Skip to main content
. 2018 Mar 14;13(3):e0194126. doi: 10.1371/journal.pone.0194126

Table 1. Pathway analysis of inflammatory (Dataset 2) and anti-inflammatory (Dataset 1) macrophage datasets.

Dataset 2
Total Compounds IFN list LPS list Interaction list Entire list
FDR Impact Hits FDR Impact Hits FDR Impact Hits FDR Impact Hits
Pyrimidine metabolism 12 0.003 0.021 2 0.002 0.021 2
Butanoate metabolism 5 0.005 0.029 1 0.000 0.029 2
Citrate cycle (TCA cycle) 8 0.002 0.068 1 0.002 0.068 1
beta-Alanine metabolism 4 0.003 0.444 1 0.002 0.444 1 0.002 0.444 1
Glycerophospholipid metabolism 7 0.005 0.044 1 0.003 0.068 2 0.004 0.068 2
Glycine, serine and threonine metabolism 7 0.007 0.031 2 0.019 0.031 2 0.011 0.031 3
Purine metabolism 15 0.000 0.127 2
Arginine and proline metabolism 18 0.005 0.047 4 0.002 0.023 1 0.000 0.054 2 0.004 0.047 4
Alanine, aspartate and glutamate metabolism 13 0.005 0.114 1 0.002 0.063 1 0.001 0.022 1 0.000 0.177 2
Taurine and hypotaurine metabolism 4 0.001 0.714 2
Primary bile acid biosynthesis 1 0.001 0.030 1
Dataset 1
Total Compounds OIC list LPS list Interaction list Entire list
FDR Impact Hits FDR Impact Hits FDR Impact Hits FDR Impact Hits
Glycerophospholipid metabolism 6 0.010 0.044 1 0.010 0.044 1
Glutathione metabolism 8 0.010 0.003 1 0.011 0.003 1
Histidine metabolism 11 0.016 0.108 1 0.016 0.108 1
Tyrosine metabolism 5 0.021 0.001 1 0.021 0.001 1
Glycine, serine and threonine metabolism 10 0.002 0.031 1 0.002 0.031 1 0.003 0.031 2
Arginine and proline metabolism 20 0.002 0.023 1 0.006 0.012 2 0.002 0.023 1 0.003 0.035 3
Citrate cycle (TCA cycle) 9 0.002 0.068 1 0.003 0.068 1 0.002 0.068 1 0.003 0.068 1
Alanine, aspartate and glutamate metabolism 12 0.002 0.063 1 0.003 0.063 1 0.002 0.063 1 0.003 0.063 1
Pyrimidine metabolism 20 0.002 0.140 5 0.003 0.147 6 0.002 0.133 4 0.003 0.147 6
beta-Alanine metabolism 5 0.002 0.444 1 0.003 0.444 1 0.002 0.444 1 0.003 0.444 1
Purine metabolism 21 0.009 0.005 1 0.011 0.005 1
Phenylalanine metabolism 5 0.018 0.130 1 0.017 0.130 1 0.018 0.130 1

Analysis was conducted on log-transformed data (Kegg IDS) using MetaboAnalyst. Here the GlobalTest was used in conjunction with the Relative-betweeness Centrality algorithm. For each dataset, a list of all detected metabolites (Kegg IDs) was used as a background. Dataset 1 refers to the anti-inflammatory dataset and Dataset 2 refers to the inflammatory dataset. The maximum importance of each pathway is 1, and the pathway impact is the cumulative proportion from the matched metabolite nodes.