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Abstract
Alzheimer’s disease (AD), a cognitive disability is analysed using a long range dependence parameter, hurst exponent

(HE), calculated based on the time domain analysis of the measured electrical activity of brain. The electroencephalogram

(EEG) signals of controls and mild cognitive impairment (MCI)-AD patients are evaluated under normal resting and

mental arithmetic conditions. Simultaneous low pass filtering and total variation denoising algorithm is employed for

preprocessing. Larger values of HE observed in the right hemisphere of the brain for AD patients indicated a decrease in

irregularity of the EEG signal under cognitive task conditions. Correlations between HE and the neuropsychological

indices are analysed using bivariate correlation analysis. The observed reduction in the values of Auto mutual information

and cross mutual information in the local antero-frontal and distant regions in the brain hemisphere indicates the loss of

information transmission in MCI-AD patients.

Keywords Alzheimer’s disease · EEG · Multi-resolution decomposition · Hurst exponent · Auto mutual information ·

Cross mutual information

Introduction

Dementia is a progressive mental disorder which affects

the working memory of a person. It is widely known that

the reduction of motor functions and thought processes are

the characteristics of dementia of which Alzheimer’s is the

most prominent. The accumulation of plaques and tangles

in the brain cells are considered to be the main cause of

Alzheimer’s. Alzheimer’s is not a normal part of aging.

Alzheimer’s Statistics 2015 reported that 44 million people

suffer from Alzheimer’s or dementia. Alzheimer’s disease

international (ADI) stated that, in India, the number of

people suffering from dementia are expected to rise 12

million by 2050. Alzheimer’s Association 2016 informed

that 15–20% of people above the age of 65 have mild

cognitive impairment.

Changes in behavior, language and learning problems

are observed in demented people (Letemendia and Pam-

piglione 1958). Analysis of electroencephalogram (EEG), a

measure of the electrical functioning of brain, could lead to

the development of an indicator of Alzheimer’s disease,

presenile dementia, Pick’s disease, Jakob-Creutzfeldt’s

disease etc. EEG, being a noninvasive study, is used for the

extraction of features to characterize the disease. Absence

of alpha rhythm, highest four point scale mean score, large

dementia differentials and slowing of EEG could separate

Alzheimer Disease from other diseases (Gordon and Sim

1967). Memory impairment, formation of senile plaques

and neurofibrillary tangles, reduction of acetyl-

cholinesterase and choline acetyltransferase etc. are some

of the changes observed in the brain of Alzheimer subjects.

National Institute of Neurological and Communicative

Disorders and Stroke-Alzheimer’s Disease and Related

Disorders Association (NINCDS-ADRDA) has developed

a criterion for identifying Alzheimer’s (McKhann et al.

1984). Reduction of mobility (Loechesa et al. 1991), lower

dipolarity (Hara et al. 1999), sensitive directional
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information flux (Babiloni et al. 2009) and diminished

clustering coefficient and path length (Stam et al. 2009) are

used for distinguishing AD from normal controls. EEG

slowing is noted in AD especially on temporal, parieto-

occipital, and frontal regions (Petit et al. 1993). Compared

with normal, EEG abnormalities are recognized in the

progression of Alzheimer’s disease. Large amount of

neuronal loss is verified in some of the AD patients (Rae

et al. 1987).

Quantitative Electroencephalography (QEEG) fre-

quency analysis has been reported to be useful for dementia

diagnosis (Nuwer 1997). Impairment of high to low EEG

frequency ratio is observed in the left temporal region of

demented patients (Grunwald et al. 2002; Leuchter et al.

1987). A rise in delta-theta values and a reduction of mean

frequency and alpha–beta values has been identified in

Alzheimer EEG (Coben et al. 1990; Fonseca et al. 2011).

The slowing of alpha frequency band is the hallmark of

EEG in Alzheimer’s disease (Bhattacharya et al. 2013).

Increased values of mean frequency ratio are observed in

AD patients (Stigsby et al. 1981). A reduced mean domi-

nant occipital frequency is detected in AD than in healthy

controls (Prinz and Vitiell 1989; Pucci et al. 1999). Van-

ishing of 40 Hz frequency is recognised in AD patient at

the problem solving task (Raghavan et al. 1986).

Visual and spectral EEG analysis help in differentiating

AD with mild cognitive impairment (Brenner et al. 1988;

Waser et al. 2013). Power spectrum analysis and topo-

graphic EEG mapping have revealed the decelerating of

background EEG (Buchan et al. 1997). The power spec-

trum of Alzheimer’s showed the absence of dominant

action in the 6.5–12 Hz band. Increased power in 1–6.5 Hz

band is also observed in AD (Davide et al. 2004; Fonseca

et al. 2011; Gasser et al. 1994; Klimesch 1999; Pucci et al.

1998; Wada et al. 1997; Wang et al. 2015). A decrease in

the relative logarithmic transformed power spectral density

has been reported in the right temporal of AD patients

(Aghajani et al. 2013). The paraconsistent artificial neural

network (PANN) was capable of accurately recognizing

slowing of alpha rhythm in Alzheimer patient (Abe et al.

2007).

The reduction of coherence in AD indicates a decline in

cortical connectivity (Sankari et al. 2011). Reduced inter-

hemispheric theta coherence and left temporal alpha

coherence were observed in AD patients (Adler et al. 2003;

Anghinah et al. 2011; Fonseca et al. 2013, 2015; Kikuchi

et al. 2002). AD subjects had a diminished upper alpha

coherence between right temporal and central cortex (Ho-

gan et al. 2003) and have used multiple regression models

to assure this conclusion (Brunovsky et al. 2003). Damage

of cortico-cortical or cortico-subcortical networks in AD

revealed a reduction of alpha coherence in temporal-pari-

eto-occipital regions (Locatelli et al. 1998). Decreased

wavelet coherence is observed in Alzheimer’s in compar-

ison with healthy controls (Jeong et al. 2016). The relative

power spectral density (PSD) estimated using AR Burg

method and coherence of EEG signals from AD patients

are evaluated inorder to detect the abnormalities displayed

in the response from cortico-cortical region (Wang et al.

2015).

