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Abstract

Purpose—To describe examples of missed pathogenic variants on whole exome sequencing 

(WES) and the importance of deep phenotyping for further diagnostic testing.

Methods—Guided by phenotypic information, three children with negative WES underwent 

targeted single gene testing.

Results—Individual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, 

although WES and an NGS-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 
revealed a homozygous single base pair insertion, previously missed by the WES variant caller 

software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no 

diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of 

PLA2G6. A novel homozygous deletion of the non-coding exon 1 (not included in the WES 

capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of 

infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity and MRI changes 

of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES 

showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. 

Sanger sequencing of EIF2B5 showed a frameshift indel, likely missed due to failure of alignment.

Conclusions—These cases illustrate potential pitfalls of WES/NGS testing, and the importance 

of phenotype-guided molecular testing in yielding diagnoses.
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Introduction

Whole exome sequencing (WES) has revolutionized clinical genetics by providing a 

comprehensive and agnostic method for patient evaluation1. Diagnostic rates vary from 25–

50% and WES has allowed new disease-gene identification and insights into the phenotypic 

and genetic heterogeneity of Mendelian disorders2–4. WES has quickly become part of the 

standard repertoire of genetic testing, with a prevailing sense that a negative result indicates 

that disorders in the differential diagnoses have been effectively excluded. We describe three 

individuals in whom WES and targeted next generation sequencing (NGS)-based testing 

were non-diagnostic. Phenotype reassessment and use of additional data, such as the single 

nucleotide polymorphism (SNP) microarray data, helped determine the next steps in the 

diagnostic process. Targeted single-gene Sanger sequencing and deletion/duplication 

analyses identified pathogenic variants for the clinically suspected genetic disorder in all 

three individuals. We provide insights into the reasons for negative WES results and, in an 

era when genomic technology tends to drive the diagnostic process, we highlight the 

importance of revisiting clinical information for additional targeted testing.
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Patients, Methods, and Results

Individuals 1 and 2 were evaluated at the Duke clinical site of the NIH Undiagnosed 

Diseases Network (UDN) (https://undiagnosed.hms.harvard.edu) and individual 3 at the 

Duke Genome Sequencing Clinic.

Individual 1

An 18-month-old Mexican female with progressive joint contractures and related morbidity 

was evaluated due to extensive skin plaques, subcutaneous and gingival nodules, a biopsy 

demonstrated dermal accumulation of amorphous hyaline material. Review of a duodenal 

biopsy showed dilated lymphatics and mucosal edema, consistent with clinical symptoms of 

protein-losing enteropathy. She had intact cognitive skills, ruling out alternative diagnoses 

such as Farber and Winchester syndromes. The parents reported a common ancestor in 

Mexico.

This extended phenotype was consistent with infantile systemic hyalinosis (ISH, OMIM 

#228600), an autosomal recessive disorder due to loss of function variants in ANTXR2, 

leading to widespread progressive accumulation of hyaline material and childhood death5.

Pertinent Previous Genetic Testing—A SNP microarray identified 64.2 Mb regions of 

homozygosity (ROH), including the ANTXR2 locus. An initial NGS-based sequencing of 

the exons and flanking splice junctions of ANTXR2, followed by a proband-only WES 

through a commercial laboratory were negative.

Results of post-WES Genetic Testing in UDN—Review of the SNP microarray did 

not identify deletions in the regions of ROH. Review of the NGS-based ANTXR2 
sequencing and WES data confirmed that 98.5% of the coding regions of ANTXR2 gene 

were covered at >10×, except exon 1 (85.6%). Sanger sequencing revealed a homozygous 

pathogenic variant in exon 13 (c.1073dupC). Parental studies confirmed trans configuration. 

Upon discussion with the commercial laboratory that had performed the WES and NGS-

based testing, it appeared that their variant calling software had not reported the variant. Its 

location adjacent to a homopolymeric repeat region and a common SNP could have 

contributed to low mapping quality, leading to failure of variant calling (Figure 1). 

Subsequently, we obtained the BAM files and manual inspection of the data by the UDN 

bioinformatician confirmed the presence of the variant.

Individual 2

A 3.5-year-old girl of Pakistani origin exhibited developmental regression at 16 months of 

age, cerebellar atrophy and a negative trio WES (proband and parents). She had lost the 

ability to cruise, crawl, sit, speak and eat by mouth. The parents were first cousins, and the 

proband had two first cousins once removed who died at age two years after 

neurodevelopmental regression.

The patient had optic atrophy, profound generalized hypotonia, minimal spontaneous 

movements, tongue fasciculations and diminished Achilles reflexes, in contrast to previously 

observed hypertonia with generalized hyperreflexia at age 2.5 years. Review of brain MRIs 
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obtained at 2 and 2.5 years of age revealed stable white matter volume loss of the vermis and 

cerebellar hemispheres, a normal pons and no iron accumulation (Supplementary Materials 

and Methods, Figure 1S). The new clinical finding of peripheral nerve involvement led us to 

consider infantile neuroaxonal dystrophy (IND) (OMIM# 256600), a disorder of 

neurodevelopmental regression in childhood and early death, caused by biallelic variants in 

PLA2G66,7.

