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Identification of putative promoters 
in 48 eukaryotic genomes on the 
basis of DNA free energy
Venkata Rajesh Yella1,2, Aditya Kumar1,3 & Manju Bansal1

Transcription is an intricate mechanism and is orchestrated at the promoter region. The cognate 
motifs in the promoters are observed in only a subset of total genes across different domains of life. 
Hence, sequence-motif based promoter prediction may not be a holistic approach for whole genomes. 
Conversely, the DNA structural property, duplex stability is a characteristic of promoters and can be 
used to delineate them from other genomic sequences. In this study, we have used a DNA duplex 
stability based algorithm ‘PromPredict’ for promoter prediction in a broad range of eukaryotes, 
representing various species of yeast, worm, fly, fish, and mammal. Efficiency of the software has 
been tested in promoter regions of 48 eukaryotic systems. PromPredict achieves recall values, which 
range from 68 to 92% in various eukaryotes. PromPredict performs well in mammals, although 
their core promoter regions are GC rich. ‘PromPredict’ has also been tested for its ability to predict 
promoter regions for various transcript classes (coding and non-coding), TATA-containing and TATA-
less promoters as well as on promoter sequences belonging to different gene expression variability 
categories. The results support the idea that differential DNA duplex stability is a potential predictor of 
promoter regions in various genomes.

Genetic transcription program is initiated in a segment of DNA referred to as ‘promoter’ which serves as a plat-
form for the assembly of pre-initiation complex to specify the transcription start sites (TSSs)1. In eukaryotes, 
promoter architecture is quite complex and diverse. Eukaryotic promoters are broadly classified as core pro-
moters, proximal promoters and distal promoters. Core promoter regions are characterized by the presence of 
cognate sequence motifs such as Initiator (Inr), TATA-box and downstream promoter element (DPE) positioned 
at distinct locations relative to TSS, as well as non-canonical elements such as “ATG deserts” and “CpG islands” 
in mammals2–4. Proximal promoter regions are the sequences spanning region 500 base pairs relative to the TSS 
and contain certain sequence elements, which include the CAAT box, the GC box and cis-regulatory modules5. 
Distal promoter elements encompass enhancers, insulators and silencers. Based on the strategies of transcription 
initiation, core promoters can be broadly classified as focused core promoters or dispersed core promoters6,7. 
The promoter region for the genes with dispersed transcription initiation can occur several 1000s of nucleotides 
upstream of the gene body. Further, from the studies on genome-wide nucleosome density maps of different 
eukaryotes such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and humans, 
it has been revealed that well-positioned nucleosomes usually occupy the sequences downstream of TSS, and 
the core promoter regions are devoid of the nucleosome8. Recent analyses of eukaryotic promoters indicates that 
though promoters differ in their sequence context (most of them lack consensus motif) and GC composition 
(lower eukaryotes are AT rich while mammals are GC rich), some properties such as nucleosome-free region and 
epigenetic features around transcription start sites are quite common9,10. The complexity of eukaryotic promoter 
architecture is further revealed by the discovery of alternative6,7 and bidirectional promoters11,12. In addition, 
recent experimental studies showed that the transcription landscape in eukaryotes is quite pervasive in nature, 
with a high proportion of transcripts originating from intergenic regions12,13. With this avalanche of genomic 
sequence data, it is important to characterize and predict promoter sequences in order to fully understand the 
process of transcription initiation.
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The delineation of promoters is also essential for complete annotation of genomes and a better understand-
ing of genome’s regulatory networks and their architecture14. Experimental methods for locating promoter 
elements include techniques such as 5′-tag-based methods which characterize promoters and transcription 
initiation events, small RNA sequencing, as well as methods which capture DNA-bound proteins, including 
RNAPII, transcription factors and histone modifications9. They provide a snapshot of all transcribed regions or 
DNA-protein interactions in the genome for specific experimental conditions7,10. Experimental techniques are 
costly, labour-intensive and time-consuming. Alternatively, computational methods provide rapid and relatively 
inexpensive ways for promoter identification. These methods are mostly based on the basic premise that promoter 
sequences have unique statistical features when compared to other genomic sequences10. These approaches use 
DNA sequence feature information such as biological signals of core promoter elements (Inr, TATA-box, and CpG 
islands), statistical properties of k-mer composition and DNA secondary structural features. Structural features 
are found to be more informative and universal as compared to sequence or base-compositional features. DNA 
structural features such as flexibility/bendability, curvature, base stacking and duplex stability have been applied 
to characterize promoter regions15–19. They are better predictors, as the structural features are comparatively con-
served, more informative and widely applicable across genomes. Recent reports suggest that structural prop-
erties are linked to variability of gene expression15,20,21 and help in understanding different promoter classes22. 
Recent findings reveal that, DNA shape features can be useful in understanding, and characterizing transcription 
factor binding sites, origins of replications and other genomic regions23–26. The majority of the structure-based 
algorithms have been designed with the aim of annotating promoter regions specifically in humans, while a few 
algorithms such as “PromPredict”17,27,28 and “EP3”16 are applicable across a variety of genomes. It has also been 
reported that among all structural features examined, energy-based features such as base stacking or DNA duplex 
stability are better predictors16.

