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Introduction

Microinfarcts are prevalent but tiny ischemic lesions that may contribute to vascular 

cognitive impairment and dementia (VCID)(Fig. 1A and B).1 They are defined as areas of 

tissue infarction, often with gliosis and/or cavitation, visible only by examination of the 

autopsied brain at a microscopic level.2, 3 Numerous autopsy studies have now shown that a 

greater microinfarct burden is correlated with increased likelihood of cognitive impairment.
2, 3 Cerebral microinfarcts are observed post-mortem in the brains of approximately 43% of 

patients with Alzheimer’s disease, 62% of patients with vascular dementia, and 24% of non-

demented elderly subjects.4. However, reported microinfarct numbers are a significant 

underestimation of total burden, as only a small portion of the brain is examined at routine 

autopsy.1 Indeed, they can number in the hundreds to thousands within a single brain. 

Microinfarcts can arise from a variety of etiologies, including cerebral small vessel disease, 

large vessel disease, cerebral hypoperfusion, and cardiac disease, but their role in the 

pathogenesis of VCID remains poorly understood.3, 5–7

Microhemorrhages are microscopic bleeds caused by rupture of cerebral microvessels, 

generating lesions on a similar scale as microinfarcts (Fig. 1C and D).5 Pathologically, old 

microhemorrhages are defined as focal depositions of iron-positive hemosiderin-containing 

macrophages. Unlike microinfarcts, microhemorrhages easily escape detection upon 
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Note added in proof. During proofing stages, an article was published describing occlusion of single cortical penetrating arterioles 
using focal application of FeCl3 from a micropipette (Donmez-Demir et al. Brain Research, 1679:84-90, 2018).
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neuropathological examination, suggesting that they are not as widespread as microinfarcts. 

However, they can be detected with high sensitivity using in vivo MRI.5, 6 The two most 

common etiologies of age-related microhemorrhages are hypertensive arteriopathy and 

cerebral amyloid angiopathy (CAA). Microhemorrhages are associated with higher 

likelihood of dementia, and like microinfarcts, their role in VCID remains incompletely 

understood.7

Clinical studies have emphasized the need to better understand microinfarcts and 

microhemorrhages (microlesions) because their widespread nature and remote effects may 

cause broad disruption of brain function. However, it is challenging to measure their 

functional impact in the human brain because their onset times and locations are 

unpredictable. Further, microlesions often co-exist with other disease processes, making it 

difficult to isolate their specific contribution to brain dysfunction. Animal models that allow 

microlesions to be re-created in a more controlled environment are therefore valuable for 

understanding their impact on brain function. The purpose of this review is to collate 

existing rodent models of both microinfarcts and microhemorrhages.

Lesion size criterion

Microinfarcts and microhemorrhages are thought to arise from the occlusion or rupture of 

small parenchymal arterioles, such as penetrating arterioles and their smaller branches. We 

define microinfarcts in rodent models as lesions with sizes that could only arise from the 

occlusion of single penetrating arterioles or their downstream branches. Microinfarcts are 

typically no larger than 1 mm in diameter in the mouse and rat cortex. We also apply this 

size criteria to microinfarcts in deeper brain structures, though the relationship between 

vascular architecture and microinfarcts beyond cortex remains understudied. 

Microhemorrhages induced in cortex, and occurring spontaneously in rodent models, appear 

to be ~ 200–300 μm or smaller at histopathology. We have adhered to this size range in our 

review of the literature. We further note that the term ‘microhemorrhage’ is used for 

histologically-verified bleeds, and ‘microbleeds’ for the MRI-visible correlate of 

microhemorrhages. Supplemental information for defining microinfarcts and 

microhemorrhages in rodent tissues is provided online (Supplemental materials).

