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Abstract

Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-

crafted and learning based methods have been proposed for automatic brain tumor segmentation 

from MRI. Studies have shown that these approaches have their inherent advantages and 

limitations. This work proposes a semantic label fusion algorithm by combining two representative 

state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based 

methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly 

available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the 

proposed method offers improved segmentation by alleviating inherent weaknesses: extensive 

false positives in texture based method, and the false tumor tissue classification problem in deep 

learning method, respectively. Furthermore, we investigate the effect of patient’s gender on the 

segmentation performance using a subset of validation dataset. Note the substantial improvement 

in brain tumor segmentation performance proposed in this work has recently enabled us to secure 

the first place by our group in overall patient survival prediction task at the BRATS 2017 

challenge.
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1. INTRODUCTION

Glioblastoma (GB) is the most invasive variant of brain tumors and is often fatal [1–3] with 

a median survival of 12.1 to 14.6 months even with radiotherapy [4]. Therefore, accurate and 

timely detection and segmentation of the tumor is imperative for effective treatment 

planning and follow-up evaluations. The analysis and diagnosis of brain tumors are 

performed by a radiologist utilizing Magnetic Resonance Imaging (MRI). The segmentation 

of gliomas in MRI is typically performed manually, which is quite tedious and susceptible to 

human errors [5]. This necessitates automatic tumor segmentation which is faster, less prone 

to human errors and may assist radiologists. Nevertheless, the development of such 
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computer-based methods is quite challenging due to the large variations in tumor shape, size, 

location, structure, and tissue types. Additionally, The MRI imaging technology may pose 

further problems in terms of intensity inhomogeneity, aliasing, and changes in intensity 

range within and between sequences of MRI.

Many automatic tumor segmentation algorithms [5–11] have been proposed in the literature 

that can be broadly divided into two categories: feature-based and probabilistic atlas-based. 

The atlas-based method essentially incorporates a probabilistic atlas that is typically 

estimated using MRI [10–12]. The feature-based methods can be again divided into two 

groups: classical hand-crafted feature based techniques and artificial neural network (ANN) 

based deep learning methods. Studies of both these categories have shown varying degrees 

of success in tumor segmentation. Feature-based techniques [6, 7, 9] involve classical image 

analysis and machine learning methods in which a set of features are extracted from the MRI 

and then fed into a conventional classifier to perform the segmentation task. Many hand-

crafted methods prefer voxel-wise features such as voxel intensity values, local intensity 

differences, and intensity distributions to segment tumor tissue types in MRI [9, 13–15]. 

Additionally, our prior work [9] on multi-class abnormal brain tissue segmentation 

introduces a novel set of multi-resolution-fractal based texture features such as fractal 

piecewise triangular prism surface area (PTPSA) [16] and texton [17] to capture the 

variations in tumor tissue in MRI. The hand-crafted methods are often susceptible to 

variations in the MRI as the chosen features may be highly sensitive to a particular intensity 

range. Furthermore, hand-engineered features may not always be optimal for a specific task. 

For example, though the tumor tissues are segmented accurately, further analysis of our 

work in [9] demonstrates an inherent degree of over-sensitivity, with increased false positive 

voxel classifications.

On the other hand, the recent ANN methods utilize deep machine learning based approaches 

[5, 8, 18] in which both the features and the classifier are learned directly from the raw MRI 

data for the segmentation task. Deep learning essentially involves the development of 

architectures capable of hierarchical feature learning, instead of hand-engineering feature 

extraction. This often results in better performance as the features that are learned from 

examples tend to be superior to the features that are hand-crafted. Deep neural networks, 

specifically convolutional neural networks (CNN), have shown state-of-the-art performance 

in many object recognition tasks [18–20]. Several studies have proposed the use of CNN for 

brain tumor segmentation using MRI. An early study in [21] proposes the use of a rather 

shallow three-layer convolutional network for a 2D patch-wise MRI based tumor 

segmentation task. A recent study in [18] proposes a more complex cascaded CNN 

architecture with varying filter sizes and two-stage training for improved scale invariance 

and to overcome the problems in imbalanced tumor tissue representations in training data. 

