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Abstract

OBJECTIVE—Sepsis is among the leading causes of morbidity, mortality, and cost overruns in 

critically ill patients. Early intervention with antibiotics improves survival in septic patients. 

However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed 

to develop and validate an Artificial Intelligence Sepsis Expert (AISE) algorithm for early 

prediction of sepsis.

DESIGN—Observational cohort study.

SETTING—Academic medical center from January 2013 to December 2015.

PATIENTS—Over 31,000 admissions to the intensive care units (ICUs) at two Emory University 

hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available 
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MIMIC-III ICU database (validation cohort). Patients who met the Third International Consensus 

Definitions for Sepsis (sepsis-3) prior to or within 4 hours of their ICU admission were excluded, 

resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, 

respectively.

INTERVENTIONS—None

MEASUREMENTS and MAIN RESULTS—High-resolution vital signs time series and 

Electronic Medical Record (EMR) data were extracted. A set of 65 features (variables) were 

calculated on hourly basis and passed to the AISE algorithm to predict onset of sepsis in the 

proceeding T hours (where T = 12, 8, 6 or 4). AISE was used to predict onset of sepsis in the 

proceeding T hours, and to produce a list of the most significant contributing factors. For the 12-

hour, 8-hour, 6-hour, and 4-hour ahead prediction of sepsis, AISE achieved area under the receiver 

operating characteristic (AUROC) in the range of 0.83–0.85. Performance of the AISE on the 

development and validation cohorts were indistinguishable.

CONCLUSION—Using data available in the ICU in real-time, AISE can accurately predict the 

onset of sepsis in an ICU patient 4 to 12 hours prior to clinical recognition. A prospective study is 

necessary to determine the clinical utility of the proposed sepsis prediction model.
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INTRODUCTION

Sepsis, a dysregulated immune-mediated host response to infection, is prevalent, lethal, and 

costly. [1–4] Recent literature suggests that early and appropriate antibiotic therapy is the 

main factor predicting sepsis outcomes. [5] Identifying those at risk for sepsis and initiating 

appropriate treatment, prior to any clinical manifestations, would have a significant impact 

on the overall mortality and cost burden of sepsis.

Clinical decision support tools can help identify those at highest risk for future sepsis. 

Existing work on EMR and laboratory data seem promising, [6–8] but they are limited by 

being static, or collected at low or inconsistent frequencies. The dynamics of heart rate (HR) 

and blood pressure (BP) extracted directly from the electrocardiogram (ECG) and arterial 

waveform can improve mortality prediction over clinical data (demographics or data 

collected at low frequency) in ICU patients with transient hypotension. [9] The objective of 

this study is to demonstrate that a high-performance prediction model can be derived from a 

combination of EMR and high-frequency physiologic data (collected at least once per 

second). We further test the relationship between the prediction lead time (prediction 

window) and predictive accuracy of the model, and investigate questions of generalizability 

and interpretability of the proposed model.
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METHODS

Study Population and Data Sources

All ICU patients aged 18 years or older were included from two hospitals within the Emory 

Healthcare system, as well as an external publicly available ICU database. [10] This 

investigation was conducted according to Emory University IRB approved protocol 33069. 

Patients were followed throughout their ICU stay until discharge or development of sepsis, 

according to the Third International Consensus Definitions for Sepsis (sepsis-3). 

Specifically, all episodes of suspected infection (tsuspicion) were identified as the earlier 

timestamp of antibiotics and blood cultures within a specific time span; if the antibiotic was 

given first, the culture sampling must have been obtained within 24 hours. If the culture 

sampling was first, the antibiotic must have been ordered within 72 hours. The onset time of 

sepsis (tsepsis) was then defined as an episode of suspected infection with two or more points 

change in the SOFA score (tSOFA) from up to 24 hours before to up to 12 hours after the 

tsuspicion (tSOFA+24h>tsuspicion>tSOFA-12h). These definitions were based on a recent 

assessment of the revised clinical criteria for sepsis. [11] Finally, we defined tonset as the 

minimum of tsepsis and tSOFA. Though our primary outcome was tsepsis, we report the 

predictive performance of our algorithm also on tSOFA and tonset for completeness and to 

facilitate comparison with the existing literature.

