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Abstract

Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine 

is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal 

studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors 

(GPs) are now becoming strong alternative cellular therapeutic candidates to replace 

oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in 

various disease processes. There are many examples of successful therapeutic outcomes for 

transplanted GPs in small animal models, but clinical translation has proved to be challenging due 

to the 1000-fold larger volume of the human brain compared to mice. Human GPs transplanted 

into the mouse brain migrate extensively and can induce global cell replacement, but a similar 

extent of migration in the human brain would only allow for local rather than global cell 

replacement. We review here the mechanisms that govern cell migration, which could potentially 

be exploited to enhance the migratory properties of GPs through cell engineering pre-

transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that 

are available, with particular emphasis on intra-arterial injection as the most suitable route for 

achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be 
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feasible in small animal models, future efforts will need to be directed to enhance global cell 

delivery and migration to make bench-to-bedside translation a reality.
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Introduction

There is growing awareness about the pivotal role of glia for the function of the central 

nervous system (CNS). Glial cells provide not only nutritional support for neurons, but also 

control synapse formation, neurotransmission, cerebral blood flow, and many other 

processes (Barres 2008). Hence, current neuroscience has become more glial-inclusive 

rather than being neuron-centric. This emerging shift is also due to the encountered 

challenges in replacing damaged neurons, while the replacement of glia is much more 

attainable. As an example for spinal cord injury, attempts to replace neurons have been 

shifted towards protecting oligodendrocytes that are responsible for remyelination and 

support axon survival and outgrowth (Almad and Maragakis 2012). Given the current 

interest in glia replacement therapy, studies on new approaches directed towards optimal 

delivery and engraftment are warranted.

GP sources

Two decades ago, it was shown that GPs can be derived from multipotent neuroepithelial 

stem cells, with the A2B5 molecule being a unique identifier (Rao and Mayer-Proschel 

1997). Long-term survival and extensive migration of allografted GPs in rat was found to 

occur exclusively within the white matter environment (Han et al. 2004).

Several studies have reported a successful differentiation of GPs from other sources, e.g., 

embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) (Fraichard et al. 

1995; Wang et al. 2013). ESCs derived from the inner mass of blastocysts are characterized 

by a high efficiency in generating various cell types, including GPs. (Guillaume and Zhang 

2008). A chemically defined culture system has been instrumental in differentiating hESCs 

into neuroepithelial cells, which, after two to three weeks, became β-III tubulin+ neurons. 

GFAP+ astrocytes can be generated six to nine weeks after inducing ESC differentiation, 

and two more weeks are required for O4+ oligodendrocytes to appear. Further modification 

and optimization of ESC differentiation protocols resulted in a robust method for the in vitro 
production of MBP(+) oligodendrocytes (Czepiel et al. 2011). iPSC-derived oligodendrocyte 

precursors were successfully transplanted in hypomyelinated mice (Wang et al. 2013), as 

well as in a primate model of multiple sclerosis (Thiruvalluvan et al. 2016). The autologous 

source of GPs is a main benefit of using iPSCs and can potentially overcome immunological 

barriers associated with allogeneic transplantation. However, both iPSC- and ECS-derived 

GPs may bear a risk of contamination with undifferentiated, teratoma-forming pluripotent 

cells, which presence must be excluded prior to clinical application.
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GP lineages

Lineage tracing is an area of active current research (Woodworth et al. 2017). The onset of 

the expression of the transcription factor Sox1 coincides with the induction of the 

neuroectoderm (Pevny et al. 1998). Subsequent specification towards radial glia is driven by 

switch of the Sox1 to Pax6 and Pax2/5 (Schwarz et al. 1999; Suter et al. 2009). In turn, Pax6 

activates Sox2 expression (Wen et al. 2008) and both transcription factors orchestrate further 

neurodevelopment (Wen et al. 2008), including the expression of nestin, which appears in 

mice at E7 (Shimozaki 2014) in rapidly dividing progenitors (Zhang and Jiao 2015) that 

initially fuel formation of new neurons (Qian et al. 2000). Nestin(+) cells then give rise to 

NG2 progenitors at E13, when the embryonic brain begins to switch from neurogenesis to 

gliogenesis (Karram et al. 2005). NG2 cells persist in the brain throughout the entire life-

span of animals/humans favoring a fate for glial progeny (Huang et al. 2014); however, they 

are also capable of neuron generation under a permissive microenvironment (Sypecka et al. 

