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Abstract

Many genetic variants affect complex traits through gene expression, which can be exploited to 

boost statistical power and enhance interpretation in genome-wide association studies (GWASs) as 

demonstrated by the transcriptome-wide association study (TWAS) approach. Furthermore, due to 

polygenic inheritance, a complex trait is often affected by multiple genes with similar functions as 

annotated in gene path-ways. Here we extend TWAS from gene-based analysis to pathway-based 

analysis: we integrate public pathway collections, expression quantitative trait locus (eQTL) data 

and GWAS summary association statistics (or GWAS individual-level data) to identify gene 

pathways associated with complex traits. The basic idea is to weight the SNPs of the genes in a 

pathway based on their estimated cis-effects on gene expression, then adaptively test for 

association of the pathway with a GWAS trait by effectively aggregating possibly weak association 

signals across the genes in the pathway. The p-values can be calculated analytically and thus fast. 

We applied our proposed test with the KEGG and GO pathways to two schizophrenia (SCZ) 

GWAS summary association data sets, denoted SCZ1 and SCZ2 with about 20,000 and 150,000 

subjects respectively. Most of the significant pathways identified by analyzing the SCZ1 data were 

reproduced by the SCZ2 data. Importantly, we identified 15 novel pathways associated with SCZ, 

such as GABA receptor complex (GO:1902710), which could not be uncovered by the standard 

single SNP-based analysis or gene-based TWAS. The newly identified pathways may help us gain 

insights into the biological mechanism underlying SCZ. Our results showcase the power of 

incorporating gene expression information and gene functional annotations into pathway-based 

association testing for GWAS.

Correspondence: Wei Pan, Division of Biostatistics, A460 Mayo Building, MMC 303, Minneapolis, MN 55455, Phone: 
(612)626-2705, weip@biostat.umn.edu. 

Supplemental Data
Supplemental Data include 12 Supplementary Figures and 9 Supplementary Tables.

Web Resources
The URLs for data presented herein are as follows:

DAVID server: https://david.ncifcrf.gov;

iGSEA4GWAS server: http://gsea4gwas.psych.ac.cn;

MSigDB: http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3;

NHGRI-EBI GWAS Catalog: http://www.ebi.ac.uk/gwas/home;

PGC summary data: https://www.med.unc.edu/pgc/downloads;

TWAS website: http://gusevlab.org/projects/fusion.

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2019 April 01.

Published in final edited form as:
Genet Epidemiol. 2018 April ; 42(3): 303–316. doi:10.1002/gepi.22110.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://david.ncifcrf.gov
http://gsea4gwas.psych.ac.cn
http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3
http://www.ebi.ac.uk/gwas/home
https://www.med.unc.edu/pgc/downloads
http://gusevlab.org/projects/fusion


Keywords

aSPU; aSPUpath; aSPUpath2; gene expression; TWAS

Introduction

Although genome-wide association studies (GWASs) have been remarkably successful in 

identifying genetic variants associated with complex traits and diseases, only a small to 

modest proportion of heritability for most complex traits and diseases can be explained by 

the identified genetic variants (Manolio et al., 2009). Furthermore, since the majority of 

identified variants are found in non-coding regions that are not in linkage disequilibrium 

(LD) with coding exons, a mechanistic understanding of how these variants influence traits 

is generally lacking (Locke et al., 2015; Albert and Kruglyak, 2015). However, it is now 

known that an important class of variants, termed expression quantitative trait loci (eQTLs), 

affect complex traits by regulating gene expression levels; there is an enrichment of eQTLs 

among the GWAS trait-associated variants (Lappalainen et al., 2013; Albert and Kruglyak, 

2015). Accordingly, transcriptome-wide association study (TWAS) and related methods 

(Gusev et al., 2016a; Gamazon et al., 2015; Xu et al., 2017b) were proposed to integrate 

eQTL data with GWAS data to identify the genes associated with a complex trait. These 

methods may iimprove statistical power to detect associations relative to traditional SNP-

based GWAS and gene-based tests that ignore information on gene expression regulation. 

Nevertheless, due to the limited sample sizes of eQTL data and GWAS data, they may fail to 

identify some more weakly associated genes with smaller effect sizes. On the other hand, 

genes do not work in isolation; instead, a group of functionally related genes as annotated in 

a biological pathway are often involved in the same disease susceptibility and progression 

(Heinig et al., 2010). Gene-based analysis testing each gene one-by-one may miss an 

important pathway if each gene in the pathway has only a small effect size, but in 

aggregation they contribute substantially. Hence, association analysis of a group of 

functionally related genes, called pathway-based analysis, has been proposed and applied in 

practice to boost statistical power and improve interpretability over gene-based analysis for 

GWAS (Wang et al., 2007; Chen et al., 2010; Peng et al., 2010; Wei et al., 2012; Schaid et 

al., 2012; Pan et al., 2015; Bakshi et al., 2016; Li et al., 2016, 2017).

Here, we extend integrative gene-based testing like TWAS to integrative pathway-based 

association analysis to identify pathways associated with complex traits and diseases. 

Specifically, we propose a new self-contained test that integrates eQTL-derived weights, 

GWAS individual-level or summary data, SNP LD information, and gene functional 

annotations as public pathway collections to identify pathways associated with a complex 

trait (Figure 1). As in TWAS, we first estimate the cis-effects of the SNPs in each gene on its 

expression level, then adaptively test for association between a pathway and a trait by 

effectively aggregating possibly weak association signals across the genes in the pathway.