1) Models of induced microinfarcts

a. Intra-carotid injection of microemboli—One method of generating cerebral 

microinfarcts involves the injection of microemboli into the blood circulation, such as 

occlusive microbeads8, 9 or cholesterol crystals10, 11 (Fig. 2, left side). Injections are 

typically made through the internal carotid artery. This produces broadly distributed 

microinfarcts, with cortex, hippocampus, and thalamus being major sites of accrual.8, 10 A 

spectrum of microinfarct types are seen, including wedge or column-shaped lesions in the 

cerebral cortex that are continuous with the pial surface (Fig. 3A), as well as smaller 

circumscribed microinfarcts contained within deeper cortical layers. The choice of 

microembolus size, type, and/or number injected is important to achieve consistency of 

microinfarct formation.
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b. Laser-induced occlusion of penetrating arterioles—A second method allows 

reproducible targeting of microinfarct location and size in rodent cortex (Fig. 2, right side).12 

Typically coupled with in vivo two-photon imaging, single penetrating arterioles (or small 

pial arterioles that support flow to penetrating arterioles) are selectively occluded by 

inducing clots with precise laser irradiation. This is achieved most commonly by activating 

circulating photosensitizing agents with focused green lasers, i.e., focal photothrombosis.
12, 15, 16 Occlusions can also be made without photosensitizer by using amplified 

femtosecond laser ablation17, or targeted irradiation with higher laser powers from 

conventional two-photon imaging lasers18. Targeted penetrating arteriole occlusions 

primarily generate wedge or column-shaped cortical microinfarcts because clots are made in 

vessels at or near the pial surface (Fig. 3B).

2) Models with spontaneously occurring microinfarcts

a. Bilateral carotid artery stenosis—Bilateral carotid artery stenosis (BCAS) is a 

common manipulation to induce chronic cerebral hypoperfusion in rodents. Normal C57Bl/6 

mice develop subcortical microinfarcts following long periods of BCAS (6 months)19, but 

not following shorter periods (2-3 months).20 Two groups recently examined the effects of 

BCAS in the Tg-SwDI mouse model, which develops early and pronounced CAA.21, 22 

Interestingly, only 2-3 months of BCAS was necessary to induce microinfarcts in these 

mice.23 Microinfarcts were observed in the cerebral cortex and hippocampus, and were 

related to CAA severity, whereas no microinfarcts were seen in age-matched sham operated 

Tg-SwDI mice. Further, a recent study showed that atherosclerotic Apoe knockout mice 

develop microinfarcts within 1.5 months after BCAS.24 Thus, prolonged cerebral 

hypoperfusion itself can cause microinfarcts, but this effect is exacerbated in transgenic mice 

with existing cerebrovascular disease.

b. Obesity and diabetes—Spontaneous microinfarcts were observed in a mouse model 

that crossed the Aβ overexpressing mouse line, APP/PS1, with the db/db mouse model for 

diabetes.25 The db/db line harbors a mutation of the diabetes (db) gene that leads to a leptin 

signaling defect, causing severe obesity, hypertension, and type 2 diabetes with 

hyperglycemia.26 The progeny of the APP/PS1-db/db cross retained features of parental 

lines, but the combined risk factors led to cortical microinfarcts that were not observed in 

either parental strain. Microinfarcts appeared as small cystic cavities in various layers of 

cortex. The authors suspected that aberrant angiogenesis, unique to the crossed mice, led to 

immature and leaky microvessels that were prone to occlusion.

c. Endothelial NOS deficient mice—Endothelial nitric oxide synthase (eNOS) is 

critical for regulation of vascular tone and blood pressure. A recent study showed that mice 

with partial deletion of endothelial nitric oxide synthase (eNOS+/−) develop microinfarcts in 

cortex, and to a lesser extent, in the hippocampus and thalamus (Fig. 3C).13 Cortical 

microinfarcts accrued in watershed regions between the perfusion territories of major 

cerebral arteries.27 They were noticeable by 6 months of age, but were most prevalent at 12 

to 18 months. This was accompanied by microvascular pathology, including intravascular 

clots, diffuse CAA, neuroinflammation and blood-brain barrier disruption. Microinfarcts in 
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eNOS+/− mice was postulated to result from small vessel thrombosis due to endothelial and 

platelet dysfunction.13

d. Notch3 mutant mice—Microinfarcts (and microhemorrhages) have been reported in a 

mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL).28 CADASIL is a hereditary form of vascular dementia 

caused by mutations on the gene for Notch3, a transmembrane receptor critical for mural 

cell-endothelial communication and vascular development. Mice with an Arg170Cys 

(R170C) mutation knocked into the endogenous Notch3 gene (a prevalent substitution 