DNA duplex stability, a secondary structural feature can be expressed in terms of short range nearest-neighbour 
interactions, inter base hydrogen bonds and stacking interactions, which are explicitly dependent on identity and 
orientation of flanking base pairs14. DNA duplex stability computation has been applied in techniques such as PCR, 
anti-gene targeting, and for understanding replication, repair, and transcription29,30. PromPredict algorithm encodes 
the dinucleotide free energy information obtained from studies of melting temperatures of oligonucleotides to com-
pute the average free energy of a particular sequence, as an indicator of DNA duplex stability. The strategy behind 
using DNA duplex stability is that promoter regions should be less stable than flanking regions to facilitate melting 
at the time of transcription initiation. Although PromPredict was developed for bacterial promoter prediction17,27, it 
also works very well for plants28,31, but its efficiency has not been tested on fungal and metazoan promoter sequences. 
In comparison, EP3, which also uses base-stacking energy, has been applied to annotate promoter regions in several 
eukaryotes ranging from protists to mammals16. In the present study, we report the validation of ‘PromPredict’ in 
identification of the promoter sequences of 48 eukaryotic systems.

The key elements of this in silico study are:

	 (i)	 Understanding the variation of DNA duplex stability eukaryotes,
	(ii)	 Evaluating performance of PromPredict across various eukaryotes,
	(iii)	 Whole genome promoter Prediction for different classes of transcripts in S. cerevisiae. An analysis of pre-

dictions for various gene expression variability classes and TATA-containing and TATA-less promoters in 
S. cerevisiae.

Results and Discussion
The efficiency of in-house software PromPredict, a promoter prediction algorithm that demarcates putative pro-
moter regions based on DNA duplex stability has been studied extensively in archaea, bacteria17 and plants (Rice 
and Arabidopsis)28. Current study deals with the promoter prediction analysis in the genome sequences of 48 
different eukaryotes with translation start site (TLS) data, along with genome sequences of S. cerevisiae, C. ele-
gans, D. melanogaster, zebrafish, mouse and human whose transcription start site (TSS) data is available. The 
true positive region for predictions for all systems is considered to be −500 to +100 relative to TLS/TSS in all 
cases except when comparing PromPredict with EP3. Initially DNA duplex profiles in these systems have been 
compared qualitatively.