Synchrony measures show decreased EEG synchrony in

MCI patients (Dauwels et al. 2010). EEG synchrony

markers have been correlated with Mini-Mental State

Examination (MMSE) that measures the severity of AD

(Waser et al. 2016). A decrease of beta and lower alpha

synchronization is observed in multi-channel EEG of mild

AD patients (Pijnenburg et al. 2004; Stam et al. 2005).

Progressively decreased delta and alpha synchronization

likelihood is identified in MCI and mild AD groups (Ba-

biloni et al. 2006; Duffy et al. 1984). The global field

synchronization (GFS) is found to be lower in AD than in

normal (Koenig et al. 2005; Park et al. 2008). Lower values

of synchronization likelihood and improved Omega com-

plexity are observed in AD patients at the 0.5–25 Hz fre-

quency ranges (Czigler et al. 2008).

AD patients have been characterized with lower Lya-

punov exponent (L1) and correlation dimension (D2)

(Carlino et al. 2012; Jeong and Kim 1997; Jeong et al.

1998). A lower Approximate Entropy (ApEn) in the AD

subjects at P3 and P4 electrodes shows the decline of

irregularity in Alzheimer patients (Abasolo et al. 2005). A

decrease in the Lempel–Ziv (LZ) complexity and multi-

scale Lempel–Ziv complexity of EEG patterns are

observed in AD subjects (Abasolo et al. 2006; Liu et al.

2016). Lower irregularity is found in AD patients in the

calculation of spectral entropy than healthy controls

(Hornero et al. 2008). Global coherence and global corre-

lation dimension (D2) having changes in the higher fre-

quency ranges indicate decreased cortical functional

connectivity (Carlino et al. 2012; Jelles et al. 2008). Higher

order spectra (HOS) and quadratic phase coupling of

spontaneous human speech signals are analysed for the

early diagnosis of AD (Nasrolahzadeh et al. 2016). The

combinations of relative PSD and multiscale LZC are used

as input feature for the classification of two groups (Liu

et al. 2016). Dynamical stationarity of EEG at the frontal

and temporal regions of the brain distinguishes AD patients

from normal controls (Vincent et al. 2008). Nonlinear

analysis of EEG and magnetoencephalogram (MEG) of AD

patients revealed less complexity and more regularity of

the signals than that of the healthy controls (Hornero et al.

2009). Both slowing and loss of complexity of EEG is

found in MCI and Mild AD than normal group (Dauwels

et al. 2011; Wan et al. 2008). Quantification of Multiscale

entropy (MSE) complexity in EEG signals is used for

assessing the cognitive and neuropsychiatric severity of
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AD (Escudero et al. 2006; Mizuno et al. 2010; Tsai et al.

2012; Yang et al. 2013). The reduction of compression

ratio and entropic measures are considered as the hallmark

of onset of AD (Morabito et al. 2013). Multivariate mul-

tiscale entropic complexity measures of Alzheimer’s dis-

ease showed better results than single scale analysis

(Labate et al. 2013). Reduced fractal dimension is reported

in Alzheimer group than normal subjects (Besthorn et al.

1995; Smits et al. 2016; Woyshville and Calabrese 1994).

Multivariate Multi-Scale Permutation Entropy is used for

analyzing the complexity of AD EEG signals (Morabito

et al. 2012). Entropy and auto mutual information describes

the complexity of AD EEG signal with MMSE scores

(Coronel et al. 2017). Multivariate and univariate multi-

scale complexity analysis have been used for the charac-

terization of complexity of EEG frequency bands of AD

(Azami et al. 2017). The combinations of nonlinear and

linear features provided better class separability (Balli and

Palaniappan 2010). The resting-state EEG dynamics of the

early stage of Parkinson’s disease (PD) revealed lower

permutation entropy (PE) and higher order index (OI) for

patients than controls (Yi et al. 2017). Nonlinear measures

extracted from EEG signals under emotional processing of

PD patients with respect to motor symptom asymmetry,

suggests deficiency of emotional communication in

patients with right hemisphere dysfunction (Yuvaraj and

Murugappan 2016). Hurst Exponent (HE) can be used for

the detection of epileptic seizure (Osorio and Mark 2007).

The HE values exhibited long range anti-correlation in both

epileptic and interictal EEG (Geng et al. 2011). Combined

nonlinear features of sample entropy with deterended

fluctuation analysis (DFA) and kolmogorov complexity are

used to evaluate functional plasticity changes in sponta-

neous EEG recordings of rats before and after spinal cord

injury (SCI) (Pu et al. 2016).

Prominent changes in temporal regions are noted in AD

patients than that of normal controls (Breslau et al. 1989).

Functional disconnection (Tóth et al. 2014), reduced cor-

pus callosum cross-sectional area (Pogarell et al. 2005) and

decreased Relative Wavelet Energy (RWE) (Jeong et al.

2016) helps to identify AD. Statistical pattern recognition

(Snaedal et al. 2010, 2012), Automatic recognition (Kim

et al. 2005), Machine learning approach (Podgorelec 2012),

Discrete wavelet transform (DWT) (Ghorbanian et al.

2013), Continuous wavelet transform (CWT) (Ghorbanian

et al. 2015) are some of the techniques used for AD

analysis.

Magnetic resonance imaging (MRI) and functional MRI

are the brain imaging techniques that has been used in

studies for the diagnosis of AD. Scale-invariant feature

transforms (SIFT) are used for extracting the features from

the different slices of MRI images, which are then ranked

using Fisher’s discriminant ratio. The use of Support vector

machines with different kernels provide a classification

accuracy of 86% in classifying the MR images of mild AD

patients from healthy controls using the histogram devel-

oped from SIFT features (Daliri 2012). Low frequency

fluctuations (LFF) connectivity analysed using resting state

Functional MRI studies (fMRI) revealed highly disturbed

functional connectivity between different regions of the

brain in early AD patients (Wang et al. 2007). Brain acti-

vation patterns are observed to be altered in the fMRI

images, during the early stages of Alzheimer’s than in

controls with normal aging. This study involved associa-

tion encoding task (Sperling et al. 2003). Patterns obtained

from MRI images were used for detecting abnormality in

the structure of the brain of early stages of MCI-AD

patients. These patterns were further used as feature for

classification which gave 90% classification accuracy

(Davatzikos et al. 2008). Linear support vector machines

(SVM) are used for the automated classification of AD

patients from normal individuals using the gray matter

segment of T1-weighted structural MRI scans (Kloppel

et al. 2008). Structural MRI and advanced MRI techniques

such as arterial spin labeling (ASL) and diffusion tensor

imaging (DTI) are employed for the classification using

SVM for differentiating AD, fronto temporal dementia

(FTD) and controls (Bron et al. 2017). Proportional odds

model were used to assess the rate of atrophy of entorhinal

and hippocampal volumes and size to predict the risk of

incident AD using MRI images (Stoub et al. 2005).