2009). NG2 cells subsequently begin to express A2B5 ganglioside at E13.5 (Staugaitis and 

Trapp 2009) and rapidly become dividing GPs (Rao and Mayer-Proschel 1997). The 

appearance of PDGFRα in GPs at E14 commits them to an oligodendroglial lineage, and are 

then termed oligodendrocyte precursor cells (OPCs) (Hall et al. 1996). Based on in vitro 
studies, CD44 has long been considered a marker of astrocyte-restricted precursors (ARP) 

(Liu et al. 2004); however, recent in vivo studies with more advanced lineage-tracing 

methodology revealed that CD44(+) cells can also yield OPCs (Naruse et al. 2013). The 

latest studies revealed that the Nkx2.1 transcription factor determines astrocytic fate, but 

only in the dorsal telencephalon (Minocha et al. 2017). In addition, in vitro conditions can 

deregulate the fate of progenitor cells, and thus some caution is warranted with the current 

view of downstream cell differentiation (Dromard et al. 2007). Lineage tracing using 

increasingly advanced methods may challenge current dogmas. In particular, brain-region 

specification may occur much earlier and have a more profound effect on progenitor identity 

than was previously thought. The same factors may determine distinct cell fates in different 

regions of the CNS and therefore, some reclassification may occur in the near future.

Therapeutic potential of glial progenitors (GPs)

The therapeutic effect elicited by GPs extends beyond maturation toward oligodendrocytes 

and myelination. In vitro, it has been shown that (GPs) can protect against chronic glutamate 

toxicity induced by motor neurons (Maragakis et al. 2005). GPs focally allotransplanted into 

the spinal cord also prolonged survival of rats with ALS, but no cure was achieved (Lepore 

et al. 2008). In contrast, neonatally transplanted human GPs were capable of rescuing the 

normal lifespan of dysmyelinated shiverer mice (Wang et al. 2013; Windrem et al. 2008). 

Human GPs transplanted neonatally displace the host counterparts, even in healthy mice, 

and can contribute to improved learning (Han et al. 2013; Windrem et al. 2014). These 

observations further emphasized the important functional role of glia that previously was 

ascribed only to neurons. Transplanted GPs also rescued some aspects of the disease 

phenotype in a small animal model of Huntington’s disease (Benraiss et al. 2016), and 

preserved the electrophysiological function in rats with focal inflammatory spinal cord 

demyelination (Walczak et al. 2011).

Srivastava et al. Page 3

Glia. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The head-to-head comparison of mouse and human GPs neonatally transplanted into 

dysmyelinated mice revealed striking species-specific differences in their therapeutic 

potential (Lyczek et al. 2017). Human GPs extended the life span of dysmyelinated mice, as 

previously reported, but there was no therapeutic effect after transplantation of their mouse 

counterparts. The accompanying longitudinal study of brain myelination using magnetic 

resonance imaging (MRI) revealed even more intriguing information. The typical life span 

of dysmyelinated (shiverer) mice is up to 200 days, and, at this time point, there was 

normalization of imaging parameters in the corpus callosum of mice transplanted with 

mouse GPs, indicating myelination, but there was no prolongation of life span. In contrast, 

no evidence of myelination was visible at that time in mice transplanted with human GPs, 

but it prevented the premature death of a majority of dysmyelinated mice. Post-mortem 

analysis of transplanted mouse GPs revealed very limited migration within the 

periventricular white matter tracts and early initiation of the production of compact myelin 

within the area of their distribution. Conversely, human GPs at the same time point had 

already migrated extensively away from the transplantation site, and were present within the 

entire brain, including white matter and grey matter areas. No production of compact myelin 

could be detected by histology, which was confirmed by the MRI findings (Lyczek et al. 

2017). This study thus revealed that an extensive migration and distribution of GPs within 

the entire brain is a pre-requisite to achieve the therapeutic effect (Figure 1). Considering the 

innate developmental capacity of progenitors derived from a given species and taking into 

account the fact that mouse GPs were not therapeutic in mice, a similar potential therapeutic 

effectiveness of human progenitors transplanted in the much larger human brain is an open 

question, an issue that must be resolved before the clinical application of GPs.

While sorting based on the presence of the A2B5 antigen is the current standard method by 

which to isolate GPs from fetal brain, another study has shown that human fetal cells sorted 

for the presence of the CD133 marker (referred to as neural stem cells) are also capable of 

wide migration and myelination in dysmyelinated mice, in a pattern very similar to A2B5-

positive human GPs (Uchida et al. 2012). These CD133 populations were transplanted in 

patients with Pelizeaus-Merzbacher disease, and although it was safe, the benefits were 

rather modest (Gupta et al. 2012). That clinical trial has been discontinued, however, and the 

company that sponsored the trial shut down its stem cell operations. While no post-mortem 

studies from these patients were reported, the MRI data added an interesting clue. A 

widespread improvement of MRI parameters in the white matter, as found in the preclinical 

study by Lyczek et al. (Lyczek et al. 2017), was not observed (Gupta et al. 2012). Only a few 

small hypointensities indicative of potential myelination were observed, which could 

correspond to the sites of cell injections. Notably, the size of these small regions of cell 

distribution was comparable to the size of a mouse brain (Gupta et al. 2012). Importantly, 

the mouse brain is 1000 times smaller than that of a human and thus, migration at a much 

larger magnitude required to cover the entire human brain appears rather unfeasible. We 

hypothesize here that the disappointing clinical benefit was likely due to insufficient 

migration of human CD133-positive cells, which covered only small brain areas around the 

injection sites.
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Factors that enhance the migration of GPs