mutation seen in human CADASIL) developed cerebrovascular pathology akin to that seen 

in human CADASIL. The authors reported microinfarcts in the motor cortex of 20 months 

old mice, which appeared as small cystic cavities in deeper cortical layers. In contrast, 

another CADASIL mouse line (PAC-Notch3R169C) carrying rat Notch3 with an Arg169Cys 

mutation exhibited cerebral hypoperfusion and isolated white matter lesions, but no 

microinfarcts.29 For reasons still unclear, other mouse lines with various Notch3 mutations 

develop arteriopathy, but do not exhibit ischemic or hemorrhagic lesions.28, 30

e. Sickle cell mice—Cerebrovascular disease is a well established complication of sickle 

cell disease (SCD). About 40% of children with SCD develop small “silent” cerebral 

infarcts, with some falling in the size range of microinfarcts.31 Recently, spontaneous 

cortical microinfarcts were reported in the Townes model of SCD (Fig. 3D)14, a model that 

involves replacement of murine β-globin gene with the human sickle β-globin and human γ-

globin genes.32 Aged sickle cell mice (13 months old) exhibited faster capillary flow 

velocities and altered microvascular topology, akin to that described in humans with SCD 

who were at high risk for stroke.14 Spontaneous cortical microinfarcts in SCD mice were 

larger and more frequent, and were associated with blood-brain barrier leakage and local 

tissue hypoxia, suggesting vascular pathology as an origin.

3) Models of induced microhemorrhage

a. Laser-induced rupture of parenchymal vessels—Microhemorrhages can be 

induced with high spatiotemporal precision in rodent cortex by directly rupturing cortical 

microvessels using focused lasers (Fig. 4A).33, 34 Much like optically-induced microinfarcts, 

this model requires implantation of a cranial window and a two-photon microscope to 

visualize and ablate the desired microvessel. An amplified femtosecond laser is used to 

damage the wall of target vessels, such as penetrating arterioles34 or capillaries.33 In vivo 
two-photon imaging of laser-induced microhemorrhages shows rapid extravasation of blood 

cells forming a lesion core roughly ~100 μm in diameter and broad dissipation of blood 

plasma over a region ~5-times larger than the core.34

4) Models with spontaneous microhemorrhages

a. CAA models—A variety of APP overexpressing mouse lines develop CAA. These 

models include the PDAPP37, Tg257638, double transgenic APP/PS139, 40, triple transgenic 

Tg-SwDI41, and APP2342 mouse lines. In these mice, Aβ plaque load as well as CAA 

increases gradually in an age-dependent fashion, with some model-specific variation. 
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However, reports of spontaneous microhemorrhages (or microinfarcts) have been sparse, and 

only described in lines that develop severe CAA during old age or after a ‘second hit’.

The most commonly described observations of spontaneous microhemorrhages occur in 

APP23 mice.43 Cerebral microbleeds could be observed with in vivo T2*-weighted MRI in 

APP23 mice starting around 16 months of age35, 44–46 Microbleed number and volume 

increased with animal age. Post-mortem analyses revealed that these MRI-observed 

microbleeds were true microhemorrhages on corresponding histopathological Prussian blue 

stained sections (Fig. 4B). Parenchymal microvessels in these mice show severe vascular 

pathology, including smooth muscle cell degeneration and aneurysm-like vasodilation.43

The APPDutch mouse model bears the mutation (E22Q-mutated Aβ) that causes hereditary 

cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D)47, a rare autosomal 

dominant disorder in humans characterized by early-onset severe CAA and multiple 

recurrent lobar hemorrhages.48 Interestingly, when APP23 mice are crossed with APPDutch 

mice, twice as many microhemorrhages arise compared to the APP23 genotype alone.49 

Further exacerbation of CAA was observed in crossed mice, which may explain the 

increased incidence of microhemorrhage.