Data from the electronic medical record (Cerner, Kansas City, MO) was extracted through a 

clinical data warehouse (MicroStrategy, Tysons Corner, VA). High resolution heart rate and 

blood pressure time series at 2 seconds resolution were collected from select ICUs, through 

the BedMaster system (Excel Medical Electronics, Jupiter FL, USA), which is a third-party 

software connected to the hospital’s General Electric (GE) monitors for the purpose of 

electronic data extraction and storage of high-resolution waveforms. Patients were excluded 

if they developed sepsis within the first 4 hours of ICU admission (by analyzing pre-ICU IV 

antibiotic administration and culture acquisition), or if their length of ICU stay (LOS) was 

less than 8 hours or more than 20 days.

Feature Extraction and Machine Learning

A total of 65 features from the electronic medical record and high-resolution bedside 

monitoring data. These features were used as inputs to a modified Weilbull-Cox proportional 

hazards model, the machine learning algorithm used in this study. See Appendices B and C 

for further details on feature extraction and machine learning, and Appendix F for a glossary 

of machine learning-related terms and their meanings.

Statistical Methods

For all continuous variables we report medians ([25-percentile, 75-percentile]) and utilize a 

two-sided Wilcoxon Rank-Sum test when comparing two populations. For binary variables 

we report percentages and utilize a two-sided Chi-square test to assess differences in 

proportions between two populations. AISE classification results for T hours (T = 12, 8, 6 or 

4 hours) ahead predictions are based on a random split into 80% training 20% testing, and 

the area under receiver operating characteristic (AUROC) curves statistics for both the 
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training and the testing sets are reported, as well as specificity (1–false alarm rate) and 

accuracy at a fixed 85% sensitivity level.

RESULTS

Our development cohort included a total of 27,527 patients, 2,375 (8.6%) of whom 

developed sepsis in the ICU with a median lag time of 23.9 hours (see Appendix – Table 

A1). Those who developed sepsis tended to have a slightly higher percentage of male 

patients (56.2% vs. 52.4%) and have more comorbidities (CCI 4 vs. 2). Septic patients had 

longer median lengths of ICU stay (5.9 vs. 1.9 days), higher median SOFA scores (5.0 vs. 

1.7), and higher hospital mortality (14.5% vs. 2.9%). Similar patterns were observed within 

our validation cohort (see Appendix – Table E1).

Both training set and testing set AUROCs for detecting sepsis were 0.79 or higher for every 

prediction task (tsepsis, tSOFA, tonset) and prediction window (n=4, 6, 8, and 12 hours) (Figure 

1). The best performance was achieved for predicting tSOFA four hours in advance (AUROC 

of 0.87), which was slightly higher than predicting tsepsis four hours in advance (AUROC of 

0.85). In our development cohort, roughly 21% of the time tSOFA occurred after tsepsis. We 

therefore defined tonset as the earliest timestamp of the two (tsepsis and tSOFA), which proved 

more difficult to predict (four hours prediction AUROC of 0.82). When sensitivity was fixed 

at 85% (risk score=0.45), specificity in the test cohort was highest for TSOFA prediction 

(72%), followed by tsepsis (67%), and the lowest for tonset (64%) (see Table 1).

Model performance decreased slightly when prediction occurred over longer time windows 

regardless of the sepsis time-point of interest (Figure 1 & Table 1). To predict tsepsis, model 

AUROC decreased from 0.85 at a four-hour prediction window, to 0.83 at a twelve-hour 

window. Specificity demonstrated similar declines when sensitivity was fixed at 85% (67% 

with four-hour windows vs. 63% at twelve-hour window). These findings were consistent 

across our development and validation cohorts (see Appendix, Fig. E1 and Table E2).

Hospital mortality increased as the risk score for sepsis (tsepsis) increased from 0 to 1 (Table 

2). Those with a risk score of 0–0.2 had a mortality of 0.5%, while those with risk scores of 

>0.8 had a 32.9% mortality rate. This was true even among those who were false positives, 

defined as those who did not develop sepsis in the predicted window but had risk scores of 

0.45 or greater. In fact, the mortality was higher among false positives assigned the risk 

score of >0.8, compared with those given a similar score in the total cohort (56.3% vs. 

32.9%). Compared to those who were false negatives, patients who were false positives had 

higher SOFA scores (4.0 [IQR 2.0,7.0] vs 3.0 [IQR 1.0,5.0]; p<0.01), higher CCIs (4.0 [IQR 

2.0,6.0] vs. 3.0 [IQR 2.0,5.0]; p<0.01), and higher hospital mortality (15.5% vs. 6.4%; 

p<0.01).