The increased availability of training data has enabled the development of deeper CNN 

architectures with improved versatility in learning. Accordingly, Pereira et al. [5] propose a 

CNN that utilizes small 3 × 3 convolutional kernels in each layer, allowing for a deeper 

architecture of 11 layers. Our experiments on a similar CNN architecture for brain tumor 

segmentation with a larger training and validation dataset from the latest BRATS 2017 

challenge show impressive accuracy in whole tumor localization and segmentation. 
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However, we also observe that our CNN-based method may further be improved in 

multiclass tumor tissue segmentation.

Consequently, in this work, we propose a semantic label fusion algorithm by combining two 

representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep 

learning based methods to obtain robust tumor segmentation. Note the substantial 

improvement in brain tumor segmentation performance proposed in this work has recently 

facilitated to securing the first place by our group in overall patient survival prediction task 

at the BRATS 2017 challenge. In addition, we investigate the effect of patient’s gender on 

the segmentation performance using a subset of validation dataset. The remainder of this 

paper is organized as follows. Section 2 discusses the deep CNN architecture and training, 

the multi-fractal texture based segmentation model and training, and the proposed label 

fusion methodology. Section 3 provides the tumor segmentation results obtained using the 

proposed pipeline on the BRATS 2017 training, validation, and testing datasets. Section 4 

concludes the findings.

2. METHODS

2.1 Deep convolutional neural network based segmentation

The recent developments in deep learning have enabled new avenues in various medical 

image processing research. Several recent studies [5, 8] apply CNN-based deep learning 

techniques to obtain brain tumor segmentation. The state-of-the-art deep CNN architecture 

proposed by Pereira et al. [5] has been reported to achieve the highest performance in the 

BRATS 2013, and the second highest in the BRATS 2015 challenges, respectively [5]. MRI 

based tumor segmentation involves volumetric data processing, in which each voxel in the 

MRI volume is classified into five types of tissues such as background, enhanced tumor, 

edema, necrosis and non-enhanced tumor, respectively. For the deep learning brain tumor 

segmentation in this study, we configure our CNN architecture based on the specifications 

provided in [5]. The CNN based processing is performed for each MRI slice in the volume. 

The input for each pixel in the MRI slice is an image patch of size (33 × 33 × 4) which 

captures a 16 pixel-wide local neighborhood surrounding the pixel in question. The third 

dimension of the image patch is comprised of the four MRI modalities: T1, T1Gd, T2, and 

FLAIR. The output of CNN is the classification of the corresponding middle pixel of input 

patch of each MRI slice as one of the tissue types mentioned above.

The training of the CNN is conducted using the training dataset of 210 high-grade MRI 

volumes provided in the BRATS 2017 segmentation and survival prediction challenges. All 

the MRI volumes are pre-processed prior to training patch extraction as follows: 1) bias field 

correction on T1 modality MRI following the N4ITK algorithm [22], 2) intensity 

normalization following [23] is applied to all four modalities for inter-volume consistency. 

The training set for the CNN is 900,000 image patches randomly obtained from the BRATS 

2017 training MRI volume set, representing 500,000 normal tissue and 100,000 samples for 

each abnormal tissue type. The imbalanced set of training samples are obtained in order to 

sufficiently represent the inherent imbalance in MRI pixel presence for each tissue type for 

the CNN. The training set is subsequently enhanced with data augmentation by applying 

affine rotation in (0°, 90°, 180°, 270°) for each patch to obtain a final dataset of 3,600,000 
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patches. The trained CNN is then used to obtain the segmentation mask for the fusion step. 

The CNN based segmentation pipeline is shown in Figure 1.