We note that our methodology differs from existing approaches. In principle, existing 

pathway-based analysis methods can be applied in a two-step approach. After obtaining the 

p-value for each gene by applying TWAS or a related method, an existing pathway analysis 
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method, such as gene set enrichment analysis (GSEA; Subramanian et al. (2005)) or DAVID 

(Huang et al., 2009), can be applied to identify significant pathways. As to be shown later, a 

two-step approach, critically depending on the output of a gene-based test, may lose power 

as compared to our integrated single-step method. Furthermore, many existing pathway 

methods, including GSEA and DAVID, belong to the category of competitive tests, which 

compare the p-values of the genes in a given pathway with the p-values of other background 

genes to determine the significance level, while our method is a self-contained test with a 

null hypothesis that none of any genes in the pathway is associated with the disease; it is 

known that a self-contained test is often more powerful (Goeman and Bühlmann, 2007). In 

addition, all the existing pathway analysis methods are only for GWAS data alone while 

failing to take advantage of eQTL information, leading to power loss and difficulties in 

interpreting the findings.

Our study was motivated by analyses of schizophrenia (SCZ) GWAS summary data. SCZ is 

a major chronic and severe mental disorder that is associated with considerable morbidity 

and mortality (Tiihonen et al., 2009) and affects about 1% of the population. Although the 

high heritability of SCZ has been demonstrated by previous studies (Sullivan et al., 2012), to 

date, one of the largest GWAS meta-analyses, conducted by the Schizophrenia Working 

Group of the Psychiatric Genomics Consortium (PGC), has only identified 128 independent 

associations spanning 108 conservatively defined loci (Schizophrenia Working Group, 

2014). To improve the statistical power and interpretability of the results, Gusev et al. 

(2016a) applied TWAS to the PGC GWAS summary data and identified 157 significant 

genes, of which 35 did not overlap with a genome-wide significant locus within 500 kb. 

However, the pathophysiology of SCZ remains largely unknown and thus it is hard to 

develop new drugs with high efficacy and low side effects. Identifying SCZ-associated 

pathways is a crucial step for mechanistic understanding of SCZ and thus developing new 

drugs. Here, we performed gene- and pathway-based analyses to identify SCZ-associated 

genes and pathways, providing insights into the underlying mechanism of SCZ.

We reanalyzed two SCZ GWAS summary data sets, which were downloaded from the PGC 

website (see URLs): a meta-analyzed SCZ GWAS data set with 8,832 cases and 12,067 

controls, denoted as SCZ1 (Ripke et al., 2013), and a more recent and larger one with 36,989 

cases and 113,075 controls, denoted as SCZ2 (Schizophrenia Working Group, 2014). First, 

we focused on gene-based analysis. By noting that TWAS is the same as the weighted Sum 

test with gene expression derived weights (Xu et al., 2017b), we applied some more 

powerful tests, such as the weighted sum of squared score (SSU) test and the weighted 

adaptive sum of powered score (aSPU) test (Pan et al., 2014). We analyzed the SCZ1 data 

and identified 51, 108, and 87 significant genes by applying TWAS, (weighted) SSU, and 

(weighted) aSPU, respectively. Among these identified genes, about 90% genes contained 

genome-wide significant SNPs within 500 kb in the SCZ2 data, constituting a highly 

significant and intuitive support for the identified loci. We then applied these tests to the 

SCZ2 data and identified 75 novel SCZ genes, of which 50 have not been reported in the 

literature yet. These results further confirm that both weighted SSU and weighted aSPU can 

improve statistical power to identify more associated genes over that of TWAS. Second, we 

conducted pathway-based analysis by applying our proposed approach with the Kyoto 

Encyclopedia of Genes and Genomes (KEGG; Kanehisa and Goto (2000)) and Gene 

Wu and Pan Page 3

Genet Epidemiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ontology (GO; Consortium et al. (2004)) candidate pathways to the SCZ1 and SCZ2 data. 

Most of the significant pathways identified by analyzing the SCZ1 data were confirmed by 

the SCZ2 data. When analyzing the SCZ2 data, a two-step approach combining TWAS and 

an existing pathway method, DAVID, identified only one significant pathway, sequence-
specific DNA binding (GO:0003700), which was also identified by our proposed method. 

Importantly, by analyzing the SCZ2 data we identified 15 novel significant SCZ-associated 

pathways, such as pathway GABA receptor complex (GO:1902710), which were missed by 

the gene-based TWAS or aSPU analysis. Hence, pathway-based analysis, as a 

complementary tool to gene-based analysis, may identify some pathways in which 

individual genes may have only too weak effects to be detected but their aggregated effects 

are strong. Overall, our results showcase the increased power of integrating GWAS summary 

data, eQTL data, reference LD information, and gene functional annotations to gain insights 

into the genetic basis of complex traits.

Material and Methods

Data Sets

We downloaded two publicly available SCZ GWAS summary data sets from the PGC 

website (see URLs): the SCZ1 data, which contains the meta-analyzed summary statistics 

based on 20,899 individuals (Ripke et al., 2013), and the SCZ2 data based on 150,064 

individuals (Schizophrenia Working Group, 2014). The sets of gene expression-derived 

weights and the 1000 Genomes Project reference panel were downloaded from the TWAS 

website (see URLs). Following the TWAS set-up, we removed the SNPs with the strand-

ambiguous alleles (A/T, G/C) from the GWAS summary data. Two pathway collections, GO 

and KEGG, were downloaded from the Molecular Signatures Database (see URLs).