Decreased functional connectivity (FC) was observed for

AD patients within the default-mode network (DMN) from

the studies conducted using resting state fMRI (rs-fMRI)

(Binnewijzend et al. 2012).

The combination of subspace filtering and independent

component analysis (ICA) method (Melissant et al. 2005;

Vorobyov and Cichocki 2002), blind source separation

(BSS) and correlation metrics (Cichocki et al. 2004; Joyce

et al. 2004) and Fast ICA or fixed point algorithm of ICA

(Mishra and Singla 2013) are used for removing noises in

EEG signals.

Studies till date have clearly improved our understand-

ing of AD, its onset, the progress and the consequent

influence on the cognitive functions. It also revealed the

importance of the development of the signal processing

tools for the time series analysis in the characterization of

features of Alzheimer’s, to be extracted from the EEG

signals. The major objective of the present study is to

analyze the long range dependence in the EEG time series

of MCI-AD patients and healthy controls using Hurst

exponent. The loss of information transmission among

different regions of the brain is also being evaluated using

Mutual Information analysis. The organisation of the paper

is explained below: “Materials” section describes an

overview of data collection, EEG data recording and
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preprocessing used for EEG signal analysis; “Methods of

analysis” section describes the different methods adopted

for EEG processing; “Results” section formulates the

results obtained from HE analysis, bivariate analysis and

mutual information; followed by a detailed discussion of

the paper in the “Discussion” section part; finally “Con-

clusion” section of the paper list out major conclusions of

the study

Materials

Data collection

A group control study is adopted for the present analysis.

The control group consists of 15 men and 12 women

subjects. The cognitive impaired group comprises of 13

subjects which includes six men and seven women. The

age group selected for this work ranges from 50 to 80 years

including both the sexes. Clinical dementia rating (CDR)

(Hughes et al. 1982) scale is used for rating dementia. For

the present study we have considered signals with a CDR

value ≤ 1.

EEG data recording

EEG data acquisition from healthy controls and Alzheimer

patients are carried out at Sree Chithira Thirunal Institute

of Medical Sciences, Trivandrum, Kerala, India. Ethical

committee sanction was obtained for this work. Written

informed consent is obtained from both controls and sub-

jects who participated in this study. Mini–Mental State

Examination (MMSE) (Folstein et al. 1975) is a 30 point

test conducted for determining the cognitive impairment.

Rey Auditory Verbal Learning Test (RAVLT) (Rosenberg

et al. 1984) is assessed for evaluating memory problems.

Addenbrooke’s Cognitive Examination (ACE) (Dudas

et al. 2005) is evaluated out of 100 and a lower value is an

indication of progression of the disease. The mean and

standard deviation of the age, MMSE and ACE of the

controls and patients participated in this study are shown in

Table 1. There is no significant difference in age and

education (years) between the two groups as the p value

obtained is 0.8979 and F= 0.02. But significant differences

were observed for patient group and controls for the neu-

ropsychological indices of Mini–Mental State Examination

(MMSE) and Addenbrooke’s Cognitive Examination

(ACE) (F = 20.34; p value is 0.0001).

The sampling frequency of EEG signal is 400 Hz. A

unipolar recording is carried out for data acquisition.

Clinical EEG recordings are carried out on a 32-channel

digital EEG acquisition system (NicVue, Nicolet-Viking,

USA) with the scalp electrodes placed according to the

International 10–20 electrode placement system(Jasper

1958). Measurement electrodes are placed at 23 electrode

locations: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, T1,

T2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, A1 and A2. The

different recording protocols adopted in this work are Eyes

Open (EO), Eyes Closed (EC), Mental Arithmetic Eyes

Open (MAEO) and Mental Arithmetic Eyes Closed

(MAEC) condition. For MAEO and MAEC protocols,

simple numerical exercises involving two number addition,

subtraction and multiplication was given to the groups (one

with keeping their eyes closed [MAEC] and the other with

keeping their eyes open[MAEO]. Signal acquisition is

carried out for a duration of five minutes each under each

recording protocol. Digitized EEG signals are analysed in

MATLAB (R2016a) environment.

Figure 1 represents the EEG signal of an Alzheimer

patient acquired from T5 location under Eyes Closed

condition and Fig. 2 represents the signal from a control

acquired from the same location following the same

recording protocol.

Preprocessing: removal of noise

Raw EEG always contains artifacts such as Electrocar-

diogram (ECG), Electromyogram (EMG), power line

noises, artifacts due to sweating and respiration. This

necessitates the removal of noise for further processing.

There exist various noise reduction techniques that include

Kalman filtering, ARMA method, ICA, Principle compo-

nent analysis (PCA), Wavelet denoising etc. Total variation

denoising (TVD) is an optimization technique which

minimizes the non-differentiable objective function (Rudin

et al. 1992). Majorization-minimization (MM) (Condat

2013) and Alternating Direction Method of Multipliers

(ADMM) are applied for the low- pass filtering and TVD

denoising. Combined LPF/TVD algorithm is used for

removing both the high and low frequency noise compo-

nents from the signal (Selesnick et al. 2014). In this algo-

rithm, the noisy signal is assumed to be consisting of a

Table 1 Mean and standard

deviation of Control and Patient
Subject AGE (years) MMSE ACE Education (years)

Control 56.18 ± 4.78 29.37 ± .92 93 ± 5.34 12.3 ± 3.5

Patient 67.78 ± 6.10 23.92 ± 4.15 63.85 ± 8.45 11.1 ± 3.3
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sparse signal, noise, and low-frequency component. LPF/

TVD algorithm works on the sparse data.