Pertinent Previous Genetic Testing—Metabolic laboratory tests and an ataxia gene 

panel (42 genes) were negative. Trio WES through a commercial laboratory detected a 

homozygous missense variant of unknown significance in RPGRIP1L, but the clinical 

course and brain MRI findings were not consistent with Joubert syndrome.

Results of Post- WES Genetic Testing in UDN—A review of the SNP microarray 

identified several ROH in >4.6% of the genome; 12 genes within these regions, including 

PLA2G6, were associated with cerebellar atrophy and developmental regression. Manual 

inspection of the WES BAM files found no functionally significant single nucleotide or copy 

number variants in these 12 genes. Sanger sequencing and multiplex ligation-dependent 

probe amplification (MLPA) for deletions/duplications was performed for the five genes 

within the ROH with the greatest phenotypic overlap: PLA2G6, AC02, BCS1L, NDUFA11 
and ADSL. Sanger sequencing was normal for all. MLPA showed a novel homozygous 

deletion of the non-coding exon 1 in PLA2G6 (Figures 2A and 2S). Follow-up MLPA 

analysis of the parents confirmed that they were carriers of the deletion.

The breakpoint junction of the PLA2G6 deletion was amplified by long-range PCR 

(Supplementary Methods). The deletion included 2431-bp in the 5’UTR region of PLA2G6 
and revealed a 7-bp insertion at the breakpoint junction (c.−545_

−46+1931delinsCGATCTC) (Figure 3S). Fine mapping analysis8 demonstrated that the 

deletion encompassed a portion of the promoter region of the gene. Quantitative RT-PCR 

showed that mRNA expression of PLA2G6 was significantly lower in the patient’s blood 

compared with unaffected controls (p<0.01) (Figure 2B). Review of the WES data revealed 

that the capture kit did not include the non-coding exon 1.

Individual 3

An 8-year-old Caucasian female was evaluated for symptoms of ataxia, seizures and white 

matter disease. At age 3 years, she developed frequent falls and progressive decline in fine 

motor skills, speech and short-term memory. Generalized seizures started at 7.5 years. Exam 

revealed dysarthria, lower extremity spasticity, hyperreflexia, clonus and a wide-based gait. 

Brain MRI showed diffuse symmetric non-enhancing signal abnormalities involving both 

cerebral hemispheres with volume loss (Figure 4S). The features were consistent with 

leukoencephalopathy with vanishing white matter (VWM) (OMIM #603896), a disorder that 

presents with neurological regression, ataxia, spasticity, epilepsy and progressively 

vanishing white matter in brain MRI9. Variants in five genes (EIF2B1-B5) can cause the 

disorder, most frequently biallelic variants in EIF2B510.
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Pertinent Previous Genetic Testing—SNP microarray analysis detected a paternally-

inherited 416 Kb deletion at 10p12.31, interpreted as a benign variant. An NGS panel of 62 

genes for VWM leukodystrophy showed a heterozygous c.338G>A, p. Arg113His 

pathogenic variant in the EIF2B5 gene. Subsequent deletion/duplication testing for the 

EIF2B5 gene via exon-targeted array-CHG was normal. Trio WES re-identified the 

heterozygous p. Arg113His variant. Manual inspection of the reads for the EIF2B5 gene did 

not reveal any additional variants, with coverage of >10× for 100% of this gene.

Results of Post-WES Genetic Testing—Due to the continued clinical suspicion of 

VWM leukodystrophy, and the detection of one pathogenic variant in the gene, Sanger 

sequencing of EIF2B5 was pursued. A heterozygous insertion, c.1694delAins45; 

p.Lys565Ilefs*38 was detected. Although not previously reported in patients with VWM, the 

insertion had been detected once by the commercial laboratory, in an affected individual. 

Subsequent parental testing confirmed trans configuration for each variant. Difficulty in 

alignment of indels larger than 20–50 bp was likely the reason for missing this variant by 

WES, since retrospective manual inspection of the BAM files failed to detect it.

Discussion

WES is increasingly used as the premier and first-line test for rare and undiagnosed 

Mendelian disorders1,2,4,11–14. The vast majority (>97%) of variants detected by Sanger 

sequencing can also be detected by WES and with increased detection of mosaicism, WES is 

a practical tool for comprehensive molecular evaluation15. When WES is negative, 

reanalysis of the data can provide resolution in 10%–30% of cases16 and this is likely to 

increase with improvements in technology and new disease associations. However, there is 

little clarity on the diagnostic options if WES and reanalysis remain negative. Although 

whole genome sequencing (WGS) may be an option, it is not currently widely available 

clinically17. Therefore, in instances when WES is negative, clinicians may conclude that no 

diagnostic options remain for these patients.