Despite the extensive literature on GPs, attempts to enhance their migratory properties are 

rare. Paradoxically, both processes of attraction and repulsion are involved in the 

regulation of GP migration (Figure 3). There are also other physical and biological factors 

involved that determine the migration of GPs, which could be further employed to fine-tune 

their motility (i.e., the use of hydrogel scaffolds, or transcription factors) (Table 1). Since 

some degree of migration of GPs has always been observed, studies on the mechanisms that 

control their migration were typically based on the use of blocking agents.

a) Attractors that affect cell migration

CD44, a transmembrane glycoprotein, was first considered as a key molecule for 

interactions between cells and hyaluronan, lymphocyte homing, and cell adhesion (Dzwonek 

and Wilczynski 2015). CD44 is a receptor for hyaluronic acid (HA) and a single-pass, 

transmembrane glycoprotein that is widely expressed in various physiological and 

pathological systems responsible for cell-matrix adhesion, cell migration, and signaling 

(Naor et al. 2002; Saugierveber et al. 1994). CD44 is expressed by lymphocytes, 

thymocytes, and granulocytes, and was subsequently identified as a human erythrocyte cell 

surface antigen, a lymphocyte homing receptor. (Dzwonek and Wilczynski 2015). CD44 is 

now recognized as an important adhesion molecule, involved in several signaling pathways. 

At first, the role of CD44 in the nervous system was unclear; however, several lines of 

evidence suggest that CD44 expression occurs in the cerebral white matter, and, more 

specifically, it in astrocytes and oligodendrocytes (Dzwonek and Wilczynski 2015). 

Interactions of CD44 and HA were found to be crucial in the regulation of cell migration. It 

has been shown that a blockade of the CD44 molecule prevents migration of the 

oligodendrocyte precursor cell line CG4 toward areas of inflammatory demyelinating lesions 

(Piao et al. 2013). The interaction between CD44 and HA enhances protein kinase N-gamma 

(PKNγ, a Rac-1 activated serine/threonine kinase) activator, which, in turn, upregulates the 

phosphorylation of the cytoskeleton protein cortactin. This interaction of CD44/HA and 

Rac-PKN augments astrocyte migration (Bourguignon et al. 2007). However, it has not been 

investigated whether overexpression of CD44 is able to enhance the migratory properties of 

oligodendrocyte progenitors, or whether CD44 is also involved in the migration of 

transplanted GPs under non-inflammatory conditions, such as dysmyelination and related 

neurodegenerative diseases.

The CXCR6 molecule is present on the surface of GPs and interacts with CXCL16. 

CXCL16 is typically released by various cell types in response to injury. It drives the 

migration of CXCR6-positive GPs toward tissue lesions and facilitates CNS wound healing 

through astrogliosis (Hattermann et al. 2008). This study hypothesized that stimulation of 

glial cells by soluble CXCL-16 induces phosphorylation of Akt kinases, activation of the 

transcription factor AP-1, upregulation of its own receptor, and elevation of cell proliferation 

and migration. However, CXCR6 is also present in many types of leukocytes (Wilbanks et 

al. 2001) and thus, uptake of CXCL16 by glial cells may also have anti-inflammatory effects 

by preventing excessive infiltration of the brain by immune cells. So far, there have beem no 

attempts to enhance migration of GPs through CXCR6 overexpression.
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Platelet-derived growth factor (PDGF) is a potent glial cell mitogen (Maeda et al. 2001). 

However, it was shown that oligodendrocyte precursors also migrate toward PDGF 

(Armstrong et al. 1990).

Fibronectin was shown to act synergistically in the pERK1/2-dependent process (Tripathi et 

al. 2017). In addition, fibroblast growth factor (FGF) plays a very similar pro-migration role 

both in vitro and in vivo (Cruz-Martinez et al. 2014). Finally, GPs can also be attracted by 

stem cells, such as mesenchymal stem cells (MSCs), probably through a cocktail of released 

factors present within exosomes (Jaramillo-Merchan et al. 2013).

b) Repellants that inhibit cell migration

Chondroitin sulfate proteoglycans (CSPGs) consist of a protein core and a chondroitin 

sulfate chain. They are secreted by various cell types and are involved in various 

physiological and pathological processes. CSPGs are well known for their presence within 

the glial scar and for their prominent role in the inhibition of axonal growth (Silver and 

Miller 2004). It has been recently shown that CSPGs also limit the migration of transplanted 