Consider a noisy signal y consisting of three compo-

nents: x- sparse signal, f- low pass component, w- Gaussian

noise having variance σ2.

y ¼ xþ wþ f ð1Þ
Here the estimates of x and f are:

f � LPF y� xð Þ ð2Þ
Combining (1) and (2)

w ¼ y� xð Þ � LPF y� xð Þ ð3Þ
Hence ‘w’ can be rewritten as

w ¼ HPF y� xð Þ ð4Þ

argminx 1=2 Hy� x2ð Þ2þkjjDxjj
n o

ð5Þ

Equation (5) represents the optimization problem. Dx

denotes the first order difference. Regularization parameter

‘λ’ is used for getting suitable solutions. The high-pass

filter H is to be of the form H ¼ A�1B, where A and B are

banded matrices. Denoising operation is performed

assuming values for λ,fc and d, where fc is the cut off

frequency and d is the filter order parameter. In this

work,fc ¼ 0:022, d = 1 and λ = 0.1 are selected based on

the optimality condition. The suitability of the values of the

parameter can be observed using optimality plot (Selesnick

et al. 2014). Validation of noise removal using LPF/TVD

algorithm is done by calculating signal to noise ratio

(SNR). The enhancement of SNR of the signal proves the

efficiency of the denoising algorithm.
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Methods of analysis

Multi-resolution decomposition

Multi-resolution signal decomposition is performed using

Discrete Wavelet Transform (Mallat 1989). Appropriate

Wavelet has to be chosen for the decomposition of the

signal. The choice of wavelet is decided by the calculation

of correlation coefficient of the signal with the chosen

wavelet. db10 is found to have maximum correlation

coefficient with more than 95% of the EEG signals

acquired in this study. The frequency bands used for the six

level decomposition in this study is shown in Table 2. D1

(Detail level 1), D2 (Detail level 2), D3 (Detail level 3), D4

(Detail level 4), D5 (Detail level 6) represent the Detail

levels and A6 (Approximation level 6) represents the

Approximation level.

Nonlinear parameter: Hurst Exponent (HE)

There exist a number of parameters to assess the nonlin-

earity of signals. Hurst Exponent (Hurst 1951) is one such

parameter which helps in detecting long range dependence

of a time series. The present analysis uses rescaled range

method (Mandelbrot and Wallis 1969) for calculating HE.

HE is expressed as:

HE ¼ log R
S

� �
log T

ð6Þ

where T—duration of the sample of data, R
S
—correspond-

ing value of rescaled range.

The algorithm used for evaluating Hurst Exponent is as

follows:

Let N- be the total length of the time series, n = N, N/2,

N/4….

Step 1 Calculation of the mean ‘m’

m ¼ 1

n

Xn
i¼1

Xi ð7Þ

Xi = X1, X2, X3…

Step 2 Compute mean-adjusted series ‘Yt’

Yt ¼ Xt � m for t ¼ 1; 2. . .n ð8Þ
Step 3 Calculate cumulative deviate series ‘Zt’

Zt ¼
Xt

i¼1

Yi for t ¼ 1; 2. . . n ð9Þ

Step 4 Find the range ‘R nð Þ’
R nð Þ ¼ max Z1;; Z2;Z3;. . .:Zn

� ��min Z1;; Z2;Z3;. . .:Zn
� �

ð10Þ
Step 5 Determine standard deviation ‘S nð Þ’

S nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Xi � mð Þ2
s

ð11Þ

Step 6 Compute the rescaled range, ‘R nð Þ=S nð Þ’
H ¼ R nð Þ=S nð Þ ð12Þ

A long term positive auto correlated time series will have

H in the range 0.5 and 1. Uncorrelated data series has an

H value of 0.5. Switching of high and low values in the

neighboring pairs occur for H in the range of 0–0.5.

Pearson’s correlation coefficient, Spearman’s
rank correlation coefficient and Mutual
information

Pearson’s correlation coefficient (Product moment corre-

lation) measures dependence between two variables. The

value of correlation coefficient lies between -1 and 1. If no

correlation exists, then correlation coefficient becomes

zero. Spearman’s rank correlation coefficient (Fieller et al.

1957) is the ranked form of Pearson’s correlation. Product

moment correlation explains the linear relationship

whereas Spearman’s rank correlation describes monotonic

relationships. The range of Spearman’s correlation is

similar to Pearson’s. EEG very well reflects the informa-

tion processed in the brain (Jeong et al. 2001). Mutual

information (MI) of two variables is the mutual depen-

dence among the variables. MI helps for finding both linear

and nonlinear relationship of the series. MI values are

always positive. MI gets maximum when the values of the

series are exactly same. MI has been used for measuring

and analyzing the dynamic coupling between two systems

(Cover and Thomas 1991). There exist mainly two types of

MI: Auto mutual information (AMI) and Cross mutual

information (CMI). AMI explains that the time series

values are predicted from the delayed forms of the same

series. Cross mutual information describes the dependence

of one time series on the other. The studies on MI proves

good for estimating the complexity of EEG signals and also

Table 2 Frequency band corresponding to 6-level decomposition

Decomposed signals Frequency bands (Hz) Decomposition levels

D1 100–200 1

D2 50–100 2

D3 25–50 3 (Gamma)

D4 12.5–25 4 (Beta)

D5 6.25–12.5 5 (Alpha)

D6 3.125–6.25 6 (Theta)

A6 0–3.125 6 (Delta)
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assess the information transmission between various cor-

tical areas of the brain (Abasolo et al. 2008; Jeong et al.

2001). Statistical analysis is conducted by ANOVA for

evaluating the significant difference between the groups.

Multiple comparisons using Bonferroni correction is

applied on the p values obtained.

Results

Multi-resolution Decomposition

A six-level decomposition is carried out on the measured

EEG signals using db 10 Wavelet. This particular db 10

was chosen from various wavelets ranging from db2-db10,

sym1-sym7 and coif1-coif5 as it gave a higher correlation

coefficient with the recorded signals. The six decomposi-

tion levels are: D1 (Detail level 1), D2 (Detail level 2), D3

(Detail level 3), D4 (Detail level 4), D5 (Detail level 6) and

A6 (Approximation level 6).