DISCUSSION

In this study, we demonstrated that a high-performing prediction model (AUROC 0.85) can 

predict sepsis (tsepsis) 4 hours in advance using EMR data combined with high-resolution 

time series dynamics of heart rate and blood pressure. This is true no matter the outcome of 

interest, whether the prediction task involves more objective physiological manifestations of 
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sepsis (as captured by tSOFA; AUROC 0.87), clinical suspicion of infection (as marked by 

tSepsis; AUROC 0.85), or the earlier of the two (namely, tonset; AUROC 0.82). Prediction 

performance is inversely proportional to size of the prediction window; AUROC, specificity 

and accuracy for tsepsis all decreased slightly as the prediction window lengthened from 4 to 

12 hours, but still provided high-performing models (AUROC of at least 0.83). We 

externally validated all findings in patients from a separate academic center.

As ICU clinicians are inundated with ever-increasing data collected at higher frequencies, 

machine learning will become more essential to research and clinical practice. Machine 

learning refers to a body of methods based in computer science that use patterns in data to 

identify or predict an outcome. Machine Learning provides a powerful set of tools for 

describing relationships between features and the outcome(s) of interest (e.g. sepsis), 

particularly when they are nonlinear and complex. It is best used when there are a large 

number of variables, and overfitting (poor generalizability) can be a problem for traditional 

statistical methods. We had access to over 65 features in our analysis; we therefore used a 

modified regularized Weilbull-Cox analysis, a type of machine learning approach that results 

in a more interpretable and generalizable survival model, to predict sepsis in ICU patients. 

[See Appendix C for more details on this approach]

Machine learning-based clinical decision support (CDS) tools embedded within electronic 

medical record improve early detection and prompt treatment in those with early sepsis, and 

can predict septic shock. [13, 16–18] EMR alerts to detect existing sepsis can improve 

adherence to treatment protocols, decreases time until antibiotic administration and length of 

hospital stay, and can improve mortality [19–21] They can predict septic shock with 85% 

accuracy using either EMR data or high-resolution vital sign streams [13, 18] Still, a patient 

for whom CDS is used for septic shock prediction already has sepsis. Fluid and 

hemodynamic management would be the only modifiable intervention to provide those at 

risk for septic shock, but a recent study suggested that this is not associated with lower in-

hospital mortality. [5]

This study makes several significant contributions to the existing literature on sepsis 

prediction. The data used in our model is widely available in current practice. Lukaszewski 

and colleagues [6] demonstrated that a neural network using only cytokine data predicted 

sepsis better than a similar algorithm using clinical EMR data. However, cytokines are not 

routinely measured, making it an impractical tool for contemporary practice. Wang and 

colleagues [7] used simple EMR features such as white blood cell count, heart rate, and 

APACHE 2 score and created an estimate of future sepsis severity in ICU patients (scale of 0 

to 1). Though their model was very good at classifying severe sepsis (by sepsis-1 definition 

[22]) and its severity (AUROC 0.94), it averaged repeated measures for each feature during 

the first 24 hours of ICU stay. This is less useful for real-time use, and one can’t identify 

specific prediction windows in which sepsis would occur since time series inputs are not 

utilized.

Our algorithm is among the first to predict sepsis by combining data collected at different 

resolutions (low-resolution EMR data, and high-resolution blood pressures and heart rates). 

Others have used low-resolution inputs primarily, either as a single input feature by 
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averaging repeated measures, [7] or by retaining time series integrity. [8] Coupling low-

resolution with high-resolution data provide complementary information used by our 

algorithm to predict sepsis risk in our cohort. Two high-resolution features, entropy of heart 

rate and blood pressure, were important in model development. Multiscale entropy, one of 

many variability metrics thought to represent neuro-cardiac organ interaction (i.e. 

adjustments in autonomic tone), improves hospital mortality prediction in those with sepsis. 

[23] The AISE system can accommodate more input features as the medical community 

learns more about sepsis. As our biological and physiologic understanding of sepsis 

improves and new biomarkers are created, it may also allow clinicians to use the algorithm 

in smarter ways. Since AISE can inform the physician of the most relevant features 

contributing to the risk score over time (See Appendix C; Visualization and Interpretability), 

one can use what is known about sepsis and apply it to the clinical context to decide if and 

when one should act upon the prediction.