GPs, and the induction of chondroitinase expression in surrounding injured tissues facilitates 

invasion of GPs (Yuan et al. 2016). While such intervention effectively increases the 

migration of GPs, it can be induced only in the presence of glial scar, which is rather 

impractical in a scar-free environment, such as dysmyelination and other progressive 

neurological disorders.

c) Repellants that increase cell migration

Interestingly, the migration of oligodendrocyte precursors in developing optic nerves was 

rather induced by repulsive cues generated in the optic chiasma. In particular, small NG2-

positive GPs were repelled by Netrin 1, while large NG2-negative GPs were directed by 

repulsion via Sema3a (Sugimoto et al. 2001). It was then found that Sema3a can also serve 

as a chemorepellent for the migration of glioma cell lines (Nasarre et al. 2009), and Netrin 1 

expression within the demyelinating OPC plaques blocks OPC recruitment and 

remyelination in murine models (Tepavcevic et al. 2014). The repulsive mechanism of glial 

migration is inspiring, as it could partially explain the radial migration of GPs from the 

germinal zones toward the cortical surface.

It has also been shown that bone morphogenetic protein-4 (BMP4), BMP7, and transforming 

growth factor beta1 (TGF-β1) produced by the meninges and pericytes repelled ventral 

OPCs into the cortex at the mouse embryonic stage. Thus, the data suggest that the 

mesenchymal TGF-β family proteins promote migration of ventral OPCs into the cortex 

during corticogenesis in a repulsive fashion (Choe et al. 2014).

Epidermal growth factor (EGF) is a well-known mitogen. It has been shown that 

intraventricular infusion of EGF increased the number of newborn glia in the subventricular 

zone (SVZ), and induced their migration toward the olfactory bulb and striatum (Kuhn et al. 

1997). However, it is difficult to conclude whether EGF-induced gliogenesis and cell 

migration was just a consequence or whether EGF supported both proliferation and 

repulsion to send out glia from the SVZ toward the striatum and olfactory bulb.
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d) Motility regulators

Aquaporin-4 (AQP-4), a member of the water-selective channel proteins and the most 

abundant aquaporin in the brain found in primates and rodents, plays an important role in 

water and ion homeostasis in the CNS. AQP-4 mediates the movement of water into and out 

of the brain, and it has been suggested that AQP-4 enhances the migration of astroglia by 

facilitating the water influx across the leading edge of the migrating astrocyte as a result of 

increased water permeability of the plasma membrane (Ding et al. 2011). The 

transmembrane fluxes that occur during cell movement are driven by the osmotic gradient 

created due to actin depolymerization. The increased hydrostatic pressure causes then a 

lamellipodial extension. This plasma membrane protrusion is soon followed by actin re-

polymerization to stabilize the expansion of the membrane (Papadopoulos and Verkman 

2013) (Figure 4). Of 13 aquaporins discovered thus far, only AQP-4 has been identified to 

participate in neurological diseases, especially in brain edema (Ding et al. 2011). It has been 

shown that inhibition of AQP-4 expression negatively affects the migration of astroglia 

(Kong et al. 2008; Saadoun et al. 2005). During the process of oligodendrocyte progenitor 

migration, there is an increase of cell volume in an AQP-4-dependent fashion (Happel et al. 

2013). In normal cerebral activity, it is important to maintain and stabilize the internal 

osmotic environment (Simard and Nedergaard 2004).

The neural cell adhesion molecule (NCAM) is predominantly expressed in neurons, and the 

polysialated version of this molecule (PSA-NCAM) facilitates cell migration, and is 

considered to serve as a marker of neuroblasts. Interestingly, the polysialic acid (Psachoulia 

et al.) is also present on the surface of GPs, as its enzymatic cleavage blocks their migration. 

(Wang et al. 1994). The transcription factors SOX5 and SOX6 are very attractive targets of 

genetic engineering to facilitate global replacement of glia in humans. These two factors 

jointly increase migration through the induction of PDGFR expression (Baroti et al. 2016), 

while, at the same time, serve as repressors of their differentiation (Stolt et al. 2006). Thus, a 

conditional overexpression of both transcription factors could facilitate the maintenance of a 

migratory phenotype of GPs while avoiding initiation of the differentiation process, and, 

once adequate distribution is achieved, their expression could be switched off to finalize the 

maturation of transplanted cells.

The migration of GPs is dependent not only on chemical and/or biological factors, but also 

on the physicochemical properties of the substrate, such as its stiffness. Stiff collagen gels 

promote the migration of GPs, in the fashion of a “paved highway”, while soft collagen gels 

had a rather suppressive effect, which may be compared to the effect of “muddy roads (Mori 

et al. 2013).