Nonlinear parameter: Hurst Exponent (HE)

The nonlinear parameter, Hurst Exponent (HE), is evalu-

ated from the EEG signals recorded from 23 locations of

normal controls and patients under four different recording

protocols. The recording protocols are Eyes Open (EO),

Eyes Closed (EC), Mental Arithmetic Eyes Open (MAEO)

and Mental Arithmetic Eyes Closed (MAEC) conditions.

The observed variation of HE in the signals of patients are

analysed subsequently.

The average values of HE calculated for all the 23

electrode locations under EC recording protocol for con-

trols and patients are shown in Fig. 3. For all the 23

electrode locations, higher values of HE are observed for

patients (Maxim et al. 2005) and the highest value of HE is

observed at the temporal location (T2-recorded from the

right half of the brain). The variations in the HE values of

the other 22 electrode locations range from 7 to 10% of the

value observed at the temporal location T2. A similar trend

is observed in the recording protocols under EO, MAEC

and MAEO conditions. HE is regarded as a measure of the

long-range dependence of a time series, used to determine

self-similarity or smoothness of the time series considered.

The higher HE values calculated from the EEG signals of

Alzheimer patients (MCI-AD) is an indication of the

absence of notable irregularity signifying a slowdown of

the mental activity of the brain with increase in pre-

dictability, long memory, persistent behavior of the signal

and low instability of the brain state (Diaz et al. 2015).

Though not closely related to the present study, it has been

reported that the higher HE value is also an indication that

the brain is not able to retain information due to reduction

in neuronal oscillations (Montez et al. 2009).

It is now known that any damage to the temporal lobe of

a person, by disease or otherwise, ends up with a difficulty

in interpreting and memorizing events, leading to the

degradation of the ability in organizing and sequencing

events and affecting the verbal and visual memory (Bayley

et al. 2005; Chan et al. 2001). The early onset of Alzhei-

mer’s disease is also characterized by these attributes in

patient’s mental capabilities. The analysis indicates high

values of HE at the temporal lobes of the right part of the

brain reveals that with the onset of MCI, the particular

lobes/regions of the brain gets affected. Considering these

facts, one may conclude that the higher values of HE

observed in patients is clearly an indication of the early

onset of Alzheimer’s.

A comparison of the values of HE for the different lobes

(F-Frontal, P-Parietal, O-Occipital and T-Temporal) under

various recording protocols of EC, EO, MAEC and MAEO

states is carried out and is shown in Fig. 4. It is observed
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that HE values of patients are the highest for the mea-

surements following MAEC recording protocol. The range

of HE values for MAEO and EO protocols are lower from

MAEC by 3–4% and 2–3% respectively. Significant group

differences were revealed among the different recording

protocols of EC, EO, MAEC and MAEO using One-way

ANOVA (F = 8.374, df = 3, 88; p\0.000059) with post

hoc Bonferroni alpha corrected p value being 0.00222.

Group differences in HE were analysed using a two-way

ANOVA with Bonferroni corrections performed in differ-

ent lobes under different recording protocols. Multiple

comparisons using Bonferroni corrections gave a p value of

0.012741 and are found to have high statistically significant

difference. The cognitive behavior of the patients under

MAEO and EC protocols shows more irregularity in

comparison with EO and MAEC states. This clearly indi-

cates that there is a reduction in the chaotic nature of the

EEG signal acquired from the MCI-AD patients, thus dis-

tinguishing them from normal controls.

The temporal lobe measurements in patients indicate the

highest value of HE for all the recording protocols in

comparison with the other three lobes (frontal, parietal and

occipital). In the recording protocols of EO and EC states,

the average HE values are the highest at the temporal

followed by occipital, parietal and frontal (T[O[P[F).

Unlike the EC and EO, MAEC and MAEO recording

protocols show higher HE values of 0.75901 and 0.741432

respectively for frontal lobes under mental arithmetic task

in comparison to the values observed at occipital and

parietal lobes (T[F[O[P). The results of HE calculated

for different lobes for the MCI-AD patients show that the

temporal lobe is affected the most. A notable reduction in

the HE values of the signals of the frontal lobe from that of

the temporal lobe is observed in MAEC and MAEO pro-

tocols. This is in contrast with the observed values of the

resting EO and EC states. The value of HE observed in the

signals of patients at their frontal lobe indicates that this

measure can be related to the decline in the activity of

brain. It may be recalled that the frontal lobe is very much

involved in problem solving skills, decision making pro-

cesses and carrying out of various tasks. Impairment in

problem-solving and decision making capability of the

brain which forms a part of executive functioning has been

reported as early manifestations in mild AD patients

(Binetti et al. 1996; Chen et al. 2001; Perry and Hodges

1999). The increase in the values in the frontal region is

presumed to be a process to sustain the performance of

memory during the earlier period of developing AD

(Montez et al. 2009). The same is reflected in the present

analysis through an observed increase in the HE values of

the frontal lobe for MCI-AD patients subjected to mental

arithmetic task.

The average value of HE calculated for the lobes under

different recording protocols are analysed, for both the left

and right hemispheres of the brain and is shown in Fig. 5.

Here FL represents Frontal left, FR-Frontal right, P L/R-

Parietal left/right, OL/R-Occipital left/right and TL/R-

temporal left/right. It is observed that HE values are

attenuated in the left hemisphere both under resting state

and under task conditions. The increased HE values in the

right part of the brain might be due to the reduced com-

plexity and irregularity of the EEG signal which is an

indication of the reduction in the processing of information

(Lefleche and Albert 1995). Also, this could be an indi-

cation of the advancement of the cognitive impairment

affecting the right half. It is also inferred from the calcu-

lations of HE values that the irregularity of time series is

larger in the left half of the brain indicating the possibility

of higher impairment in the right half of the brain. It may

be noted that the observed trends of higher HE values for

the right lobes belong to patients with (CDR ≤ 1) having an

early onset of MCI-AD. The subjects classified under this

group are the ones identified to be at an early symptomatic

stage of AD representing very mild (CDR = 0.5) and mild

dementia (CDR = 1) (Morris et al. 2001). The severity of

cognitive impairment shall differ with an increase in the

rating of CDR and there may possibly be a shift in the

increase in values of HE from the right hemisphere to the

left hemisphere.