WES is a complex high-throughput method, and data loss is possible at each step. 

Pathogenic variants in known disease causing genes may be missed because of decreased 

coverage, locus-specific features such as GC-rich regions, homopolymeric repeats, 

sequencing biases and indels that are >20–50 nucleotides18. The most common reason for 

variants being missed is a lack of sufficient sequence coverage depth19. Laboratories 

performing WES and NGS panels may use alternative methods to capture these20. Clinicians 

do reconsider the fit of a phenotype when interpreting variants of uncertain significance on 

WES, but when WES is negative, adequate coverage of selected genes or exons may lead to 

a belief that the WES was truly comprehensive. However, in all three of our individuals, 

coverage was adequate (10× at 98–100% of the bases), yet the pathogenic variants were 

missed. Thus, a negative WES result should be interpreted in the clinical context of the 

individual patient, to determine further testing.

In individual 1, the well-characterized phenotype was consistent with only one diagnosis 

(ISH), and the ROH on the SNP array included ANTXR2, but molecular confirmation 

remained elusive despite repeated sequencing and adequate coverage. The single nucleotide 
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insertion detected by Sanger sequencing is located adjacent to a complex repetitive region 

and a SNP, both of which could have decreased the mapping quality of the region around the 

insertion, and resulted in failure of the variant caller program to detect the insertion. Updated 

variant calling software and/or manual inspection of the reads would have identified this 

variant. Manual inspection is of particular importance when a limited set of specific genes is 

under consideration, but it is not standard practice in commercial laboratories.

Individual 2 had clinical features that changed over a year, leading us to strongly consider a 

diagnosis of infantile neuroaxonal dystrophy. In this instance, the WES did not capture the 

deletion because the non-coding exon 1 was not included in the capture kit, as is commonly 

the case with WES capture kits. Furthermore, structural variants of this size (2.3 kb) would 

not be detectable by WES. The clinical phenotype and the ROH containing the PLA2G6 
gene led us to pursue Sanger sequencing and MLPA, which detected the deletion. It is 

possible that WGS might have detected this structural variant, but its limited availability and 

lack of validation of WGS structural variant callers make this an impractical option.

Individual 3 had features consistent with VWM leukoencephalopathy. Although indels 

<50bp are below the resolution of exon-level deletion/duplication analyses, we would expect 

detection by WES, if alignment works well. WES missed the 46 bp indel in the EIF2B5 
gene completely, since the detection rate of indels decreases with sizes >20–50 bp.

Clinical geneticists are aware of WES being unsuitable for trinucleotide repeat disorders, 

mitochondrial DNA variants, epigenetic disorders and large structural variants. However, for 

Mendelian disorders in which SNVs and small indels are possible, the prevalent thinking is 

that if coverage of the genes of interest by WES is adequate, the disorders have been 

effectively excluded. Indeed, an increased depth of coverage would not have detected the 

missed variants in all three of our cases. The cases presented here underscore the importance 

of further testing if the clinical phenotype is strongly indicative of a specific condition when 

WES is negative.

In conclusion, these three case examples illustrate the importance a multi-pronged approach 

when WES is negative. These include: 1) Obtaining detailed clinical phenotyping to create 

an accurate differential diagnosis; 2) Reconsidering the family history and mode of 

inheritance; 3) Reassessing SNP microarray data to identify potential causal genes; 4) 

Manual inspection of the WES reads for genes that are of interest and obtaining information 

on capture kits and coverage; 5) Pursuing alternative sequencing methodologies such as 

Sanger sequencing and deletion/duplication testing to detect SNVs and indels that might 

have been missed with WES. Although WES is comprehensive, its limitations must be 

considered when negative results are obtained, and alternative diagnostic approaches should 

be pursued if the phenotype is compelling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Integrated Genome Variant browser showing condensed read alignment for internally 

realigned data (A), and the BAM file provided by the clinical laboratory (B). Reads are 

shown stacked together, with colors indicating a mismatch to the reference sequence. Almost 

all reads show the pathogenic insertion (c.1073dupC, 22:g.80905986dupG) as a purple 

mark. The insertion call may be considered low quality because of the adjacent 

homopolymer repeat and nearby variant. The nearby SNP (c.1069G>C, 22:g.80905990C>G) 

can be seen by the majority of reads containing the orange G nucleotide change. This variant 

can also contribute to lower mapping quality and can affect variant quality at the insertion.
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Figure 2. 
A. MLPA analysis of PLA2G6. Normalized MLPA data showing the homozygous deletion 

of the non-coding exon 1 of the PLA2G6 gene leading to total absence of amplification and 

hence a ratio of zero for the probe covering this region

B. qRT-PCR analysis of PLA2G6 mRNA expression in blood. Results are expressed as 

means ± SD; mRNA levels were quantitated with real-time PCR and normalized to the level 

of GAPDH. The figure represents real-time PCR quantification of PLA2G6 gene expression 

in the patient compared to controls. All results were done in triplicates. P-value was 

calculated by student t-test.
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