Other major migratory pathways that could be potentially exploited to 

manipulate the migratory properties of glia

A number of migratory pathways shown to promote the migration of MSCs or neural stem/

progenitor cells could be considered and used to enhance the migration of GPs. The stromal-

derived factor 1 (SDF-1) – CXC receptor 4 (CXCR-4) axis is a known master regulator 

responsible for the management of the hematopoietic stem cell (HSC) population in bone 
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marrow (Janowski 2009). This axis is also involved in stroke-induced neurogenesis (Merino 

et al. 2015). There is also increasing evidence indicating that SDF-1 and its cellular receptor, 

CXCR-4, are also involved in guiding the migration of MSCs (Nowakowski et al. 2016) and 

endothelial progenitor cells (EPCs) in response to injury (Figure 5) (Li et al. 2012). The 

SDF-1–CXCR4 axis is also a “villain” in tumor metastasis (Weidle et al. 2016). 

Interestingly, the routing of CXCR4 receptors between the nucleus and the cell surface can 

depend on cell culture conditions, which can also affect migratory properties (Janowski et al. 

2011).

Hepatocyte growth factor-c-mesenchymal-epithelial transition (HGF–c-Met) is another axis 

that regulates various migratory streams. It draws the neuroblasts from the SVZ toward the 

olfactory bulb (Garzotto et al. 2008), and also enhances the migration of the ovarian surface 

epithelium in order to replenish the area damaged due to expulsion of the ovum (Wallace et 

al. 2013). This signaling pathway is also frequently used to determine the invasiveness and 

motility of tumors (Wallace et al. 2013). The insulin like growth factor 1 (IGF-1) molecule is 

another regulator various functions, including the frequently reported effect on cell 

migration for cardiac stem cells (O’Neill et al. 2016), as well as vascular smooth muscle 

cells (Beneit et al. 2016). Similar to some other factors described above, IGF-1 is 

extensively involved in tumor invasion (Le Coz et al. 2016).

While most of the factors that contribute to cell motility belong to the surface-protein family, 

cell migration can also be regulated more centrally on the level of transcription factors. Zinc 

finger E-box binding homeobox 1 (ZEB-1) is a transcription factor that was first 

characterized as an inducer of tumor invasion and metastasis of several tumors, including 

kidney tumors, by promoting epithelial-mesenchymal transition (EMT). EMT is a process 

that is prominent in embryonic development, but its aberrant induction is linked to 

invasiveness of epithelial cancer cells via promoting their migration, invasion, and 

dissemination (Zhang et al. 2015). ZEB-1 increases EMT by suppression of CDH1 

(encoding E cadherin, an epithelial marker) and microRNA 200 (Gu et al. 2016). This leads 

to the activation of the TGF-β1 signaling pathway and elicits unregulated proliferation of 

cancer cells and their invasion (Gu et al. 2016). In addition, ZEB-1 has been implicated in 

animal organ development, cartilage development, and regulation of MSC proliferation, as 

well as the establishment of a motile and drug-resistance tumor phenotype (Gu et al. 2016). 

However, there is little reference to the concrete role of ZEB-1 in the migration of stem 

cells. It has been found that inhibition of ZEB-1 expression in human fetal neural stem/

progenitor cells impaired the migration of human neural stem cells (Kahlert et al. 2015). 

These authors suggest that ZEB-1 might play an important role in immature, non-neoplastic 

cell migration during brain development. They stained three fetal human brains and 

observed moderate to strong expression in the cells nearest to the ventricles, as well as 

moderate expression in the germinal matrix. Their results strongly support the notion that, 

during fetal brain development, a maximum number of stem cells gather around the ventricle 

with a dense germinal matrix and then migrate outward to generate neurons and astrocytes. 

All the above-mentioned axes and molecules can potentially be exploited to engineer GPs, 

with the goal of inducing their migratory properties.
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Electric field (EF) modulation as a novel method for manipulating glial cell 

migration

The generation of an electric field may be a novel method that can be used for regulating the 

migration of different cell types including Schwann cells, human mesenchymal cells, and 

human embryonic and pluripotent stem cells (Iwasa et al. 2017). Almost all types of cells 

generate a membrane potential specific for particular tissue, ranging from 3 mV/mm to 1000 

mV/mm, generating a specific electric field (Funk et al. 2009). EF plays an important role in 

axon guidance, nerve growth, and neurogenesis, and, applied at a physiological magnitude, 

could serve as a guiding cue for glial cell migration (Borgens 1988). It has been recently 

shown that EF regulates the directed migration of OPC in a β-1 integrin-dependent fashion 

(Zhu et al. 2016). However, demonstration of its efficacy in large animal models is 

warranted, as the delivery of a homogenous EF over an extended range could be challenging 

in larger brains.