The HE values are analyzed at distinct frequency bands

of the EEG signal decomposed using db10. Figure 6 shows

the six-level Wavelet decomposed EEG signals of control

and patients under EC, EO, MAEC and MAEO protocols in

the Occipital lobe. Analysis shows that the average values

of HE are higher for patients than the controls in all the six

levels of Wavelet decomposition. The observed HE values

corresponding to the specific frequency band also

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

FL FR PL PR OL OR TL TR

FRONTAL PARIETAL OCCIPITAL TEMPORAL

H
ur

st
 E

xp
on

en
t

Lobes

EC
EO

MAEC
MAEO

Fig. 5 Comparison of HE at left and right hemispheric lobes of

patients under various protocols

190 Cognitive Neurodynamics (2018) 12:183–199

123



significantly differ across the brain regions. The nonlinear

parameter (HE) calculated for MCI-AD patients shows the

highest value in the lower most level of decomposition

namely the delta band (0–4 Hz) and the lowest HE value

belongs to the higher most level of decomposition namely

the gamma band. Amongst the frequency bands, gamma

band has more implications in cognitive workload (Diaz

et al. 2015) which is very well justified with lower values

of HE (Fig. 6). The lower values of HE in gamma band

reveal that the functional state of the brain is highly

dynamic and unpredictable. The various frequency bands

differ by the level of randomness and self-similarity.

Higher HE values are observed in patients in the different

frequency bands ranging from delta to gamma. High values

of HE in delta band show that the system is better ordered,

predictable and less complex. The rest of the lobes also

give a similar pattern for the values of HE calculated for

the different frequency bands under the recording

protocols.

Figure 7 shows the comparison of HE at various lobes

under the EC protocol. The HE values (shown in Table 3),

calculated for the various frequency bands indicate that the

delta band of the temporal lobe of the mild AD patients

record the highest value among all the six levels of

decomposition. A similar trend is observed for the

remaining three protocols with the smallest value of HE

observed in the gamma band for the mild AD patients. This

is in conformity with the results shown in Fig. 3. The

results of Fig. 7 posit the results in Fig. 6.

In this study, we have also taken effort to verify the

correlation between HE, the nonlinear parameter with the

age and other neuropsychological indices such as ACE and

MMSE scores that are generally used for assessing the

severity of AD. Mutual information and bivariate correla-

tion analysis using Pearson’s correlation coefficient and

Spearman’s rank correlation coefficient are employed for

this purpose.

Spearman correlation coefficients are used to evaluate

the associations of HE with age. The statistical indepen-

dence of HE and age are ensured using One-way ANOVA

with the Bonferroni corrected p value being 0.0036571.

Table 4 shows the Spearman correlation coefficient of HE

with age of controls and patients, calculated specifically for

the recording protocols thus integrating the different

hemispheres of the brain. A moderate correlation is

observed for HE and age using Spearman correlation

coefficient ρ, under all the recording protocols for controls

and a weak correlation is observed for patients.

Figures 8a, b showst he Pearson correlation between HE

with age (in years) of controls and patients respectively.

The lobe-vice analysis (shown in Table 5) of Spearman

correlation (ρ) of Hurst Exponent with age of patients

revealed a low and negative correlation in frontal lobe

(ρ = −0.243, p\ 0.0001) and occipital lobe (ρ = −0.227,
p\ 0.001) with significantly low and negative correlation

in temporal (ρ = −0.189, p \ 0.01) and parietal

(ρ = −0.071, p \ 0.005) for EC recording protocol.
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Table 3 HE values at different lobes of control and mild AD patients

under EC protocol

Lobes Frequency bands

Delta Theta Alpha Beta Gamma

F Control 0.746522 0.387778 0.29807 0.266309 0.153884

F Patient 0.78248 0.409063 0.32137 0.281388 0.169996

P Control 0.739695 0.374387 0.277623 0.2606 0.150436

P Patient 0.781771 0.415696 0.321264 0.287514 0.167246

O Control 0.73764 0.365535 0.262496 0.249603 0.144396

O Patient 0.784279 0.411943 0.317896 0.280925 0.165025

T Control 0.732459 0.387276 0.288628 0.267505 0.153622

T Patient 0.789101 0.41281 0.314056 0.274776 0.173321
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Similarly, low correlation exists in the frontal (ρ = −0.261,
p\ 0.02001) for EO recording protocol with significantly

lower correlation in the other three lobes: temporal

(ρ = −0.183, p\0.005), occipital (ρ = −0.156, p\0.05),

parietal (ρ = 0.081, p\ 0.00005). For the recording pro-

tocol of MAEO, a moderate correlation exists in occipital

(ρ = −0.359, p\0.001) with significantly low correlations

in the frontal (ρ = −0.234, p \ 0.05), temporal

(ρ = −0.225, p \ 0.0001) and parietal (ρ = 0.057,

p\ 0.005). Similarly, MAEC has low correlation in tem-

poral (ρ = −0.262, p\ 0.01) with significantly low cor-

relations with an average ρ = −0.21 (p\0.0001) in the rest

of the lobes. For the controls, the temporal (ρ = 0.305,

p\0.001) and parietal lobe (ρ = 0.311, p\0.001) show a

moderate correlation under EC recording protocol and a

low correlation for the frontal (ρ = 0.024, p\ 0.005) and

occipital (ρ = 0.276, p \ 0.001). All the lobes have an

average moderate correlation (ρ = 0.3295, p \ 0.001)

existing between the age and the HE in EO and MAEC

while the temporal lobe alone have a low correlation

(ρ = 0.233, p \ 0.001) in MAEC protocol. In MAEO

condition, frontal lobe has a moderate correlation

(ρ = 0.33, p\ 0.0005) with the other lobes exhibiting a

low correlation with ρ = 0.226 (p\ 0.001).

There exists a negative and moderate correlation only in

the occipital region for patients under MAEO recording

condition. For the different recording protocols of the

controls, the temporal lobe has a moderate correlation

under EC and EO recording protocol. The right and left

hemispheres of the brain have a moderate correlation

existing between age and HE in EO and MAEC protocols

except for the temporal lobe in MAEC. Under MAEO

protocol, only the frontal lobe has a moderate correlation

existing in the controls. Hence it is observed that HE is

closely related with age for those moderately correlated

values for various lobes in different recording protocols

both for patients and controls.