To our knowledge, this is the first study to demonstrate acceptable performance of a sepsis 

prediction algorithm over incrementally longer time windows. Desaultes and colleagues 

used a proprietary machine learning algorithm with vital signs, pulse oximetry, GCS and age 

as features and demonstrated moderate capability to predict sepsis four hours before it 

occurred (AUROC 0.74). Sepsis was defined as the first time at which there was a 2-point 

increase in SOFA that preceded evidence of suspicion of infection. Our algorithm was 

superior to this using a similar sepsis definition (tSOFA) over the same time window 

(AUROC 0.87), and stayed superior up to a prediction window of 12 hours. The robustness 

of our model could at least be partly explained by the rich information provided by the 

different resolutions of our inputs.

Defining the onset of sepsis can be very subjective and provider-dependent; we therefore 

assessed the performance of a range of clinically meaningful outcomes. The tSOFA is the 

most objective of all three markers used and the easiest to predict using EMR and vitals data. 

In our datasets, roughly 20% of the time tSOFA occurred after tsepsis. We therefore introduced 

the tonset, as the minimum of tSOFA and tsepsis. However, tonset was the most difficult to 

predict and had the lowest AUROC. This is not surprising, since prompt prediction of sepsis 

requires up-to-date clinical measurements, which are more likely to be available if there is 

already a clinical suspicion of sepsis. High-resolution data can potentially mitigate this 

problem and provide more timely prediction.

Though our algorithm was designed to predict new sepsis, those with positive risk 

assignments (score of 0.45 or higher) were associated with worse outcomes. Risk of death 

was over two-fold higher among those who had high-risk scores but didn’t develop sepsis 

(false positives) compared to those who had low risk scores but developed sepsis (false 

negatives). Many of the input features from the EMR (e.g. lactate) are not specific to sepsis 

and just indicate poor tissue perfusion. The same is true of high frequency variables like 

multiscale entropy; loss of organ-organ coupling is a sign of critical illness. It is possible that 

our algorithm can be extrapolated to all ICU patients to predict clinical decompensation 

agnostic of cause, but this would require further research.
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Much of the contemporary focus in sepsis management is early intervention. AISE shifts the 

focus towards sepsis interdiction – identifying candidates for treatments before organ failure 

becomes established and before tissue sampling would be meaningful – thereby mitigating 

the cost, morbidity and mortality burden of sepsis care. This interdiction system will allow 

caregivers to identify and treat patients with IV antibiotics, fluids, and other adjunct 

therapies based on a reliable estimate of their likelihood of developing sepsis in the near 

future.

AISE approaches have the potential to predict (and interdict) other forms of physiologic 

decompensation. Shared general experience around alerts and alarms makes it unlikely that 

simple notification of a bedside staff member will maximize the usefulness of this decision 

support approach. More likely, notification of a clinician that there is a prediction and the 

basis for that prediction will prompt an immediate focused review of a patient’s physiology. 

There is no requirement that the clinician be at the bedside; indeed, our initial 

implementations will leverage a remote monitoring team precisely to avoid further burdens 

to the bedside staff. There are no restrictions on how – and to whom – the alerts can be 

transmitted: facilities can choose whom will be alerted based on local factors depending on 

their available resources and alert volume. We expect that healthcare systems with high 

numbers of alerts may use a tele-ICU system as an added monitoring “layer”, allowing 

bedside staff more time to provide quality care and decrease alarm fatigue.

This study comes with some limitations. The data was analyzed retrospectively using 

electronic medical record data not originally designed for the analyses performed. However, 

this authenticates our analysis; it confirms its utility in a real-world clinical setting, showing 

good performance even in the presence of missing data. The retrospective design also means 

that suspicion of infection had to be inferred from systematic criteria, which may not reflect 

the true rationale of care in all patients. However, chart review was conducted on a select 

group of 100 patients with sepsis to validate our results and our method was accurate in that 

sub-cohort (over 99% accuracy). The model used was trained on EMR data entered by 

bedside nurses, which may confer some recall and information bias. For instance, blood 

pressure documentation by humans can be biased towards normal when compared to 

corresponding blood pressure waveforms, [24] in part due to back-documentation of past 

data. However, these flawed data-points are appropriate to use in our model since they 

contain predictive information when combined with other measurements.

