Skip to main content
. 2018 Mar 14;13(3):e0192829. doi: 10.1371/journal.pone.0192829

Table 6. MLP’s and sdAE’s average precision with 95% confidence intervals evaluated on subsets of SNVs from the training dataset II that could not be processed by other predictors.

Score Number predictions MLP sdAE
Eigen 1175 1.00 (0.99–1.00) 0.99 (0.99–1.00)
FATHMM 898 0.52 (0.42–0.62) 0.18 (0.11–0.25)
LRT 1772 0.83 (0.79–0.87) 0.74 (0.69–0.78)
MetaLR 118 0.81 (0.70–0.90) 0.63 (0.51–0.75)
MetaSVM 118 0.81 (0.71–0.90) 0.63 (0.51–0.75)
MutationAssessor 843 0.83 (0.78–0.87) 0.72 (0.67–0.77)
PROVEAN 426 0.69 (0.59–0.78) 0.41 (0.31–0.50)
PolyPhen HDIV 286 0.82 (0.75–0.87) 0.60 (0.52–0.68)
PolyPhen HVAR 286 0.81 (0.74–0.87) 0.60 (0.52–0.68)
SIFT 514 0.79 (0.72–0.86) 0.59 (0.51–0.66)