In addition, the outputs of each convolutional and fully connected layers of the CNN is 

activated using the leaky rectified linear (ReLu) function with the leak factor of 0.3. Dropout 

regularization is utilized with a rate of 0.1 to all the fully connected layers to prevent over-

fitting. The CNN is trained by the stochastic gradient descent method in a batch-wise 

training scheme with 100 image patches per batch.

2.2 Multi-fractal texture features and Random Forest (RF) based segmentation

Our previous work [24, 25] on multiclass (edema, necrosis, enhance tumor, and non-enhance 

tumor) brain tumor segmentation in multimodality MRI (T1, T1C, T2, and FLAIR) have 

shown success [12]. The RF-based segmentation starts with preprocessing the MR images. 

The preprocessing steps comprise registration, resampling, re-slicing, skull stripping, bias 

correction and intensity inhomogeneity correction [26]. Then spatially varying texture 

features such as PTPSA [27], multifractal Brownian motion (mBm) [16], regular texture 

(texton) [28] and intensity are extracted from each preprocessed MRI modality. These 

features capture both global and local characteristics of different tissues. We then combine 

all the features into a 3D matrix and use this feature matrix for training a Random Forest 

(RF) for classification [29]. The RF model is trained on a training dataset with known tissue 

label (ground truth) used as the target. The trained model is subsequently used to predict the 

tissue labels in a testing dataset. Figure 2 shows the complete pipeline of the RF multiclass 

brain tumor segmentation method (henceforth this pipeline referred as texture+RF).

The training and testing datasets for the texture+RF is the same BRATS 2017 high-grade 

MRI volumes used for the deep CNN method discussed above. However, the training 

methodology is quite different as the feature extraction in texture+RF is done on the whole 

MRI slice, with no patch-wise processing. Despite this, the final output in both cases is slice-

wise segmentation masks, which enables straightforward label fusion.

2.3 Semantic label fusion using texture-based RF and CNN for segmentation

This section discusses our proposed semantic label fusion pipeline for improved brain tumor 

segmentation. The CNN architecture utilized in this study has shown to perform well in 

BRATS 2013 and BRATS 2015 competitions, respectively [5]. Our experimentations with 

this CNN method on the latest BRATS 2017 training and validation data shows that though 

the method captures the whole tumor quite well, the classification between abnormal tissue 

types is not satisfactory. Accurate segmentation of abnormal tissue types is vital for many 

tasks including that of patient survival prediction, in which most relevant features are based 

on the abnormal tissue volume statistics.

In comparison, the texture+RF method classifies each tumor tissue type fairly well, albeit 

with a considerable amount of false positives. This is, in turn, detrimental to the task of 

survival prediction due to the addition of false information in the segmentation step. 

Therefore, we combine the segmentation outcome from CNN with texture+RF to overcome 

these limitations inherent to each approach. Specifically, the segmented output of the RF 

method is fused with the binarized outcomes from the deep learning based segmentation 
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method. The binarization is a pixel-wise operation where the output pixel  of the 

slice k in MRI volume V is obtained as follows:

(1)

where  is the CNN output segmentation mask value at (i, j) of slice k in MRI volume 

V.

Subsequently, the label fusion is performed using the binarized output of the CNN and the 

multi-class output of the texture+RF model in an elementwise multiplication as follows:

(2)

where  is the fused segmentation mask of slice k in MRI volume V, and  is the multi-

class output segmentation mask of slice k in MRI volume V obtained by the texture+RF 

model. Equation (2) essentially combines multiclass prediction from the RF segmentation 

with the whole tumor segmentation determined by the deep CNN, effectively suppressing 

the performance shortcomings observed in each individual technique. The proposed 

algorithm for obtaining tumor segmentation via label fusion is shown in Algorithm 1 and the 

overall label fusion pipeline is shown in Figure 3, respectively.