b. Hypertension models—A widely-used model of severe hypertension is the inbred 

strain stroke-prone spontaneously hypertensive rat (SHRSP).50 Early characterization 

studies showed that these rats developed spontaneous ischemic lesions and hemorrhages 

around 9-12 months of age. Microhemorrhages (and some microinfarcts) co-existed with 

larger ischemic or hemorrhagic strokes.51, 52 Fibrinoid necrosis and thickening of the 

vascular walls was regularly observed with cerebral penetrating arterioles, which likely 

contributes to vascular occlusions and ruptures in these animals.53, 54 Abnormal vascular 

remodeling may also generate weakened microvessels leading to microhemorrhage.51

Hypertension-induced microhemorrhages in mice require combining transgenic lines with 

treatments to chronically increase vascular tone. One study used a transgenic mouse line 

expressing both the human renin and angiotensinogen genes (R+/A+), which develop chronic 

hypertension but are otherwise normal.55 Challenging these hypertensive mice with a high 

salt diet and L-NAME (an inhibitor of neuronal and endothelial NOS) led to formation of 

microhemorrhages in multiple brain regions, including brain stem, cerebellum and basal 

ganglia. Another study administered chronic Angiotensin II and L-NAME to aged Tg2576 

mice, and reported the development of more microhemorrhages compared to mice receiving 

vehicle.56

c. Hyperhomocysteinemia model—Hyperhomocysteinemia (HHcy) is a risk factor for 

stroke and Alzheimer’s disease. In diet-induced HHcy, mice are placed on a diet deficient in 

folate, vitamin B6, and B12 and supplemented with excess methionine.36 Treated mice 

developed microhemorrhages, visualized by in vivo MRI and Prussian blue-staining of brain 

sections post-mortem (Fig. 4C).36 When HHcy was induced in APP/PS1 mice, significantly 

more microhemorrhages where observed in transgenics compared to their wild-type 

littermates.57 This increase was believed to be mediated by a heightened CAA and activation 

of matrix metalloproteinase-9 at the cerebrovascular wall.
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Model selection: Advantages and disadvantages

We have collated the models discussed in this review in Table 1. Inducible models allow one 

to ask how a microlesion affects local brain activity or structure, independent of other 

disease factors. Laser-induced microlesions are limited to cortex, but provide exquisite 

control over the location and timing of their onset. In a complementary fashion, intra-carotid 

injection of microemboli provide less control over lesion location, but produced distributed 

microinfarcts that cause measurable deficits in common tests of cognitive function.

Models developing spontaneous microinfarct or microhemorrhage provide an opportunity to 

understand the vascular deficiencies that lead to lesion formation, and to identify potential 

targets for prevention. A wide variety of model types develop spontaneous microinfarcts and 

microhemorrhages, and this supports the idea that diverse disease processes can be 

contributing factors, including CAA, mural cell or endothelial cell dysfunction, cerebral 

hypoperfusion, and vascular inflammation.

Physiologic impact of induced microinfarcts and microhemorrhages

In vivo optical imaging studies have revealed that microinfarcts induce lasting neural and 

hemodynamic deficits in surrounding tissues.59, 60 When microinfarcts were 

photothrombotically induced in the cortices of APP/PS1 or Tg2576 mice, increase in Aβ 
plaque formation was seen in surrounding tissues.61, 62 This effect was attributed to impaired 

drainage of interstitial fluid. Indeed, two recent studies reported that distributed 

microinfarcts produced bi-hemispheric disruption of the brain’s glymphatic system.63, 64 

Further, consistent with having a large effect on brain function, distributed microinfarcts also 

lead to deficits in cognitive tasks, despite total microinfarct volume being small compared to 

overall brain volume.10, 11

Surrounding the microinfarct core, neurons are viable but there is atrophy of neuronal 

dendrites, reduced dendritic spine density,59 axonal damage, and myelin loss.8, 10, 64 This is 

consistent with recent histopathological findings from human microinfarcts.65 Extensive 

peri-lesional astrogliosis, mislocalization of aquaporin 4 and blood-brain barrier disruption 

is also observed, indicating neuroinflammation and altered neuronal-glial signaling.10, 12, 59 

Collectively, these findings support the idea that microinfarcts impair the function of tissues 

well beyond their restricted lesion cores.