Prediction is clearly less important than interdiction: it is not enough to know, we have to 

take actions that enhance patient-centered outcomes. Accordingly, we will first explore our 

algorithm’s ability to identify the source of sepsis in those with risk scores above 0.45. This 

iteration of AISE will also be trained and validated on datasets accumulated in other 

hospitals. Second, AISE accuracy will be prospectively validated for real-time prediction in 

the clinical setting. We intend to let usual care proceed ignorant of the sepsis score while 

independent and isolated adjudicators knowing the sepsis score (experienced clinicians) but 

blinded to the decisions of the bedside team will be asked if and when the patient is 

sufficiently ill to interdict. Finally, a clinical intervention trial would assign patients to AISE 

(versus best care lacking AISE monitoring), followed by antibiotic and fluid administration 

depending on the risk score and the predicted infectious source. Such a trial could follow a 
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stepped-wedge design, under which the AISE algorithm is sequentially but randomly 

introduced to multiple units within one or more hospitals over a period of time. Primary 

outcomes of interest may include the number of vasopressor and ventilator-free days, with 

mortality and length of hospital stay as secondary outcomes of interest.“

CONCLUSION

In this two-center retrospective study, we demonstrate that high-performance models can be 

constructed to predict the onset of sepsis by combining data available from the EMR and 

high-resolution time series dynamics of blood pressure and heart rate. Predictive 

performances of these models are inversely proportional to the lead-time of prediction. 

Patients who are incorrectly labeled as those who will develop sepsis confer significant 

mortality, making this tool potentially useful in other clinical syndromes and disease 

processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Receiver Operating Characteristic (ROC) curves for predicting tsepsis 4 hours in advance. 

Catching 85% of the septic patients yielded 30% false alarms (SP=0.70) within the training 

set (left panel) and 33% false alarms (SP=0.67) within the testing set (right panel). See Table 

2 for information on the false alarms.
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FIGURE 2. 
Summary of training set (dashed lines) and testing set (solid lines) prediction performance of 

AISE on the Emory cohort. Area under the ROC curve (AUROC) as a function of prediction 

window shows a decreasing pattern. Across all windows, the best performance is achieved 

for predicting tSOFA, followed by tsepsis, and finally tonset. A close agreement between the 

training set and testing set performance indicates good generalizability.
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FIGURE 3. 
An illustrative example of the prediction performance of AISE. Hourly calculated Sequential 

Organ Failure Assessment (SOFA) Score, Sepsis-3 definition, and the AISE score are shown 

for one patient in Panel (A). Superimposed on the figure is the order-time of three blood 

cultures, and the administration-time of two antibiotics. In Panel (B), commonly recorded 

hourly vital signs of the patient, including heart rate (HR), Mean Arterial Blood Pressure 

(MAP), Respiratory Rate (RESP), Temperature (TEMP), Oxygen Saturation (O2Sat) and the 

Glascow Coma Score (GCS) are shown. Panel (C) shows the most significant features 

contributing to the AISE score (for clarity of presentation only selected time-points are 

shown). Notably, around 4pm on December 20th, roughly 8 hours prior to any change in the 

SOFA score, the AISE score starts to increase. The top contributing factors were slight 

changes in HR, RESP, and TEMP, given that the patient had surgery in the past 12 hours 

with a contaminated wound, and was on a mechanical ventilator. Close to midnight on 

December 21st, other factors such as multiscale entropy of MAP time series (BPV1), GCS, 

and Lactate show abnormal changes. Five hours later, the patient met the sepsis-3 definition 

of sepsis.
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TABLE 1

Summary of algorithm performance on the Emory cohort

Performance metric 4 hours 6 hours 8 hours 12 hours

tsepsis Prediction Testing set (Training set)

AUROC 0.85 (0.86) 0.85 (0.85) 0.84 (0.84) 0.83 (0.83)

Specificity* 0.67 (0.70) 0.67 (0.68) 0.65 (0.66) 0.63 (0.65)

Accuracy 0.67 (0.70) 0.67 (0.68) 0.66 (0.67) 0.63 (0.65)

tSOFA Prediction Testing set (Training set)

AUROC 0.87 (0.88) 0.85 (0.87) 0.85 (0.86) 0.82 (0.84)

Specificity* 0.72 (0.74) 0.67 (0.70) 0.65 (0.68) 0.59 (0.64)

Accuracy 0.72 (0.74) 0.68 (0.71) 0.66 (0.68) 0.60 (0.64)

tonset Prediction Testing set (Training set)

AUROC 0.82 (0.83) 0.81 (0.82) 0.80 (0.81) 0.79 (0.80)

Specificity* 0.64 (0.64) 0.62 (0.62) 0.58 (0.61) 0.56 (0.58)

Accuracy 0.64 (0.64) 0.62 (0.62) 0.58 (0.61) 0.56 (0.59)

*
Sensitivity was fixed at 0.85 (catching 85% of sepsis cases)
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