Algorithm 1

Multiclass deep CNN+RF segmentation with label fusion

/* Initialization */

  - Pre-process Training and testing datasets for CNN, and texture+RF

  - Initialize CNN and RF parameters

/* Training */

Train the CNN architecture

  - Extract random patches as discussed in section 2.1

  - Train CNN using batch-wise stochastic gradient descent

Train the texture+RF model

  - Extract multi-fractal texture features from each slice, and accumulate in a feature matrix

  - Train RF classifier with training feature matrix

/* Segmentation */

For each testing MRI Volume V

  For each MRI slice k

  - Extract patches corresponding to each non-zero pixel

  - Perform patch-wise classification with trained CNN to obtain: 

  - Apply Equation (1) to obtain the corresponding binary output: 
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  - Perform multi-class segmentation using texture+RF to obtain: 

  - Apply label fusion in Equation (2) to obtain the final segmentation mask: 

  - Use  to obtain the segmentation of slice k

  End

End

3. RESULTS

This section reports the performance of the proposed deep CNN+RF fusion-based 

segmentation method using high-grade GBM tumor MRI in the latest BRATS 2017 dataset 

[7, 31]. First, we assess the performance using the training and validation dataset split 

provided by the BRATS 2017 challenge organizing committee. For comparison, we utilize 

the above mentioned state-of-the-art hand-crafted texture+RF [9] segmentation method and 

the state-of-the-art deep CNN based brain tumor segmentation pipeline [5]. Figure 4 shows 

example segmentation results from the deep CNN based pipeline, the binary mask of the 

CNN outcome, the texture+RF segmentation outcome, and the proposed deep CNN+RF 

fusion outcome in (b), (c), (d), and (e), respectively for each MRI slice (shown in (a)) from 

five randomly chosen validation data.

Figure 4 (d) demonstrates that the outcome of the texture+RF method contains a significant 

amount of false positives. On the other hand, the outcome of the CNN in Figure 4 (b) 

contains a well localized whole tumor with no false positives. However, the tumor tissue 

classification for deep CNN does not appear to be as accurate compared to the texture+RF 

outcome. Consequently, the proposed deep CNN+RF fusion outcome alleviates both these 

drawbacks to obtain an improved segmentation result as evident in Figure 4 (e).

Next, we show a quantitative comparison between the above-mentioned segmentation 

techniques using dice similarity coefficient computed as follows,

(3)

where, “a” indicates the number of pixels where both the segmentation decision and ground 

truth label confirms the presence of tumor and “b” denotes the number of pixels where the 

decision mismatch. The dice coefficient is computed on three tumor regions: Dice_ET is 

computed considering only the enhanced tumor tissue class, DICE_WT is computed on the 

whole tumor that includes all the tissue classes and Dice_TC is computed on the core tumor 

tissue class, respectively.

Table 1 provides segmentation performance comparison among three methods: deep CNN, 

texture+RF, and deep CNN+RF fusion using a subset of the BRATS 2017 validation dataset 

consisting of 33 high-grade tumor patients. The mean values of Dice_ET, Dice_WT, and 
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Dice_TC in Table 1 are shown as reported by the BRATS 2017 challenge organizers. The 

results show a huge improvement in the enhanced tumor (ET); and small improvements in 

the whole tumor (WT), and tumor core (TC) segmentation in comparison to deep CNN, and 

significant improvements in all the performance metrics compared to the texture+RF 

methods, respectively.

In addition, we perform a gender-based analysis on the performance of the proposed 

pipeline. We first determine the patients’ gender subject to the availability of information 

from BRATS 2017 validation dataset. Accordingly, we identify 12 MRI volumes with 

gender information, of which 3 volumes are from female patients and 9 from male patients. 

Then, we compute the mean dice similarity coefficients for each criteria to perform gender 

based analysis. The tumor segmentation performance for patients with M-F gender 

difference is shown in Table 2.

Table 2 shows that segmentation performance of the proposed method is quite similar 

between male and female subjects for whole tumor tissue. However, the reruslts also indicate 

that the pateints’ gender has discernible influence on the segmentation performance of 

enhancing and tumor core tissue, respectively.

