pilot work found that augmenting our subvocal recognition 

system using Transoral Impedance (TOI) [51][52]to measure lingual-palatal contact can 

improve recognition performance. However, like the other non-sEMG modalities, significant 

effort must be invested in reducing the size of the TOI sensors and integrating them into an 

sEMG-based silent speech system for viable, everyday use.

3) Accuracy of Activity Detection—One of the largest challenges facing sEMG-based 

silent speech recognition is the accurate detection of speech onset and offset. Incorrectly 

detecting speech onset and offset can cause alignment problems and ultimately recognition 

errors. Although our SAD algorithm was developed to be able to distinguish between speech 

and non-speech-related muscle activity, there are times when it is impossible to do so using a 

purely sEMG-based solution. Comparing ASR using SAD versus hand-segmentation of 

speech-related sEMG may reveal inadequacies of the SAD algorithm that, if addressed, 

could substantially improve ASR performance.

One known source of error for the SAD algorithm is that it assumes there will be “rest” 

periods, when sEMG activity subsides below a certain threshold, that indicate non-speech 

periods. However, we have found a number of speech tokens in which there is no obvious 

period of reduced sEMG activity. This situation is caused when the subjects do not return 

their articulators to a resting state between speech prompts on the screen, and thus generate a 

higher level of background sEMG activity. Providing sEMG activity biofeedback during 

token collection would likely improve subjects’ ability to relax their speech musculature 

between tokens, thereby improving EMG-based SAD.

Another possible remedy to this situation is to introduce an inertial measurement unit 

(IMU), which could be used to track jaw and/or lip movement. The IMU could be integrated 

into the sEMG sensors themselves, or placed in a more optimal location for jaw movement 

tracking. Practical considerations, including size, circuit complexity, and additional 

computational requirements would have to be considered before additional sensors could be 

successfully integrated into any practical silent speech recognition system.

B. Practical considerations

An important goal of this study was to begin assessing the translation of sEMG-based 

speech recognition into a practical communication device for persons living with 

laryngectomy. One step towards attaining this goal was to reduce the number of required 

sensors from 8 to 4. Our choice of aiming for a 4-sensor subset is essentially a compromise 
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between reducing hardware complexity and maintaining high recognition accuracy. Our 

previous work on sensor reduction in healthy control subjects showed that recognition 

performance remained stable until fewer than 5 sensors were used [28]. We conducted a 

similar analysis on the data collected in this study to verify comparable behavior with an 

updated sensor type and with subjects who are persons with laryngectomy. We again found 

that a 4-sensor set produced a modest reduction in recognition accuracy (3 percentage 

points), whereas smaller subsets produced a precipitous drop in recognition performance. 

These results suggested that the decision came down to choosing between a 4 sensor or 5 

sensor subset. While recognition accuracy considerations pointed towards using the 5-sensor 

set, we believed that the additional hardware complexity and anatomical surface area 

required by using 5 sensors was not worth the 1 percentage point performance gain. As such 

we pursued an investigation of identifying the optimal 4 sensor subset.

The results of the sensor subset study indicate that half of the full 8-sensor set can be 

eliminated while only reducing performance by a few percentage points. The WER data 

show that, ideally, the sensor subset would be customized for each individual. However, this 

would be impractical from a commercial point of view, at least with the current form of 

sEMG sensors being used. A patch with a large sensor array similar to the one used in [23] 

and [53] could be customized on a per-speaker basis, but it would introduce questions about 

durability, cost, and size that would need to be addressed. Instead, a comprise, in the form of 

the sensor set with the best mean performance ({2,5,6,7}) could be used instead. On 

average, the difference between the WER of this subset and the WER of the best per subject 

subset was 1.1%, a relatively small cost that could ultimately be overcome by improved 

algorithms, for the large benefit in hardware simplicity.

Another aspect to consider is the benefit of the individualized processing parameters 

(analysis window and overlap size). Currently, we use a trial-and-error approach, applying 

all possible window/overlap combinations and choosing the one that produces the smallest 

WER. However, this is not a practical approach for a commercial communication device. 

Instead, some means must be developed that can tune the processing algorithms based on 

speaking rate or properties of the sEMG signals that are being recorded. This will be a 

subject of future study.

Personalization can also play a role in the nature of the synthetic voice used in any future 

system. One of the main motivations for adapting subvocal speech recognition to the 

laryngectomy patient population is to provide another communication option beyond 

alaryngeal speech, which is typically described as unnatural and robotic [7][8]. Because the 

subvocal algorithms convert articulation into text, a text-to-speech (TTS) engine must be 

used to synthesize the speech from the recognized text. Generic TTS voices can be highly 

intelligible and gender appropriate, but would not sound like the users’ natural voice lost 

after laryngectomy. Fortunately, there are now two options that could give laryngectomized 

users the ability to have a personalized synthetic voice. For those who have already 

undergone laryngectomy surgery, there now exists the technology to create personalized 

synthetic voices from small amounts of found audio (e.g. old video or audio recordings) 

[12]. On the other hand, informed cancer patients who have an adequate pre-surgical voice 

can strategically bank their voices [56]; the banked audio can then be used to create a 
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custom synthetic voice. In either case, the custom synthetic voice could be integrated with 

the subvocal recognition system to provide a more personalized experience while preserving 

the user’s vocal identity.