Review of TWAS and Related Methods

We review TWAS and its related methods, which take GWAS summary statistics, a set of 

gene expression-derived weights, and SNP LD information as input. Since all the methods 

are gene-based by testing the genes one by one, for the purpose of presentation we only need 

to consider a single gene.

For a given gene, we only consider a region around it (i.e. its coding region extended by a 

certain distance, say ±500 kb, upstream and downstream from its TSS and TES respectively) 

for its cis-effects. Let Z = (Z1, …,Zp)′ be a vector of z-scores of the SNPs for the gene 

based on the GWAS summary data, or constructed from the GWAS individual-level data. 

The null hypothesis H0 to be tested is that the SNPs in a given SNP set (of a gene or a 

pathway) are not associated with a GWAS trait. With W = (ŵ1, …,ŵp)′, a vector of the 

estimated cis-effects of the SNPs on gene expression based on a reference eQTL data set, 

TWAS tests on H0 using the weighted z-scores. Note that, with GWAS individual-level data, 

TWAS can be interpreted as testing for association between imputed gene expression and the 

GWAS trait; however, with GWAS summary data, W′Z may be regarded as an imputed z–
score for the gene, but not imputed expression level. It turns out that TWAS is equivalent to 

the weighted Sum test (Pan, 2009; Xu et al., 2017b). Because the Sum test implicitly 

assumes that all variants have an equal effect size and the same effect direction, the Sum test 
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and thus TWAS, as discussed in the previous studies (Pan, 2009; Wu et al., 2011; Pan et al., 

2014), may lose statistical power if the true association effects are sparse (i.e. with many 0s) 

or the effect directions are different. Note that, due to the usually small sample size of the 

eQTL dataset, there are always estimation errors with the estimated cis-effects W. More 

generally, any more powerful tests, such as the weighted SSU test or the weighted aSPU test, 

can be applied (Xu et al., 2017b). In particular, the SPU(γ) tests are possible candidates to 

use, covering some existing ones as special cases (Pan et al., 2014). For example, SPU(1) 

equals to the Sum test, while SPU(2) equals to SSU and a kernel machine regression-based 

test (also known as SKAT (Wu et al., 2011) in rare variant analysis) with a linear kernel. As 

to be confirmed later, the SPU(2) test may yield higher statistical power than TWAS (or 

SPU(1)). Generally, the SPU(γ) tests with γ ∈ Γ = {1, 2, …, 6,∞} can be applied, and their 

results can be combined by the adaptive aSPU test (Pan et al., 2014).

Since not all SNPs with non-zero weights (derived from the reference eQTL data set) were 

presented in the GWAS summary data, we used the ImpG-Summary software (Pasaniuc et 

al., 2014) to impute missing z-scores to the 1000 Genomes Project reference panel 

accordingly. Because the correlations among Z can be approximated by LD among the SNPs 

(Kwak and Pan, 2016; Gusev et al., 2016b), we used the 1000 Genomes Project reference 

panel (European ancestry) (or other panels for other ethnic/racial groups) to estimate the LD 

and thus the correlation matrix for Z. In this study, we used five sets of gene expression 

reference weights that were based on the following four eQTL data sets: microarray gene 

expression data measured in peripheral blood from 1,245 unrelated subjects from the 

Netherlands Twin Registry (NTR), microarray expression array data measured in blood from 

1,264 individuals from the Young Finns Study (YFS), RNA-seq measured in adipose tissue 

from 563 individuals from the Metabolic Syndrome in Men study (METSIM), and RNA-seq 

measured in the dorsolateral prefrontal cortex from 621 individuals from CommonMind 

Consortium (CMC) (Gusev et al., 2016b). The weights for differentially spliced introns were 

further constructed by analyzing CMC data (CMC-introns) (Gusev et al., 2016b). All these 

weights were downloaded from the TWAS website (see URLs). To account for multiple 

testing, we applied the Bonferroni correction for each set of weights to maximize the 

consistency with the previously published results (Gusev et al., 2016b) and not to over-

penalize the use of additional (and often highly correlated) gene expression-derived weights. 

Specifically, we reported the number of significant genes after correcting for the number of 

genes tested within the use of each of the five gene expression sets (YFS, NTR, METSIM, 

CMC, and CMC-introns; 5004 genes on average with none-zero weights and being tested).

A New Pathway-based Test

Given a pathway, we would like to test the null hypothesis H0 that none of the genetic 

variants in the pathway is associated with a trait. We introduce a new pathway-based test to 

integrate gene functional annotations and a reference eQTL dataset with GWAS data. Figure 

1 illustrates the workflow of our new pathway-based analysis. As a comparison, we also 

describe a two-step approach combining an existing integrative gene-based test (like TWAS) 

and an existing pathway analysis method (like DAVID), in which a gene-based p-value is 

calculated for each gene before they are combined in pathway analysis.
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Given a pathway S*, we first remove the genes whose gene expression-derived SNP weights 

are all 0, resulting in a subset S containing n genes. We partition its z-score vector 

 into the z-score sub-vectors for the genes, say for gene g (with kg SNPs) 

as Zg· = (Zg1, …,Zgkg)′. For each gene g, we standardize the gene expression derived 

weights Wg· by  such that the weights of the genes are in a similar 

scale to avoid one or few genes (e.g. with large expression levels) dominate. The 

standardized weights for the gene set S are  with 

. We propose the following test statistics:

where PPathSPU(γ)is the p–value of the PathSPU(γ) test. Because PathSPU(1) and Path-

SPU(2) are independent (Derkach et al., 2014), we can obtain the p-value of aSPUpath2 via 

the following steps:

1. Calculate the p-values, p1 = PPathSPU(1) and p2 = PPathSPU(2), based on the theory 

that PathSPU(1) and PathSPU(2) asymptotically follow a normal distribution and 

a mixture of χ2 distribution under H0, respectively (Pan, 2009).