Finally, for completeness, we report the overall segmentation results of our proposed deep 

CNN+RF fusion based method using the BRATS 2017 test dataset. Table 2 shows the mean, 

standard deviation (StdDev) and median values of Dice_ET, Dice_WT and Dice_TC, 

respectively obtained from 95 high-grade test patients. Note that the reported values shown 

in Table 3 are provided by the BRATS 2017 challenge organizing committee. However, we 

are unable to perform gender based analysis on the testing dataset due to the unavaliability 

of necessary gender information.

Table 3 shows that the mean Dice values of the test dataset are comparable to the mean Dice 

values of the validation dataset (as shown in Table 1) obtained by the proposed deep CNN

+RF fusion based segmentation method. This validates the consistency of the proposed deep 

CNN+RF fusion based segmentation method. As mentioned above, the overall 

improvements in segmentation accuracy of abnormal tissue types such as tumor core (TC), 

and enhanced tumor (ET) has contributed to a substantial enhancement in our performance 

of the patient survival prediction task at the recent BRATS 2017 challenge, yielding the 

highest estimation accuracy among all global contestants.

4. CONCLUSION

This study proposes a semantic label fusion method for brain tumor segmentation that 

combines the outcomes of a texture+RF based hand-crafted technique with a state-of-the-art 

deep CNN for improved performance. Accurate segmentation of brain tumors in MRI is 

vital for effective treatment planning, follow-up evaluations, and in potentially fatal 

conditions, estimating the patient’s survival duration. Our study shows that the state-of-the-

art texture+RF method generates significant number of false positives in the segmentation 

results, while providing good tumor tissue classification. In comparison, a state-of-the-art 

deep CNN based algorithm provides good tumor localization with inadequate tissue 
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labelling. Consequently, the proposed segmentation algorithm with label fusion achieves 

superior performance by minimizing the above shortcomings inherent to the texture+RF and 

CNN based techniques, respectively. We also find that the performance of the proposed 

model shows discernable influence of gender of the patient in segmentation of enhancing 

tumor and tumor core tissues, respectively. However, the effect of gender difference will 

need to be further investigated with larger patient cases. Finally, the substantial improvement 

in brain tumor segmentation performance proposed in this work has recently enabled us to 

secure the first place by our group in overall patient survival prediction task at the BRATS 

2017 challenge.
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Figure 1. 
CNN based tumor segmentation pipeline. The detailed CNN architecture is provided with 

patch-wise training and testing
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Figure 2. 
Flow diagram of multiclass abnormal brain tissue segmentation using texture+RF.

Vidyaratne et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Semantic label fusion pipeline using convolutional neural network (CNN) and random forest 

(RF) for brain tumor segmentation
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Figure 4. 
Example input slices and segmentation outcomes: (a) A slice from T2 MRI from five 

randomly chosen validation data, (b) the segmentation outcome of CNN, (c) The binary 

mask of CNN outcome, (d) Segmentation outcome from texture+RF (e) Proposed deep CNN

+RF fusion model segmentation outcome.
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Table 1

Performance comparison between Texture+RF, CNN, and proposed deep CNN+RF fusion based segmentation 

methods using BRATS 2017 dataset (mean dice values)

Methods Dice_ET Dice_WT Dice_TC

Texture+RF 0.53242 0.50775 0.53085

Deep CNN 0.64423 0.81228 0.68326

Proposed Deep CNN+RF Fusion 0.74579 0.81460 0.69797
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Table 2

Brain tumor segmentation performance of the Deep CNN+RF fusion model on Male VS. Female Subjects 

(mean dice values)

Methods Dice_ET Dice_WT Dice_TC

Male 0.81772 0.87028 0.78511

Female 0.82345 0.87785 0.73945
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Table 3

Segmentation performance of the proposed deep CNN+RF fusion based method on BRATS 2017 high-grade 

test dataset

Label Dice_ET Dice_WT Dice_TC

Mean 0.73 0.83 0.72

StdDev 0.16 0.08 0.17

Median 0.78 0.85 0.78
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