Safety concerns related to the manipulation of GP migration

PDGF is involved not only in migration, but also in supporting the proliferation of GPs. An 

increase of PDGF expression in the SVZ through transduction can lead to the formation of 

glioma (Assanah et al. 2009). Likewise, EGF is also a potent mitogen and overexpression of 

EGF receptors in OPC resulted in white matter hyperplasia (Ivkovic et al. 2008). While 

TGF-β is neuroprotective after injury, it is also known as a suppressor and promoter of 

tumorigenesis and is involved in the formation of brain tumors (Aigner and Bogdahn 2008; 

Golestaneh and Mishra 2005). High-grade human gliomas activate latent TGF-β by 

secreting thrombospondin-1 (Sasaki et al. 2001). It essentially changes the anti-proliferative 

effect of TGF-β into an oncogene, which can then lead to tumor development (Aigner and 

Bogdahn 2008). The link between TGF-β and malignant transformation is believed to result 

from an acquired resistance to its growth inhibitory effects (Canoll and Goldman 2008). 

Therefore, any engineering approaches toward the enhancement of GP migration should be 

pursued cautiously, and further extensive preclinical testing is needed.

Cell delivery routes optimal for wide distribution of GPs

Direct injection of GPs to the brain parenchyma results in a highly restricted biodistribution. 

Extensive cell migration could theoretically be achieved via cell engineering to express/

inhibit certain signaling pathways, as described above, however, that approach would require 

extensive testing to ensure safety and to tune migration efficiency to clinical needs. An 

alternative approach is to focus on improving the initial biodistribution of the cell transplant. 

This could be achieved by adapting and fine-tuning the cell delivery technique. Multiple 

injections into the brain parenchyma are one such option to widely distribute transplanted 

cells, but this approach is highly impractical due to the multiple burr hole placement 

required, as well as the risk of major cerebral bleeding, which is 1% per stereotactic 

introduction of the needle of electrode to the brain (DeLong et al. 2014). Other routes of 

stem cell delivery, including placement of cells within the cerebrospinal fluid spaces or 

within various vascular compartments, are other alternative methods with the potential to 

successfully target glial cell grafts into vast brain territories.
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a) Intracerebroventricular/intrathecal route

The advantage of an intracerebroventricular (ICV) route is that it gives the cells access to a 

very large surface area of the brain throughout the entire neuroaxis. The challenge is, 

however, that the cells still are required to migrate relatively long distances across the 

ependyma and into the brain parenchyma. This route has been successfully used to deliver 

MSCs for neuroprotection in animal studies and in preterm infants with intraventricular 

hemorrhage (Ahn et al. 2014; Park et al. 2015). An alternative is to inject in the intrathecal 

(IT) space, where superparamagnetic iron oxide (SPIO)-labeled MSCs were found to reach 

the occipital horns of the ventricles as shown on MRI, indicating the possible migration into 

the meninges, subarachnoid space, and spinal cord in patients with multiple sclerosis (MS) 

and amyotrophic lateral sclerosis (ALS) (Karussis et al. 2010). The ICV route was 

previously shown to be an effective way to distribute transplanted human GPs within the 

rodent CNS (Learish et al. 1999). Building on the success of preclinical studies, this 

approach has been used clinically in patients for ICV delivery of human umbilical cord 

blood-derived neural stem cells. In that study, MRI cell tracking using SPIO-labeled cells 

allowed non-invasive assessment of cell distribution and no label was found in the brain 

parenchyma, but all the transplanted cells located within the occipital horn, probably due to 

gravitational forces (Jozwiak et al. 2010). Long-term follow-up revealed the gradual 

disappearance of the signal (Janowski et al. 2014). However, no reliable conclusion can be 

drawn from this study about the migratory properties of transplanted cells, as long-term MRI 

tracking is compromised by cell proliferation or excretion of iron oxide from transplanted 

neural stem cells, prior to migration from the ventricles, throughout the brain parenchyma 

(Cromer Berman et al. 2013; Walczak et al. 2007). To date, all studies on the migration of 

GPs have been performed in the rodent brain, and, while this model is suitable for initial 

screening, the small size of the brain is a major limitation and detracts from clinical 

relevance.

b) Intra-arterial route

With the constant urge for more accurate methods of cell delivery and for far more precise 

transplantation, the focus has now shifted toward intra-arterial (IA) delivery (Lu et al. 2001; 

Yavagal et al. 2014). The vascular tree seems to be an ideal route by which to distribute cells 

widely within the desired brain territory, and the use of arteries bypasses the peripheral 

filtering organs. It has been already shown that intra-arterial infusion of GPs at a proper 

velocity is safe (Janowski et al. 2013). In addition, the recently introduced IA injection 

under high-speed, real-time MRI guidance adds to the predictability and precision of the 

procedure of GP delivery (Janowski et al. 2016). The same method can be used for blood 

brain barrier opening, which can additionally facilitate homing of stem cells (Janowski et al. 

2016). However, safe and precise delivery is insufficient, as the injected cells still need to 

traverse the vessel wall. It has been shown that genetic engineering of GRPs to express 

VLA-4 allows for their docking to the LPS-induced inflamed endothelium (Gorelik et al. 