2. Take the minimum p-value of PathSPU(1) and PathSPU(2), that is pmin = min(p1, 

p2).

3. By the asymptotic independence of PathSPU(1) and PathSPU(2), the p-value for 

the aSPUpath2 is paSPUpath2 = 1 − (1 − pmin)2.

The aSPUpath2 test is new in two aspects: first, unlike many other pathway-based methods 

aggregating information from only SNP data (Kwak and Pan, 2015; Bakshi et al., 2016), 

aSPUpath2 incorporates information in a reference eQTL data set, thus increasing the power 

and providing mechanistic insights; second, unlike many other methods, for example 

fastBAT (Bakshi et al., 2016), which are non-adaptive and thus only powerful under some 

specific alternatives, aSPUpath2 adaptively combines information and thus can maintain 

relatively high power across a wider range of situations. Finally, we note that aSPUpath2 is a 

special case of a more general and adaptive pathway-based test called aSPUpath (Pan et al., 

2015; Kwak and Pan, 2015), motivated by the following two considerations. First, unlike 

aSPUpath, the p-value of aSPUpath2 can be calculated analytically and thus fast, though a 

simulation-based method can be equally applied; as to be demonstrated in the results 

section, the analogical method provides a good approximation to the simulation-based 

method. Second, aSPUpath2 is tailored to identifying pathways containing many associated 

genes or SNPs with only weak effects that cannot be detected by single SNP- or single gene-

based analysis, for which it is more powerful. Hence, aSPUpath2 can be used either alone or 

as a fast screening procedure for the more time-consuming and more general aSPUpath test.
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We extracted candidate pathways from two gene functional annotation sources, KEGG and 

GO, which were downloaded from the MSigDB database (Subramanian et al. (2005); see 

URLs). Because a small pathway gives results not much different from a gene-based 

analysis, whereas the biological function of a large pathway is not specific, we restricted our 

analyses to the pathways containing between 10 and 200 genes, which is widely adopted in 

pathway-based analysis (Network and of the Psychiatric Genomics Consortium, 2015; Pan 

et al., 2015). Supplementary Table 1 shows the summary statistics for the candidate 

pathways. On average, we analyzed 4,220 gene sets for each set of weights. To account for 

multiple testing, we applied the Bonferroni correction within each set of weights and used a 

slightly conservative cutoff 0.05/5000 = 1×10−5. Owing to the non-independence nature of 

many pathways, the Bonferroni correction might be over-conservative here.

Other Existing Pathway-based Tests

In principle, an existing pathway analysis method, in couple with a gene-based test, can be 

applied in a two-step approach. We compared our new method with this two-step approach 

using two popular pathway analysis methods, i-GSEA4GWAS (Zhang et al., 2010) and 

DAVID (Huang et al., 2009), to further illustrate the power of our proposed test. Specifically, 

for i-GSEA4GWAS, we uploading the p-values for the genes (calculated by TWAS or SSU 

or aSPU) for a given pathway to the i-GSEA4GWAS server (see URLs). For DAVID, we 

uploaded to the DAVID server (see URLs) the significant genes identified by TWAS or SSU 

or aSPU as the gene list and used the genes we analyzed as the background.

Results

TWAS and Related Methods Identify Known and Novel SCZ-associated Genes

First we applied TWAS (i.e. the weighted Sum test), the (weighted) SSU and (weighted) 

aSPU tests (that integrate gene expression-derived weights) to the SCZ1 data (Ripke et al., 

2013) of 20,899 individuals to identify SCZ-associated genes. Then we looked for genome-

wide significant SNPs around these genes in the larger SCZ2 data (Schizophrenia Working 

Group, 2014) of 150,064 individuals for partial validation. Table 1 summarizes the numbers 

of the significant genes identified by the methods with the SCZ1 data. TWAS, SSU, and 

aSPU identified 51, 108, 87 significant genes (after taking the union of the results using the 

five sets of weights), respectively. Among these 87 significant genes identified by aSPU, 64 

(around 70%) and 79 (around 90%) contained the genome-wide significant SNPs (p-value < 
5×10−8) within 500 kb in the SCZ1 data and the SCZ2 data respectively, offering a highly 

significant validation of the identified loci. For TWAS and SSU, we have the similar 

proportions of the genes containing the genome-wide significant SNPs in both the SCZ1 and 

SCZ2 data. Clearly, SSU and aSPU identified more associated genes than TWAS. Compared 

to TWAS, SSU and aSPU can still maintain high power if many of the weighted SNPs in a 

gene are not associated with a trait or their associations are in different directions. Since we 

do not know the sparsity level and association directions of the underlying association 

patterns, we used the adaptive aSPU test. Here, perhaps due to the denser association 

patterns (i.e. with many associated SNPs), SSU identified a larger number of SCZ-associated 

genes than aSPU.
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Supplementary Table 2 shows the significant gene sets identified by TWAS or SSU or aSPU 

based on the SCZ1 data, and Supplementary Figures 1–5 present the Manhattan plots for the 

methods with the different sets of weights. The strongest gene association identified by 

TWAS and SSU was NT5C2 (MIM: 600417), which was also reported by other studies 

(Guan et al., 2016). This analysis also provides additional in silico support for some reported 

SCZ-associated genes, including SDCCAG8 (MIM: 613524), ITIH4 (MIM: 600564), and 

NISCH (MIM: 615507), and many other genes.