Eukaryotic promoters show distinct low stability region.  The average DNA duplex stability profiles 
of promoter regions of six systems with mapped TSS data are presented in Figure 1 (data can be found in addi-
tional file). Promoter regions (−500 to +100 relative to TSS) in S. cerevisiae, C. elegans and D. melanogaster show 
low stability compared to their downstream regions, with narrow less stable regions being observed at −19, −11 
and −114 (split peak at −25) for S. cerevisiae, C. elegans, and D. melanogaster respectively. In the case of verte-
brates, zebrafish, mouse and human, core promoter regions are GC-rich but have two narrow low free energy 
peaks in the vicinity of TSS. Two narrow peaks are observed at −27 and +2 for zebrafish, −29 and +6 for mouse 
and −30 and +1 for human, which may correspond to the locations of TATA-box and INR (initiator) elements 
respectively (additional file). Similar low stability regions have been observed in different prokaryotic systems and 
plants21,28,32. The DNA duplex stability profiles of yeast and invertebrates are similar to prokaryotic promoters. 
In the case of a majority of prokaryotes, irrespective of genome GC content, promoter regions are less stable (or 
AT-rich) compared to downstream region, while in vertebrate promoters they are GC-rich, with several sequence 
and structure elements such as CpG islands, G-tracts, and G-quadruplex motifs being present in the vicinity of 
TSS21. GC contents of six eukaryotic systems in different regions of promoters, −500 to +500, −500 to −100, 
−100 to −1, +1 to +100 and +100 to +500 are given in (Supplementary Figure 1). The core promoter regions 
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(−100 to −1) in yeast and invertebrates display less GC content compared to other regions as well as genomic GC 
while in mammals all regions prefer high GC content compared to genome GC.

The DNA duplex stability profiles show a similar trend in promoter regions of closely related species (Fig. 2, 
additional file). To compare this feature in different eukaryotes, the promoter sequences (−500 to +500 relative 
to TLS) with (40–45) % GC composition are chosen and average free energy is plotted. All fungal species display 
free energy profiles similar to that of S. cerevisiae in the vicinity of TLS, while fish, sea hare and lancelot show a 
dip at immediate downstream region of TLS. An extensive study by Kumari S. and Ware D. reported the char-
acteristic signatures of free energy profiles in eight plant species31. Further, they showed variations in the free 
energy profiles of monocot and dicot plants. Our results suggest that unique patterns of DNA duplex free energy 
or stability are conserved among closely related eukaryotes. It is interesting to see the validation of PromPredict in 
two different types of promoter classes; AT-rich in yeast and invertebrates and GC-rich in vertebrate promoters.

Promoter prediction using PromPredict.  Promoter prediction in 48 eukaryotic systems with TLS data 
(14 species of yeast, five species of worm, 12 species of fly, three marine invertebrates, six fish species, seven 
mammals and chicken) and six eukaryotic systems, S. cerevisiae, C. elegans and D. melanogaster, zebrafish, mouse 
and human with mapped TSS data has been carried out using PromPredict. The program discriminates putative 
promoters from other genomic sequences using relative differences in average free energy and cut-offs based on 
GC content of the sequences (methods). PromPredict gives predictions in 5′ to 3′ direction and can be applied 
to the whole genome as well as shorter fragments (not less than 1000 nt). Promoter prediction has been carried 
out using two strategies; (i) 1001mer or 2001mer sequences and (ii) on whole genome. The analysis of shorter 
fragments has been performed for 48 systems with TLS data and six systems with TSS data. While the second 
approach, viz whole genome annotation, is utilized for S. cerevisiae. In all cases, the true positive region is con-
sidered to be 600 nt of length, extending from −500 nt upstream to +100 nt downstream, relative to TSS or TLS. 
Least stable positions (lsp) are considered to evaluate the predictions. Since this kind of analysis gives only true 
positives, only recall values are derived to assess the performance of PromPredict.

Performance of PromPredict on 48 systems with TLS data.  The 48 eukaryotic systems represent 
species closely related to the six systems with TSS data, along with distantly related systems such as marine inver-
tebrates. They constitute 14 species of yeast, five species of worm, and 12 species of fly, three marine invertebrates, 
six fish species, seven mammals and chicken (Table 1). The genomic size of these eukaryotes ranges from 10.8 mb 
(for S. mikatae) to 3197 mb (for elephant) while genomic GC varies from 33% (for C. dubliniensis) to 47% (for 