2012), and effective extravasation of GPs in an animal model of stroke (Jablonska et al. 

2017). The IA route has already been validated in a large animal model and transplantation 

of even large MSCs was safe and therapeutic in a canine ischemia model (Chung et al. 

2009). There were also no adverse events as a result of IA delivery of bone marrow 

mononuclear cells in subacute ischemic stroke patients (Ghali et al. 2016). However, the 
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effective diapedesis in diseases without or with little neuroinflammatory component, such as 

dysmyelination and related neurodegenerative disorders, is still unresolved and thus, this 

route of delivery also may have its limitations.

c) Intranasal route

The intranasal route has been recently considered as an effective route for stem cell delivery 

to the mouse brain (Yu et al. 2017). The growing popularity of this route is attributable to the 

non-invasive nature of administration, excellent safety, as well as its selectivity reducing cell 

distribution in peripheral organs (Li et al. 2015; Reitz M 2012). Another advantage is the 

bypass of the blood-brain barrier, with direct cell migration from the nasal mucosa (Li et al. 

2015; Reitz M 2012). There are two intracranial routes through which intranasally 

transplanted cells reach the brain: (1) through the olfactory bulb and subsequent migration 

throughout the brain; and (2) through the CSF with subsequent migration along the surface 

of the cortex, followed by invasion into the brain parenchyma (Danielyan et al. 2009). 

Because of rapid migration of stem cells to the injury site, this method can be employed at 

an early stage of disease. It can also evade problems of a low cell survival rate and the 

inconvenience of frequent invasive surgical administration (Danielyan et al. 2014). However, 

as of to date, only MSCs and NSCs have been introduced to the brain using the intranasal 

route (Oppliger et al. 2016; van Velthoven CT 2010; Wu et al. 2013). GPs are a population 

of delicate cells and it remains to be proven that they can survive in the nasal cavity 

sufficiently long and can sense chemotaxis toward the brain. In addition, the intranasal route 

has so far only been used in rodents where the distance of cell migration is just a few 

millimeters, while the clinical scenario would require cell movements over several 

centimeters.

Local distribution of cells for neuroregeneration

While global glia replacement could be a versatile therapeutic strategy for a wide array of 

neurological disorders, the local control of cell migration may be applied to increase the 

precision of GP delivery in focal diseases. It has been shown that NG2(+) progenitors 

penetrate the glial scar and facilitate axonal growth after spinal cord injury (Vadivelu et al. 

2015). GPs have also been shown to be therapeutic in a rat model of transverse myelitis 

(Walczak et al. 2011), which led to a FDA approval of the first-in-man clinical trial for this 

disease (www.qthera.com). Local administration of GPs can also be applied to remyelinate 

MS lesions at an early disease stage (Harlow et al. 2015). In stroke patients, myelin content 

is the only independent variable predicting motor function in the upper extremities, 

providing another rationale for local GP delivery (Lakhani et al. 2017).

The importance of MRI cell tracking to evaluate GP migration in humans

There is a vast diversity of direct and indirect labeling methods to follow personalized stem 

cell-based therapy in vivo (Janowski et al. 2012). Non-invasive monitoring of stem cell 

delivery and migration by means of MRI cell tracking will be essential to thoroughly 

evaluate the above proposed improvements in patients (Bulte 2009). As an example, in the 

discontinued trial by Gupta et al., (Gupta et al. 2012) no information on the dispersion of 

transplanted human NSCs was obtained, and such MRI cell tracking information may 
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provide clues as to why limited therapeutic effects were observed. Future efforts toward 

clinical translation of GP-based therapy should ideally include MRI-based cell tracking 

studies in a comprehensive manner.

Large animal models to address the gap between mice and men

Most animal studies have been conducted in rodents, given the relative low cost and high 

speed of experimental reproduction. Often, this has led to achieving sufficient statistical 

power to draw unambiguous conclusions about therapeutic outcome. Nevertheless, the 

ability of rodent experiments to predict the overall effectiveness of stem cell-based therapy 

in larger mammals remains controversial and is subject to frequent failures (Cibelli et al. 