Then, we applied TWAS, SSU, and aSPU to the SCZ2 data, listing the number of significant 

genes identified by each method in Table 2. The quantile-quantile (Q-Q) and Manhattan 

plots for different sets of weights are shown in Supplementary Figures 6–11, respectively. 

Here, we analyzed the whole SCZ2 data, which were based on 36,989 cases and 113,075 

controls, while Gusev et al. (2016b) analyzed the non-overlapping case-control samples with 

34,241 cases and 45,604 controls. This data difference led to our findings slightly different 

from their published ones (Gusev et al., 2016b): applying TWAS to the SCZ2 data, we 

identified 202 significant genes, while Gusev et al. (2016b) identified 157 significant genes. 

Because the sample size of the SCZ2 is much larger than that of the SCZ1, applying to the 

SCZ2 data identified a much larger number of significant genes by each method. Again, 

SSU and aSPU appeared to be more powerful than TWAS in terms of the number of the 

identified significant associations. However, because under different scenarios different tests 

may be more powerful, each test identified some unique genes missed by the other tests.

Overall, we identified 410 significant (and unique) genes by the three methods based on 

analyzing the SCZ2 data (Supplementary Table 3), of which 142 did not overlap with any 

genome-wide significant SNPs within ±500 kb in the SCZ2 data. Next, to consider the 

effects of different sets of weights (25,018 tests in total), we used a more stringent cutoff 

(0.05=25, 018 = 2 × 10−6) to report the highly significant genes. We report the new 

associations that are more than 500 kb away from any genome-wide significant SNPs in the 

SCZ2 data. Supplementary Table 4 lists 75 highly significant genes identified by the three 

methods; TWAS, SSU, and aSPU identified 23, 68, and 32 highly significant genes, 

respectively, showcasing the increased discovery power of applying other tests over TWAS. 

Table 3 reports 32 highly significant genes identified by aSPU. We searched the NHGRI-

EBI GWAS Catalog (MacArthur et al. (2017); see URLs) to determine if these significant 

genes have been reported by other studies. Among these 32 genes, 10 have been reported by 

other studies. On the other hand, among the 75 significant genes identified by any method, 

20 genes, such as FOXN2 (MIM: 143089; Cross-Disorder Group (2013)), MSRA (MIM: 

601250; Ma et al. (2011), and PAX5 (MIM: 167414; Loo et al. (2012)), have been reported 

by other studies. Overall, these 75 newly identified genes represent a class of discoveries 

that would have been missed by the standard single SNP-based test, due to not only their 

power differences, but also the distal locations of the genome-wide significant SNPs.

New Pathway Method Identifies Known and Novel SCZ-associated Pathways

We applied the new pathway test aSPUpath2 to both the SCZ1 and SCZ2 data. Figure 2 

compares its p-values from the asymptotics- and Monte Carlo simulation-based methods, 

showing that the asymptotics gave a good approximation to the gold standard but time-
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consuming simulation-based method. The correlation of −log10 p-values between these two 

methods for PathSPU(1), PathSPU(2), and aSPUpath were 0.9989, 0.9981, and 0.9972, 

respectively. Because the simulation-based method is computationally demanding while the 

asymptotics-based method is accurate and much faster, we used the asymptotics-based 

method to calculate the p-values of aSPUpath2 for the subsequent analysis.

Supplementary Tables 5 and 6 show the significant pathways identified by aSPUpath2 with 

the CMC- and YFS-based weights when applied to the SCZ1 data, respectively. We gave the 

gene sets in the Supplementary Tables 2 and 3 as the SCZ1- and SCZ2-based significant 

gene sets. For simplicity, we denote them as the SCZ1 and SCZ2 gene sets, respectively. Our 

new method aSPUpath2 with the CMC-based weights identified 33 significant pathways, of 

which 24 (around 80%) contained the significant genes in the SCZ1 gene set while 31 

(around 94%) contained the significant ones in the SCZ2 gene set. In particular, aSPUpath2 

with the CMC-based weights identified six significant pathways that contained at least one 

significant gene in the SCZ2 gene set but no significant genes in the SCZ1 gene set, such as 

pathways synapse organization (GO:0050808, p-value = 1.14×10−6), response to 
transforming growth factor beta (GO:0071559, p-value = 1.83 × 10−6), transforming growth 
factor beta receptor signaling pathway (GO:0007179, p-value = 4.28×10−6), and positive 
regulation of transforming growth factor beta production (GO:0071636, p-value = 5.65 × 

10−6). There exist some biological findings partially supporting these identified pathways 

that would be otherwise missed by gene-based analysis. Multiple members of transforming 

growth factor (TGF) beta superfamily play some roles in the developing nervous system 

(Kapelski et al., 2016). Alteration in TGF-β1 expression has been observed in SCZ patients 

(Kim et al., 2004). Synapse is an important component in the nervous system and SCZ 

patients were found to have enriched mutations in the genes belonging to the postsynaptic 

density at glutamatergic synapses (Hall et al., 2015). In contrast, aSPUpath2 with the YFS-

based weights identified 19 significant pathways, all of which contained at least one 

significant gene in both the SCZ1 and SCZ2 gene sets. Perhaps due to that the CMC-based 

gene expression was measured from the brain tissue and were more closely related to SCZ, 

while the YFS-based ones from the blood, the CMC-based weights were more informative. 