This potential personalization may ease the way for many persons living with laryngectomy 

to accept using an sEMG-based silent recognition system. As much as we have tried to 

reduce the amount of visible hardware (and will continue to make the hardware is minimal 

and inconspicuous as possible), the facial placements will be noticeable, and for those 

individuals who achieve satisfactory communication with their particular method(s) of 

alaryngeal speech, the bother of applying electrodes and the attention they draw might 

dissuade them adopting sEMG-based ASR. However, if a personalized TTS voice can be 

mated with this technology so as to return some semblance of their original voice to these 

individuals, they may be more willing to accept the drawbacks of an sEMG-based 

communication system.

C. Future work

This study aimed to demonstrate the viability of sEMG based communication for one of the 

several use cases for biosignal based communication, namely restoring spoken 

communication [13]. Our results support the use of an sEMG-based speech recognition 

system as the core of an alternative communication device for persons who have undergone 

laryngectomy. However, while the performance results are promising, they still must be 

improved before this system is viable for commercial use.

It is clear that system performance would benefit from the availability of more training data. 

As we showed in this study, even a small amount of additional training data (with some 

overlap in the testing and training sets) can produce significant performance improvements. 

However, because the current data collection protocol is a fairly slow process, new data 

collection methods must be developed to enable larger scale data collection sessions. One 

possible solution is to use data collected from several speakers to create a speaker 

independent model from several subjects’ data as in [54] and adapt them to the target 

subject. However, our experience has shown that subject dependent models result in 

significantly better performance [55]. This is further supported by how much individual 

recognition performance is affective by varying the analysis window and overlap size.

Another possibility that would be viable in a portable practical system is to use a relatively 

small corpus, as we have used here, to create a baseline recognition model that performs 

relatively well and then continually adapts to the speaker, as he or she uses the system. This 

model is used in other applications, such as commercially available personal assistants.

It is also likely that our subvocal recognition system could be improved by integrating 

additional modalities to capture information that is not found in the sEMG signals. For 

example, incorporating a modality that can record information about tongue positioning and 

trajectories during speech production (e.g. TOI) would likely significantly reduce the WER. 

Further, it is worth investigating whether using IMUs to help detect the onset and offset of 

speech production can reduce SAD errors and ultimately improve recognition performance.
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Finally, additional studies could also focus on integrating recent advancements in Deep 

Learning techniques with our front-end processing. Some recent studies have shown the 

potential benefits of using Deep Learning for sEMG-based speech recognition [23][24] but 

not for the specific population of laryngectomized speakers. Furthermore, Deep Learning 

methods are notoriously data hungry and would require the development of better data 

collection methods or, again, use many subjects’ data to train an independent model that can 

be adapted to a target speaker. This will be a focus of our future studies in this area.

V. Conclusion

We have demonstrated the potential of using an sEMG-based silent speech recognition 

system as the basis of an alternative communication device for persons living with 

laryngectomy. When using our full 8-sensor set, our system produces a mean WER of 10.3% 

on a 2000-word vocabulary, whereas the best 4-sensor subset had a WER of 13.6%. To 

improve subvocal word recognition, we found that modest increases in the amount of 

training data for two subjects was successful at reducing their WERs below 9%. These 

performance metrics are comparable to those generated using healthy talkers on a similar-

sized vocabulary (11% and 15% WERs for the full and 4 sensor subset cases, respectively) 

[25]. They also exceed the performance levels reported by other pertinent studies, i.e. 32% 

on 108 word vocabulary [16], 15% on the same 108 word vocabulary [22], and 20% on a 

2100 word vocabulary (of sEMG signals recording during the production of vocalized 

speech) [57]. Although additional work needs to be conducted to improve recognition 

performance (via new algorithms and/or additional modalities) and to simplify the 

associated sensor hardware, this study provides a valuable proof-of-concept for the 

development of an sEMG-based alternative communication system.
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Fig. 1. 
Subject with laryngectomy operating the data acquisition system. One screen displays 

sEMG signals, the other displays sentence prompts. The callout shows the sensor locations 

and their numbering scheme.
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Fig 2. 
One pair of the custom sEMG sensors. Joining pairs of sensors helps reduce errors in sensor 

placement on the face and neck.
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Fig. 3. 
An example of 8 channels of sEMG data collected from Subject 3 during the mouthing of 

“I’m not ready yet.”. The channel numbers correspond with the sensor locations shown in 

Fig. 1. Also shown is the SAD (see below) in action. The green line shows times when the 

individual channel is active, while the red line shows when speech activity is detected. 

Because the SAD looks for simultaneous multi-channel activity, small, single channel bursts 

of sEMG activity do not trigger the SAD. Note that because only channels {1,5,7,8} are 

used in the SAD, channel activity is only shown for those channels.
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Fig 4. 
Average WER across all subjects plotted as a function of the window length and overlap. 

Error bars indicate the standard deviation for each window length/overlap combination.
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Fig 5. 
WER plotted as a function of the number of sensors used for subvocal speech recognition. 

Each data point reflects the WER statistics computed for the same sensor subset across all 

subjects: red lines indicate mean values, blue boxes indicate first and third quartiles and 

black lines extend to the upper and lower 95th percentiles.
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Fig 6. 
WER for plotted as a function of the number of sentences in the training data using all 8 

sensors for subjects 5 and 6 in red and blue, respectively.
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