Figure 1.  DNA duplex stability profiles of S. cerevisiae, C. elegans, D. melanogaster, zebrafish, mouse, and 
human. The two vertical lines correspond to −150 and −30 position with respect to TSS. Promoter regions 
in yeast and invertebrates are less stable. Low free energy peaks are observed at −19, −11 and −114 for S. 
cerevisiae, C. elegans and D. melanogaster respectively. Vertebrate core promoters have two narrow low stability 
peaks near the vicinity of TSS. Two narrow peak regions are observed at −27, +2 for zebrafish, −29, +6 for 
mouse and −30 and +1 for human. The stability (average free energy) profiles of genomic promoter sequences 
are plotted in blue colour while those for shuffled promoter sequences are shown in green.
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lamprey). PromPredict has been tested on all these systems considering −500 to +100 region relative to TLS as 
true positive (TP) region and the recall values are calculated to evaluate the performance. Figure 3 shows the 
positional distribution of predictions (lsp) in −500 to +500 regions in different eukaryotic promoters. Since 
PromPredict gives predictions by considering 250 nucleotide (nt) sliding window (two 100 nt windows separated 
by 50 nt region) predictions are only obtained up to 750 nt position in a 1000 nt sequence. In all studied systems 
the frequency of lsp in upstream 50 nt bins is consistently higher as compared to downstream regions. In 14 
species of yeast, the lsp signal is observed immediately upstream of TLS (approximately −150 to −50). The pre-
dictions in worm and fly species are spread over the upstream region, extending till −500 and possibly beyond. 
Mammals such as human, mouse, cow and pig show higher predictions in far upstream regions, beyond −250, 
from the TLS. Overall the trends in the distribution of predictions are similar to that of the related systems with 
TSS position as reference.

The percentage recall values for the 48 systems range from 67.6 to 91.6 for C. briggsae (worm) and D. hansenii 
respectively (Table 1, Fig. 4). In yeast, the recall values span the widest range from 70.4 to 91.6. The 14 yeast spe-
cies show similar free energy profiles, but they differ considerably in their genomic GC content. The recall values 
for yeast species with high GC content such as S. bayanus, S. kluyveri and C. lusitaniae have lower recall values 

Figure 2.  Average free energy profiles of promoters regions in different eukaryotes belonging to fungi, 
invertebrates (worm and fly) and vertebrates. The promoter sequences (−500 to +500 relative to translation 
start site (TLS)) are downloaded from SGD, CGD, and UCSC genome browser. The promoter sequences with 
GC percentage range 40–45 have been plotted. The red, green, blue, cyan, black and pink color plots represent 
fungi, worm, fly, marine invertebrate, fish and mammal including bird respectively. The model systems S. 
cerevisiae, C. elegans, D. melanogaster, zebrafish, mouse, and human are highlighted with gray background. The 
trends in AFE profiles are unique to closely related classes.
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Genome size in Mb Genome GC % Promoter sequences Total predictions TP predictions TP genes Recall
Yeast
S. cerevisiae 12.5 38.4 6642 8113 6636 5386 81.1
S. bayanus 11.9 40.3 7216 8161 6415 5346 74.1
S. castellii 11.4 37 4655 5745 4528 3703 79.5
S. kluyveri 11 41.7 2932 2991 2433 2059 70.2
S. kudriazvevii 11.2 39.9 3736 4157 3431 2863 76.6
S. mikatae 10.8 38.2 3064 3773 3054 2465 80.5
S. paradoxus 11.9 38.6 7373 8578 6807 5608 76.1
C. albicans 14.5 33.7 5852 8628 6764 5063 86.5
C. dubliniensis 14.6 33.2 5933 8988 7114 5255 88.6
C. glabrata 12.1 38.5 5149 6913 5913 4575 88.9
C. lusitaniae 12.1 44.5 5797 5621 4867 4051 69.9
C. tropicalis 15.3 33.5 6119 8855 6714 5112 83.5
D. hansenii 11.5 35.4 6102 9100 7459 5592 91.6
L. elongisporus 15.5 37 5657 8337 6933 5076 89.7
Worm
C. elegans 98.3 35.4 32481 49575 34895 26474 81.5
C. brenneri 190.4 39.7 24989 28345 19993 16714 66.9
C. briggsae 108.4 37.7 31342 36290 25460 21187 67.6
C. remanei 145.4 38.5 26174 30728 21571 17874 68.3
C. japonica 166.3 39.9 22173 28033 19710 16061 72.4
Fly
D. melanogaster 143.7 42.1 17283 24152 18720 14536 84.1
D. annanassae 231 42.5 13677 18831 12513 10127 74.0
D. erecta 152.7 42.6 12395 15917 10887 8996 72.6
D. grimshawi 200.5 38.8 7861 10009 6822 5498 69.9
D. mojavensis 193.8 40.2 5329 7172 4982 3885 72.9
D. persimilis 188.4 45.2 7598 10487 7452 5812 76.5
D. pseudoobscura 152.7 45.3 31482 45081 32400 25117 79.8
D. sechellia 166.6 42.5 19059 25110 17308 13974 73.3
D. virilis 206 40.7 7920 10433 7238 5673 71.6
D. yakuba 165.7 42.4 2857 3951 2619 2105 73.7
A. gambiae 265 44.5 13901 17893 13044 10487 75.4
A. mellifera 250.3 34.1 21146 36526 23533 17690 83.7
Marine invertebrates
Sea hare 927.3 42 33340 41949 28465 23737 71.2
Sea squirt 116.7 36.1 729 1073 748 591 81.1
Lancelet 521.9 41.8 30538 41175 27789 23402 76.6
Fishes
Zebrafish 1371.7 36.7 14404 20036 13780 11329 78.7
Fugu 391.5 45.8 18679 25638 17793 14685 78.6
Lamprey 885.5 46.8 8724 11355 8087 6839 78.4
Medaka 869.8 42.3 29255 40229 27999 23106 79.0
Stickleback 446.6 42 38971 54946 37856 30987 79.5
Tetraodon 342.4 46.3 34618 50425 34481 27838 80.4
Mammals and bird
Mouse 2803.6 41.9 23878 34040 23118 18661 78.2
Human 2851.4 40.9 26800 41102 27229 21419 79.9
Chicken 1046.9 41.9 3707 5292 3353 2753 74.3
Cow 2983.3 42.3 7514 11110 7338 5849 77.8
Elephant 3196.7 40.9 16095 22427 15638 12580 78.2
Pig 2808.5 42.5 11953 18064 12403 9736 81.5
Platypus 1995.6 45.7 6166 8336 5969 4735 76.8
Rat 2616.4 42.4 8567 11987 8498 6817 79.6