Overall, it was confirmed that pathway-based analysis is useful as a complementary tool to 

gene-based analysis, offering insights into the genetic basis of complex traits.

As an adaptive test, aSPUpath2 can maintain high power under various scenarios. For 

example, based on the SCZ1 data, for pathway nuclear speck (GO:0016607) with the CMC-

based weights, there were 300 marginally significant and negatively associated SNPs (z-

score < −1.96) and 309 marginally and positively associated SNPs (z-score > 1.96) among 

5741 SNPs with non-zero weights. The varying association directions among marginally 

significant SNPs led to a non-significant p-value= 3.0 × 10−3 of PathSPU(1). In contrast, 

because PathSPU(2) was robust to varying association directions, it yielded a significant p-

value= 2.1×10−8. By combining the results of PathSPU(1) and PathSPU(2), aSPUpath2 

yielded a significant p-value= 4.1 × 10−8. Furthermore, this pathway contained at least two 

significant genes in both the SCZ1 and SCZ2 gene sets, supporting the significance of the 

pathway. For pathway regulation of cellular senescence (GO:2000772) with the CMC-based 

weights, there were 86 marginally and negatively associated SNPs (z-score < −1.96) and 45 

marginally but positively associated SNPs (z-score > 1.96) among 1516 SNPs with non-zero 
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weights. The associations in different directions were not completely canceled out since the 

number of the negatively associated SNPs was almost twice as that of the positively 

associated SNPs. PathSPU(1) yielded a significant p-value (= 1.9×10−7), while PathSPU(2) 

yielded a non-significant p-value (= 2.4 × 10−3). Again by combining information from the 

two tests, aSPUpath2 yielded a significant p-value (= 3.8 × 10−7). This pathway also 

contained at least one significant gene in both the SCZ1 and SCZ2 gene sets. Generally, as 

any non-adaptive test, PathSPU(1) or PathSPU(2) may lose statistical power under different 

situations; however, by contrast, aSPUpath2 that data-adaptively aggregates information can 

maintain relatively high power across a wide range of situations.

Then we analyzed the SCZ2 data. The new test aSPUpath2 with the CMC- and YFS-based 

weights identified 235 and 242 significant pathways, respectively (see Supplementary Table 

6 and 7 for details). Table 4 shows the 6 significant KEGG pathways identified by 

aSPUpath2 with the CMC-based weights. All of these significant pathways covered at least 

one significant gene in the SCZ2 gene set while three pathways, Alzheimer’s disease 
(hsa05010, p-value = 2.4 × 10−8), systemic lupus erythematosus (hsa05322, p-value = 0.0), 

and hypertrophic cardiomyopathy (hsa05410, p-value = 2.3 × 10−9), have been reported by 

other studies to be associated with SCZ (Wu et al., 2016; Santarelli et al., 2011).

Table 5 shows the significant and novel pathways containing no significant genes in the 

SCZ2 gene set but detected by aSPUpath2 with either the CMC- or the YFS-based weights. 

Perhaps due to that the CMC-based weights were derived from the brain tissue and thus 

more relevant to SCZ than the YFS-based weights, using the CMC-based weights identified 

12 significant and novel pathways, while using the YFS-based identified only three. Some 

existing studies partially supported the newly identified pathways. For example, GABA 

system plays an important role in orchestrating the synchronicity of local networks and 

affects cognitive and emotional behavior (Rudolph and Möhler, 2014). Further, cognitive 

symptoms in SCZ are attributed to a cortical GABAergic deficit (Rudolph and Möhler, 

2014), partially supporting that pathway GABA receptor complex (GO:1902710) is possibly 

related to SCZ. Overall, these 15 newly identified pathways represent a class of discoveries 

that would have been missed by gene-based analysis.

Comparisons Between aSPUpath2 and Other Methods

With the application to the SCZ2 data with the CMC-based weights, we compared our 

proposed method with the two-step approach combining a gene-based test and an existing 

pathway analysis method, including the popular DAVID (Huang et al., 2009) or i-

GSEA4GWAS (Zhang et al., 2010). We also compared it with the more general and standard 

aSPUpath (Pan et al., 2015).

We applied DAVID (Huang et al., 2009) with the CMC-based weights and identified one 

significant pathway: transcription factor activity, sequence-specific DNA binding (GO:

0003700, Benjamini-corrected p-value = 4.2×10−3). This pathway was excluded in our 

earlier analysis because it contained more than 200 genes; when applied, aSPUpath2 could 

identify this pathway as well (p-value = 4.5 × 10−7). We also applied i-GSEA4GWAS 

(Zhang et al., 2010) but failed to identify any significant pathways. In addition to the two-

step nature of the above two pathway methods (thus depending on the output or performance 
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of the gene-based testing in the first step), in contrast to the one-step approach of 

aSPUpath2, they also differ with respect to their null hypotheses being tested: both DAVID 

and i-GSEA4GWAS belong to the category of “competitive tests” testing for the enrichment 

of the associated genes in the pathway being tested as compared to other pathways, while 

our aSPUpath2 method is a “self-contained test” as a global test for identifying whether 

there is (are) any significant gene(s) in the pathway; due to the difference between the null 

hypotheses being tested, a self-contained test is in general more powerful than a 

corresponding competitive test.