2013). The differences in organ size and physiology greatly affect the outcome of cell 

replacement approaches, as it is more difficult to repopulate large tissue territories. Studies 

in rabbits, dogs, pigs, sheep, goats, and non-human primates have improved the capability to 

predict clinical effectiveness, compared to studies in mice alone (Cibelli et al. 2013). It is 

critical to select the most appropriate animal species when studying a specific disease. The 

use of swine, both minipigs and full-size breeds, appears to be one of the best animal models 

to study several diseases that require genetic engineering, such as Alzheimer’s disease, 

Huntington disease and cystic fibrosis, but also diseases without genetic modification 

including ophthalmological diseases, diabetes, cardiovascular disease, and some cancers 

(Cibelli et al. 2013). Humanized pigs are particularly compelling as donors for 

transplantation into non-human primates prior to advancing clinical xenotransplantation 

(Suzuki et al. 2012). Large animals are also more appropriate for studying accuracy and 

efficacy of stem cell transplantations due to more clinically relevant anatomical features and 

follow-up time (Cibelli et al. 2013). Two studies assessing the survival of human pluripotent 

and embryo-derived dopamine neurons in monkeys are good examples to this extent (Daadi 

et al. 2012; Kriks et al. 2011). However, the use of large animals is not without its own 

challenges, such as the limited availability of specific antibodies and growth factors, as well 

as the more cumbersome production of pluripotent stem cells.

Concluding remarks

The pivotal role of glia in neurological disorders has been increasingly recognized. Human 

glial progenitors have been shown to be highly therapeutic in a vast array of small animal 

models of neurological disorders. However, no robust therapeutic effects have been observed 

in patients with Pelizeaus-Merzbacher disease using highly myelinogenic progenitors, and 

further attempts have been discontinued. It has been shown recently in a small animal model 

that the therapeutic efficacy of transplanted glial progenitors depends on the extent of their 

migration. Human glial progenitors widely migrated and were highly therapeutic despite the 

lack of compact myelin at the time critical for a rescue of animals. In contrast, mouse glial 

progenitors migrated very sparsely and early differentiated and started formation of compact 

myelin within the corpus callosum surrounding the cerebral ventricles, which did not 

translate to any therapeutic benefit. Therefore, the translation of very promising preclinical 

findings into effective therapies requires that the migration of glial progenitors must be 

within the desired brain territories, which in some circumstances such as global 
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dysmyelination needs to be the entire brain. Future studies on grafting glial progenitors 

should consider including cell engineering methods to enhance cell migration.
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Main points

• Global glia replacement following cell transplantation is needed for clinical 

translation.

• Clinical promise has not lived up to its success in mice, due to the 1000-fold 

larger volume of the human brain.

• Transplanted cell migration may be improved through cell engineering and 

optimizing delivery.
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Figure 1. Timeline of migration and differentiation of mouse and human glial progenitors 
transplanted into dysmyelinated shiverer mice
Extensive migration of transplanted human glial progenitors with no signs of myelination at 

18 weeks leads to rescue of the normal life-span of shiverer mice. In contrast, no therapeutic 

effect is seen for transplanted mouse GPs, which was accompanied by a robust production of 

compact myelin restricted to the corpus callosum due to the limited migration of these cells. 

Human GPs eventually produce compact myelin with a nearly full reconstitution of myelin 

by the 62-week time-point, long after the time point of shiverer survival.
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Figure 2. Mechanisms governing the migration of glial progenitors
Four major factors direct the migration of glial progenitors: Inhibitors, attractors, repellants, 

and motility regulators.
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Figure 3. Role of AQP-4 in astrocyte migration
AQP-4 augments astrocyte migration by accelerating the water influx to the leading edge of 

the migratory astrocyte, which eventually increases the lamellipodium extension, and 

ultimately leads to astrocyte migration (adapted from Papadopoulos and Verkman 2013).
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Figure 4. SDF-1 mediated migration of EPCs to the injury site
(adapted from Li et al. 2012).
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Table 1

Cellular mechanisms that are potentially applicable for genetic engineering of GP migration.

Mechanism Molecule/medium Cell type Reference

Attraction CD44 Astrocyte precursor Bourguignon et al., 2007

CXCL16/CXCR4 axis CXCR6-positive GP Hattermann et al. 2008

PDGF Oligodendrocyte precursor Armstrong et al., 1990

SDF-1-CXC-4 Hematopoetic stem cell Janowski. 2009

MSC Nowakowski et al., 2016

EPC Li et al., 2012

HGF-c-Met Tumor cell Wallace et al., 2013

IGF-1 Cardiac stem cell O’Neill ey al., 2016

Vascular smooth muscle cell Beneit et al., 2016

Repulsion CSPGs GP Yuan et al., 2016

Nestrin 1 Small NG2-positive GP Sugimoto et al., 2001

Sema3a Large NG2-positive GP Sugimoto et al., 2001

Glioma cell line Nasarre et al., 2009

TGFβ1 OPC Choe et al., 2009

EGF Newborn glia Kuhn et al., 2009

Motility regulation AQP4 Astroglia Ding et al, 2011

NCAM GP Wang et al. 1994

Sox5 and Sox6 Oligodendroglial cell Baroti et al., 2016

ZEB-1 Epithelial cancer cell Zhang et al., 2015

NSC Kahlert et al., 2015

Electric field Schwann cells, MSCs, and pluripotent stem cells Iwasa et al. 2017

OPC Zhu et al. 2016
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