Table 1.  Promoter prediction in 48 different eukaryotes. Promoter prediction in 14 species of yeast, five species 
of worm, 12 species of fly, three marine invertebrates, six fish species, seven mammals and chicken are carried 
out using PromPredict algorithm. The promoter regions, −500 to +500 relative to TLS (TLS at 0) are considered 
for this analysis and are retrieved from SGD, CGD, and UCSC genome browsers. The −500 to +100 relative to 
TLS is considered as true positive region.
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whereas genome with less GC content such as C. dubliniensis, C. albicans and D. hansenii show higher recall 
values. The correlation between genome GC and recall is observed to be −0.79 (p = 0.0007) (Supplementary 
Figure 2). The reason for this kind of relationship in yeasts may be due to the compactness of the genomes; the GC 
content of genome is directly reflected in GC content of promoter regions. There is no such relationship observed 
for genome GC and recall values for invertebrates or vertebrates. However, it should be noted that PromPredict 
performs better in less GC-rich genomes compared to high GC-rich genomes. The performance of PromPredict 
is weak in worm species except for C. elegans as they do not have a prominent free energy peak in the vicinity 
of TLS (Fig. 2). In mammals, PromPredict shows lower prediction accuracy when compared to invertebrates. 
Invertebrates and mammals have unique structural motifs (A-tracts in invertebrates and G-quadruplexes in 
mammals). Supplementary Figures 3 and 4 show the distribution of A-tracts and G-quadruplexes in 48 eukary-
otes. The PromPredict analysis is tested further in six eukaryotes with experimentally validated TSS data.