Figure 3 shows the running times for aSPUpath2 and aSPUpath. Due to the computational 

constraint, we ran at most B = 106 simulations to calculate the p-values for aSPUpath. For 

the simulation-based method, the running time increased rapidly with the number of 

simulations, for which a larger value is required for a more significant p-value. In contrast, 

since the p-values of aSPUpath2 was calculated by the asymptotics-based method, the 

running time was invariant to the p-values. Supplementary Table 9 shows the 179 significant 

pathways identified by aSPUpath with the CMC-based weights, of which 139 (around 80%) 

were also identified by applying aSPUpath2 with the CMC-based weights, constituting a 

highly significant overlap between their results. Furthermore, aSPUpath2 identified a total of 

235 significant pathways, showcasing possibly higher statistical power over aSPUpath for 

the SCZ2 data. In summary, aSPUpath2 is several orders faster than aSPUpath, more so for 

large and highly significant pathways, and can be more powerful for densely associated 

pathways (i.e. those containing many associated SNPs/genes), thus we recommend using 

aSPUpath2 either alone or as a fast screening procedure for the more time-consuming and 

more general aSPUpath test.

Simulations

We conducted simulation studies to evaluate and compare the performance of our proposed 

new aSPUpath2 test with the aSPUpath test. We generated simulated data to mimic real data: 

we used the GO Biological Process pathways and CMC-derived SNP weights, and simulated 

z-scores as GWAS summary statistics for SNPs. Specifically, for a given pathway S* in the 

GO Biological Process pathway database, we first removed the genes whose CMC-derived 

SNP weights were all 0, resulting in a subset S containing n genes and p SNPs with none-

zero weights. We generated a z-score vector from a multivariate normal distribution, Z ~ 
N(μ, Σ), where μ = (μ1, …, μp)′ was the mean and Σ was the LD matrix based on the 1000 

Genomes Project reference panel (European ancestry), respectively. Note that z-scores are 

expected to have a multivariate normal distribution asymptotically. To save computing time, 

we assumed that the SNPs from different chromosomes were independent and only 

considered the pathways with less than 2000 SNPs. In total, we considered 1905 pathways. 

Further, we defined SNP j was associated or informative with the corresponding μj = 

sign(Wj)c, where Wj was the CMC-derived weight for SNP j, c ≠ 0 was some positive 

constant, and sign(a) gave the sign of a; in contrast, SNP j was non-informative with μj = 0. 

Note that we also considered non-constant |μj| for associated SNPs. To evaluate type I error 

rates, we considered the null case (set-up A) with no informative SNP (μ = 0). To evaluate 

power, we further considered the following four set-ups under different situations: set-up B, 

50% SNPs in each gene were informative; set-up C, 10% SNPs in each gene were 
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informative; set-up D, only one SNP in each gene was informative; and set-up E, only one 

SNP in 20% of the genes in the pathway was informative. Other SNPs were set to non-

informative and we varied the true association strength c to generate power curves for set-up 

B to E. After generating a z-score vector for each pathway, we applied both the aSPUpath2 

and aSPUpath tests. The entire procedure was repeated about 38,000 times (i.e. 20 per 

pathway) for set-up A. For other set-ups, with different c, we repeated the entire procedure 

about 1,900 times (1 per pathway) and fixed the nominal significance level at α = 0.05.

Table 6 shows the empirical type I error rates, indicating that the PathSPU(1), Path-SPU(2), 

and aSPUpath2 could control their type I rates satisfactorily under various nominal 

significance levels.

Figure 4 shows statistical power under set-ups B to E. In set-up B, because 50% of the SNPs 

in the pathway were informative with dense association signals, PathSPU(1) was expected to 

be most powerful as confirmed in Figure 4; since aSPUpath2 combined the information 

from both the PathSPU(1) and PathSPU(2), aSPUpath2 also achieved high power close to 

PathSPU(1). When the association signals were less dense with only 10% of the SNPs as 

informative (set-up C), all the tests performed similarly, though aSPUpath2 and PathSPU(1) 

had a slight edge over aSPUpath and PathSPU(2) respectively. When most SNPs (set-up D) 

or most genes were not associated with the trait (set-up E), aSPU-path was expected to be 

more powerful than aSPUpath2 because aSPUpath2 is tailored to identifying dense 

associations of pathways containing many associated SNPs/genes with only weak effects. In 

other simulation set-ups with varying |μj| for associated SNPs and/or different proportions of 

associated SNPs/genes, we obtained similar results as shown in Supplementary Figure 12. 

Note that, by theory, there is no uniformly most powerful test for pathway analysis; 

aSPUpath is more general and thus expected to be high powered across a wider range of 

scenarios than aSPUpath2, which is tailored for and more powerful for detecting dense 

association signals like in set-up A. However, aSPUpath2 is much faster than aSPUpath. 

Hence, as mentioned earlier, we recommend using aSPUpath2 either alone to detect densely 

associated pathways, or as a fast screening procedure for aSPUpath if one is interested in 

both densely and sparsely associated pathways.