Table 4 Spearman Correlation

(ρ) between HE and age of

Control and Patient

Subject EO (p\ 0.05) EC (p\ 0.05) MAEO (p\ 0.05) MAEC (p\ 0.05)

Control 0.301 − 0.307 0.327 0.349

Patient − 0.218 − 0.227 0.223 − 0.271
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Fig. 8 Correlation between HE and Age under EC protocol of (Pearson correlation is used for graphical purposes). a Controls (ρ = 0.1403,

p\ 0.005) and b patients (ρ = 0.1449, p\ 0.0001)

Table 5 Lobe-vice analysis of

the Spearman correlation (ρ) of
HE with age for patients and

controls

Protocols Lobes

Frontal Parietal Occipital Temporal

Control Patient Control Patient Control Patient Control Patient

EC 0.24 − 0.243 0.311 − 0.071 0.276 − 0.227 0.305 − 0.189

EO 0.313 − 0.261 0.302 0.081 0.346 − 0.156 0.357 − 0.183

MAEC 0.334 − 0.21. 0.311 − 0.21 0.357 − 0.21. 0.233 − 0.262

MAEO 0.33 − 0.234 0.185 0.057 0.245 − 0.359 0.25 − 0.225
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Significant group differences between HE and MMSE

are observed using One-way ANOVA with a p-value of

0.0036571 obtained after Bonferroni corrections. Fig-

ure 9a, b shows the Pearson correlation between HE and

MMSE of controls and patients under MAEO protocol. A

moderate Spearman correlation exists in controls between

HE and MMSE score in the temporal lobe (average

ρ = 0.328, p\0.001) for all the recording protocols except

for EO (ρ = −0.181, p\0.0001) and in the parietal lobe for

MAEC (ρ = −0.36, p\ 0.001) and MAEO (ρ = −0.366,
p\ 0.005). The rest of the correlation coefficient shows

significantly lower values for different lobes under the

recording protocols indicating that HE is not closely related

with MMSE.

One-way ANOVA with post hoc Bonferroni corrections

showed statisticallysignificant difference in group of HE

and ACE with a p value of 0.0036571. A negative and

moderate Spearman correlation exists in patients between

HE and ACE score only in the occipital lobe (ρ = −0.359,
p\ 0.05) for MAEO recording protocol. The rest of the

lobes and recording protocols have a weak correlation

between HE and ACE. A moderate positive correlation

exists between HE and Rey Auditory Verbal Learning Test

(RAVLT) non-delayed recall score in frontal (ρ = 0.4,

p\0.05) and temporal (ρ = 0.307, p\0.05) for patients in

MAEO. The rest of the recording protocols show an

average low correlation between HE and RAVLT score

(ρ = 0.232, p\ 0.05).

Mutual information analysis

Auto Mutual Information (AMI), similar to entropy mea-

sure (Jeong et al. 2001), is calculated for all the recording

protocols. The average value of AMI for the controls is in

the range of 0.5 to 0.6 whereas the average values for

patients lie in the range 0.1 to 0.2. The time delay in the

AMI analysis is 1. Low value of AMI observed in MCI-AD

patients is an indication of the reduction in complexity of

the brain activity in comparison to the normal controls. The

cross mutual information (CMI) helps to assess the

dynamic coupling and information transmission between

two systems. Here, the average value of CMI employed to

calculate the coupling between the HE and age for MCI-

AD patients is found to be 3.52 and that for controls is

3.343; between HE and MMSE for patients is 2.8074 and

that for controls is 1.4537; between HE and ACE score for

patients is 3.3788 and that for controls is 3.6801. The

average values of CMIs are larger in patients than in

controls except for HE and ACE. The results reveal that

there exist a dynamic coupling between HE with age and

also HE with MMSE for MCI-AD patients.

The data communication between distinct cortical areas

are analysed using mean CMI’s calculated over the ante-

rior, posterior and distant brain regions (Jeong et al.2001;

Locatelli et al. 1998). The local anterior CMI is calculated

for electrode locations Fp1-F3, Fp1-F7, Fp2-F4 and Fp2-F8

corresponding to the frontal region. Local posterior CMI is

calculated for the electrode locations P3-O1, P4-O2, T5-O1

and T6-O2. The distant CMI’s are determined between the

following electrode pairs: Fp1-P3, Fp1-T5, Fp2-P4, Fp2-

T6, P3-F7, P4-F8, F3-P3, F3-T5, F4-P4, F4-T6, F7-T5 and

F8-T6. Table 6 represents the mean and standard deviation

of the CMI’s calculated over the local anterior region, local

posterior region and the distant electrode pairs across the

central line for the MAEC recording protocol.

Statistical analysis of CMI in MCI-AD patients show

prominent decrease in the value in comparison with the

normal controls at local anterior, local posterior and distant

electrode locations with the lowest value observed in the

frontal region. Lower CMI is perceived in AD subjects in

local antero-frontal and distant electrodes locations. This

establishes the reduction of information transmission in the
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p\ 0.001) and b patients (ρ = 0.1514, p\ 0.001)
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corresponding regions of MCI-AD patients in comparison

with the healthy subjects. Significantly lower CMI is

observed for AD patients in the right hemisphere of the

brain, contrary to the observations from the healthy

controls.

A lower value of CMI of MCI-AD patients under

mental arithmetic state is a direct indication of insufficient

data transmission across distinct regions of the brain.

Reduction in CMI is a direct indication for the cognitive

impairment associated with MCI-AD patients which also

supports the fact that there exists impairment in functional

activity in the pathways of cortico-cortical fiber in AD

subjects as reported by Jeong et al. (2001) and Locatelli

et al. 1998).

Discussion

Long range dependence in the EEG signals recorded under

four different recording protocols of EC, EO, MAEC and

MAEO of MCI-AD and normal controls are analysed using

the nonlinear parameter, Hurst exponent. The significance

of EEG signal analysis that could reveal the brain dys-

functions in the progression of AD has been widely

accepted (Dauwels et al. 2010; Jelles et al. 2008). Simul-

taneous low pass filtering and total variation denoising

(LPF/TVD) algorithm is employed for the EEG signal

preprocessing which help in the elimination of both the

high and low-frequency noise components (Selesnick et al.