The existing data on experimentally-induced microhemorrhages suggest that these lesions 

also produce neural deficits in surrounding tissues, but very transiently. In vivo calcium 

imaging revealed impaired neuronal responses up to 150 μm from the lesion core, but tissue 

function recovered within 1 day.66 However, microhemorrhages induced persistent peri-

lesional microgliosis and astrogliosis.34 Penetrating arterioles often remained flowing even 

after rupture34, which suggests that local ischemia (as seen with microinfarcts) is necessary 

to induce neural deficits distant to the lesion core.
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Summary and future directions

Clinical efforts are now focused on understanding the causes, risk factors, and functional 

effects of microinfarcts and microhemorrhages in VCID.3, 5 However, these microlesions 

can be difficult to study in humans due to their small size, unpredictable onset, and co-

existence with other disease factors. Preclinical studies can complement these clinical efforts 

by providing insight into the impact and etiology of microlesions. This review has shown 

that microlesions similar those seen in humans can be reliably induced through 

microvascular occlusion and manipulation. Further, microlesions develop spontaneously in a 

variety of genetic and dietary-induced models of cerebrovascular disease. Future studies 

could use high-field MR imaging and white matter tractography to understand how 

microlesion accrual affects white matter integrity and brain connectivity. This addresses the 

possibility that individually small, but broadly distributed microinfarcts can impair brain 

function on a global scale. Mechanistic studies can also be performed to understand the 

cellular/molecular changes occurring beyond the lesion core. Technologies such as in vivo 
multiphoton imaging allow direct visualization of local neuronal, glial, vascular and 

glymphatic changes in tissues affected by ischemic injury. Further, longitudinal imaging of 

models that develop spontaneous microlesions can shed light on disease etiology, by 

identifying changes to the neurovascular unit that could account for narrowing or weakening 

brain microvessels. Finally, animal models serve as test beds for therapeutics. A small 

number of past studies have shown that microinfarct volume can be extensively reduced by 

neuroprotectants12, 18, suggesting a relatively large penumbra and window for therapeutic 

intervention10. Thus, neuroprotective strategies previously considered for large ischemic 

stroke, may be worth re-evaluating as preventative therapies for smaller ischemic events.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human microinfarcts and microhemorrhages in CAA cases
(A) A cortical microinfarct on a Hematoxylin & Eosin-stained section. (B) Microinfarct 

(black arrow) on a T2-weighted ex vivo MRI scan. (C) A cortical microhemorrhage on a 

Hematoxylin & Eosin-stained section. (D) Multiple lobar microbleeds (white arrows) on a 

GRE ex vivo MRI scan.
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Figure 2. Models of induced microinfarct and microhemorrhage
The left hemisphere depicts the production of distributed microinfarcts by injecting 

microemboli through the internal carotid artery (ICA). CCA = common carotid artery, and 

ECA = external carotid artery. The right hemisphere shows the selective occlusion of a 

penetrating arteriole with focal photothrombosis or rupture of a penetrating arteriole with an 

amplified laser during in vivo optical imaging.
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Figure 3. Microinfarcts in rodent models
(A) A cortical microinfarct observed in Hematoxylin & Eosin stained mouse brain sections 

after injection of cholesterol crystals into the internal carotid artery. From Wang et al.10 (B) 
A cortical microinfarct observed in NeuN and GFAP immunostained rat brain sections after 

occlusion of a single cortical penetrating arteriole by focal photothrombosis. From Shih et 
al.12 (C) Spontaneous microinfarcts observed in Hematoxylin & Eosin stained brain sections 

from an 18 months old eNOS-deficient mouse. From Tan et al.13 (D) Spontaneous 

microinfarcts observed in NeuN immunostained brain sections from a 13 months old Townes 

sickle cell mouse. From Hyacinth et al.14
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Figure 4. Microhemorrhages in mouse models
(A) A cortical microhemorrhage observed in Prussian blue stained mouse brain sections 

after optically-induced rupture of a single cortical penetrating arteriole. From Rosidi et al.34 

(B) Microbleeds detected by T2*-weighted MRI (left) and corresponding microhemorrhages 

detected by Prussian blue (right) in an APP23 mouse. From Reuter et al.35 (C) 
Microhemorrhages detected by Prussian blue staining in a mouse that received a specialized 

diet to induce hyperhomocysteinemia. From Sudduth et al.36
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