Discussion

In this work, we have presented a powerful and adaptive method that integrates genetic and 

transcriptional variations to identify pathways associated with a complex trait. Using gene 

expression to construct weights and then adaptive weighting to identify significant pathways 

has some potential advantages. First, a pathway may be a more interpretable biological unit 

than a single SNP or gene, and may shed light into biological mechanisms underlying a trait 

or disease. Second, pathway-based analysis, complementary to gene-based analysis, and as 

demonstrated here, can identify important pathways that may be missed by gene-based 

analysis. Since different tests will be powerful under different underlying true association 

patterns, in particular, our proposed test may maintain relatively high statistical power across 

a wider range of situations due to its adaptive nature of aggregating association information 

across the genes in a pathway. Third, our proposed method is similar to other integrative 

gene-based methods, such as TWAS (Gusev et al., 2016a), PrediXcan (Gamazon et al., 
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2015) and aSPU (Xu et al., 2017b), that incorporate eQTL information into GWAS analysis. 

However, differing from that the above integrative methods are gene-based, our method 

aggregates information across the genes to identify significant pathways. Importantly, unlike 

TWAS and PrediXcan, which use a simple weighted linear combination of genetic variants 

(or their z-scores) to construct test statistics, our approach adaptively (and non-linearly) 

weights the genetic variants and thus aggregates information based on the underlying 

association patterns to increase discovery power. As shown in our applications, our method 

could identify some important pathways that were missed by the above integrative gene-

based tests, even followed with a standard pathway analysis. Finally, we note that our 

proposed approach is in the category of “self-contained tests”, in which we are interested in 

identifying any pathway containing one or more genes or SNPs associated with a trait. This 

is different from the “competitive tests”, such as DAVID and GSEA, that would detect 

pathways enriched with associated genes or SNPs as compared to background pathways.

Application of our proposed and other integrative gene-based methods to two SCZ summary 

data not only recapitulated many known genes or pathways but also identified many new 

ones. Specifically, we identified 75 significant genes without any known associated SNPs 

within 500 kb, of which 50 have not been reported in any studies yet. It is possible that some 

of these significant genes represent new findings that have been missed due to the lower 

statistical power in other standard single SNP- or gene-based test without incorporating gene 

expression data. Furthermore, some pathways may contain only genes with small effect 

sizes, which may not be detected even by integrative gene-based tests like TWAS, but may 

be by our proposed pathway test. Here, we identified 15 novel significant pathways 

associated with SCZ, such as pathway GABA receptor complex (GO:1902710), which could 

be missed by gene-based TWAS or aSPU. Taken together, our results showcase the power of 

incorporating reference gene expression data into gene-based or pathway-based association 

testing for GWAS. The newly identified genes and pathways may help us gain insights into 

the biological mechanism underlying SCZ.

Although in this study we have mainly focused on SCZ and applied the various methods to 

two GWAS summary data sets, it is natural to apply our method to other complex traits with 

either individual-level or summary data. We expect that applying our proposed and other 

integrative methods like TWAS to other existing GWAS data may identify more novel 

associations and shed more light on the underlying biological mechanisms. We note that our 

proposed methodology can be applied with other endophenotype-derived weights (Xu et al., 

2017a) or even without weights (i.e. all SNPs with an equal weight).

Finally we comment on our view that TWAS is a weighted Sum test and its related issues, 

which are also discussed by Wainberg et al. (2017) and in http://hakyimlab.org/post/

vulnerabilities/. Although TWAS was originally proposed to identify GWAS associations 

through gene expression, any such discovery based on a single eQTL/GWAS dataset is at 

most only suggestive to mediating effects of gene expression. As discussed in Xu et al. 

(2017b), in spite of the connections of TWAS with two-stage least squares and Mendelian 

randomization (MR), due to the adopted strong assumptions that are likely to be violated in 

practice, cautions should be taken to avoid extrapolating any discovered GWAS associations 

to causal effects mediated through gene expression. Hence, we simply regard TWAS as a 
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special case of weighted association testing. In this view, we yield a few benefits while 

avoiding possible over-interpretation of an association as a causal effect. First, due to some 

well-known limitations of the Sum test and inherent errors in estimating the cis-effects (i.e. 

weights) of genetic variants with usually small eQTL datasets, modifications to TWAS may 

lead to more powerful analysis methods, such as based on the SSU/SPU(2) and aSPU tests 

(Xu et al 2017a). Other tests, like aSPU, with a more flexible weighting scheme, may also 

identify associations through other non-gene expression-mediated mechanisms. Second, in 

addition to gene expression, other molecular or clinical intermediate phenotypes can be used 

to construct weights for weighted GWAS association analysis (Xu et al., 2017a).

The proposed statistical tests are implemented in R package aSPU2 that is currently publicly 

available on GitHub (and will be put on CRAN); the online manual and example computer 

code are publicly available at wuchong.org/aspupath2.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow of pathway-based analysis.
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Figure 2. 
Comparison between the asymptotics- and simulation-based p-values of Path-SPU(1) (left), 

PathSPU(2) (middle), and aSPUpath (right) based on the SCZ2 data with the GO Biological 

Process pathways.
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Figure 3. 
Comparison between running times of aSPUpath2 and aSPUpath for the SCZ2 data with the 

pathways in the GO Biological Process.
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Figure 4. 
Empirical power at α = 0.05 under different simulation set-ups (B–E).
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Table 6

Empirical type I error rates of our proposed pathway-based tests with some varying nominal significance 

levels α under simulation set-up A.

α 0.05 0.01 0.001

PathSPU(1) 4.9 × 10−2 9.8 × 10−3 1.2 × 10−3

PathSPU(2) 5.3 × 10−2 1.1 × 10−2 1.3 × 10−3

aSPUpath2 4.4 × 10−2 1.0 × 10−2 1.2 × 10−3
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