2014). This method of denoising avoids selection and

implementation of appropriate transforms. A six-level

Multi-resolution decomposition is performed to extract the

different EEG signal frequency bands: delta, theta, alpha,

beta and gamma, so that the processing will enable us to

obtain simultaneous time–frequency information of the

signal analysed (Mallat 1989). Adeli et al. (2003) have

suggested wavelet transform as an effective tool for

investigating discontinuities and periodic patterns of non-

linear and non-stationary signals. Discrete Daubechies

wavelets are commonly used for Wavelet decomposition.

In this study Wavelet-chaos method is used for the analysis

of EEG sub-bands and is found to be beneficial for

extracting the features of Alzheimer’s.

Nonlinear parameters are found to be suitable in the

measurement of cortical functions of the brain in AD

patients (Jelles et al. 2008). The current study reveals that

the average values of HE are higher for MCI-AD patients

than the normal controls in all the six levels of wavelet

decomposition which is an indication of the slowing down

of the electrical activity in patients. Larger values of HE

indicates reduced complexity of EEG signal (Vladana

2015). The decrease of EEG complexity might be due to

neurotransmitter deficiency and the loss of functionalTa
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connectivity due to the death of nerve cell (Gomez et al.

2007; Jelles et al. 1999). The present study shows that the

right hemisphere of the brain has much variation in HE for

the MCI-AD patients than for the left half. The damage in

the right part causes the reduction of nonverbal thinking

and also a reason for the inability of motor skills for control

(Earle 1988). The lobe vice analysis of HE shows that they

are the highest at the temporal lobe. Temporal lobe has a

significant role in episodic memory in Alzheimer patients

(Ahmadlou et al. 2010). The present results are in agree-

ment with the earlier investigations that the AD progres-

sion could be identified with the reduction of irregularity of

EEG signal. HE has been widely used in forecasting

applications because of its ability to predict the time series

(Stan et al. 2014). It is interesting to note that HE is also

used for the detection of epileptic seizure (Osorio and Mark

2007) and HE values have shown long range anti-correla-

tion in both epileptic and interictal EEG (Geng et al. 2011).

Thus the present study attempts to contribute towards the

identification of HE as a meaningful parameter in the

detection of AD.

Jelles et al. (2008) reported that the frequency bands of

EEG signal signifies distinct brain dynamics. The present

study shows that the HE values are the highest in delta

band (0–4 Hz) and the lowest in the higher most level of

decomposition: Gamma-band (25-50 Hz). Regularity is

different for distinct frequency bands of AD because of

aberrant neuronal connectivity (Deng et al. 2017). Previous

studies have revealed that efficient signal analysis is pos-

sible with a combination of Hurst exponent with Wavelet

transform (Simonsen et al. 1998).

Age, RAVLT scores and neuropsychological indices

such as MMSE, ACE and their relations with Hurst

Exponent are verified using Pearson’s and Spearman’s

correlation coefficients. Increased values of correlation

coefficients are an indication of correlated time series.

Pearson correlation provides linear relations whereas

Spearman correlation gives monotonic relations. The lobe

vice analysis of correlation coefficients calculated for HE

with age, MMSE, ACE and RAVLT scores under various

recording protocols differ. The nonlinear parameter of

fractal dimension when correlated with age and MMSE are

reported to be region dependent (Smits et al. 2016).

Mutual information determines nonrandom relationship

between electrode locations. In the present study, Hurst

Exponent and Mutual Information analysis are conducted

for the quantification of regularity of the AD subjects.

Mutual Information technique is usually applied on signals

which perceive both linear and nonlinear relationships

between time series (Na et al. 2002). Mutual information is

reported to be an indicator of cortico-cortical connections

in the brain (Min et al. 2003). The present analysis showed

reduced values of AMI in MCI-AD which confirms the loss

of coupling between systems and reduction in complexity

of the brain activity. Auto mutual information of different

electrode locations of patients has lower values in com-

parison with controls. CMI technique substantiates the

quantification of information transmission in the brain.

Lower values of CMI observed in local antero-frontal

region and distant electrode locations of MCI-AD patients

in our study substantiates the reduction in information

transmission in these brain regions under mental arithmetic

eyes closed state resulting in cognitive decline. Jeong et al.

(2001) has reported the lowest CMI in interhemispheric

and distant electrode locations when recorded under

relaxing eyes open and closed state contrary to our obser-

vations. This reduction in information transmission could

be due to impairment of cortico-cortical fibers and neuronal

death in the brain as reported by Jeong et al. (2001) and

Locatelli et al. (1998).

Conclusion

In this study we have investigated the long range depen-

dence in the EEG signals of patients with Alzheimer’s

having MCI. Hurst Exponent, an index of long range

dependence in nonlinear signal analysis, is chosen for the

analysis. EEG measurements are carried out on demented

and non-demented controls under resting and cognitive

task conditions and values of HE are calculated. HE thus

obtained is in the range 0.6–1, adopting rescaled -range

analysis. Here we try to bring in the possible connection

with the index of long range dependence with the com-

plexity of the brain activity. Largest HE values are found to

be associated with MAEC protocol under which the ran-

domness of the signal is significantly decreased. HE values

obtained are higher for MCI- AD patients at the temporal

lobe that could be correlated with the patient’s observed

difficulty in memorizing and interpreting also affecting

their visual and verbal memory. HE values are higher in the

right hemispherical regions under the resting and cognitive

task conditions which could be an indication of the slowing

down of their mental activity. HE takes the highest valuein

the delta EEG frequency band and the lowest in the gamma

band for all the recording protocols. This confirms that the

mental activity remains higher in the lower frequency

bands during the state of disease. Reduced values of auto

mutual information and cross mutual information observed

in MCI-AD patients is also a clear indication of the

reduction of information transmission, relating to the

neuronal death and functional impairment in the cortical

regions of the brain.
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Stigsby B, Jóhannesson G, Ingvar DH (1981) Regional EEG analysis

and regional cerebral blood flow in Alzheimer’s and Pick’s

diseases. Electroencephalogr Clin Neurophysiol 51(5):537–547

Stoub TR, Bulgakova M, Leurgans S, Bennett DA, Fleischman D,

Turner D, deToledo-Morrell L (2005) MRI predictors of risk of

incident Alzheimer disease A longitudinal study. Neurology 64

(9):1520–1524
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