Performance of PromPredict on six systems with TSS data.  The six systems considered are S. cere-
visiae, C. elegans, D. melanogaster, zebrafish, mouse, and human, as representatives of different domains of life, 
ranging from single-celled yeast to complex mammalian systems. The whole genome GC content varies from 
~35% (in C. elegans) to ~42% (D. melanogaster and mouse). Prediction calculations are restricted from −500 to 
+500 regions for S. cerevisiae, C. elegans, and D. melanogaster while from −1000 to +1000 regions are considered 
in the case of vertebrates. The positional distribution of least stable position in 50 nt binned windows in six sys-
tems shows that the location of prediction varies in yeast, invertebrates, and vertebrates (Supplementary Figure 5).  
In S. cerevisiae, C. elegans and D. melanogaster majority of the predictions are located in the upstream vicinity 
of TSS (approximately −1 to −150 region) whereas in mammals, maximum number of predictions is observed 
beyond −300 region relative to TSS. Percentage recall values for the six systems are 85.1, 87.7, 91.9, 80.4, 67.2 
and 71.3 for S. cerevisiae, C. elegans, D. melanogaster, zebrafish, mouse, and human respectively (Table 2). Higher 
recall values are observed for lower eukaryotes as expected, but surprisingly good recall values are also obtained 
for mouse and human.

To check the distribution of predictions, different TP classes are defined with each class representing the 
promoter sequences having a prediction within 50 nt bins (shown in Supplementary Figure 5) spanning the 
regions −1 to −50, −51 to −100, −101 to −150, etc. The average free energy profiles of different TP classes 
(Supplementary Figure 6) indicate that each class has a broad low stability region corresponding to the bin 
position, in all systems. These distinct stability profiles in the promoter regions may explain the abundance of 
cis-regulatory elements in the proximal as well as distal regions of TSS28. The results presented here suggested 
that PromPredict can be potential algorithm for promoter prediction in eukaryotes. Further, the performance of 
PromPredict has been compared with EP3.

Comparison of PromPredict performance with EP3.  The performance of PromPredict has been com-
pared with the other free energy based promoter predictor EP316 which has been applied primarily to predict 
mouse and human promoters (in the −1000 to +1000 nt regions, where TSS is centred at ‘0’ position). Hence the 
True Positive (TP) region for both predictors is considered as spanning −1000 to +1000 region. The EP3 program 
uses base-stacking property to distinguish promoter regions from non-promoter sequences. For a given sequence 
of DNA, it calculates inverted base-stacking energy values over non-overlapping window of 400 base pairs size 
and calls a region as a promoter when the structural feature value crosses a prescribed threshold score, which is 
genome specific. So for EP3 every 400 nt window has a prediction, but with true or false prediction value assigned 
to it, while PromPredict gives only predicted promoter regions in a continuously sliding window. PromPredict 
provides majority of the predictions in −600 to +200 regions with respect to TSS in both mouse and human, 
whereas EP3 gives predictions in −200 to +200 regions. The distribution of closest TP predictions shown in 
Figure 5 suggests that both EP3 and PromPredict are good predictors of promoters. However, as seen from Table 3,  
the recall values for EP3 are very low as compared to PromPredict for both human and mouse. PromPredict gives 
recall values of 99% for both mouse and human whereas EP3 gives 46% and 36% recall for mouse and human 
respectively which are comparable to whole genome prediction values (recall ~41% with CAGE dataset) reported 
in their study16. The results suggest that PromPredict is a better predictor than EP3, even though latter has been 
trained on the human genome. Since the entire 2001 nt region spanning TSS is considered as ‘TP’ region, no false 
positives have been identified and hence ‘Precision’ values have not been obtained in this study. PromPredict 
algorithm was further tested in various classes of transcripts, promoter types and gene expression datasets.

Whole genome promoter prediction in S. cerevisiae.  S. cerevisiae is an important model organism for 
eukaryotes, its genome being compact with genes representing ~72% of the entire sequence. Promoter prediction 
has been carried out for all 16 chromosomes in both forward and reverse strands separately. The predictions are 
mapped to the −500 to +100 region relative to TSS of each gene. If the least stable position (lsp) of the predicted 
promoter region lies within the 500 upstream regions or 100 downstream of a known TSS, then it is considered 
as true positive. On the other hand, if a predicted promoter region occurs within the coding regions of the gene, 
then it is regarded as a false positive prediction. A true positive region may have more than one prediction, in 
that case, the nearest prediction (or lsp) to the TSS has been considered. PromPredict achieves ~80% recall and 
~37% precision in whole genome prediction (Table 4), which is comparable to its performance in prokaryotes17. 
Furthermore it has been shown in rice and Arabidopsis that a chunk of predictions in intronic regions given by 
PromPredict are potential cis-regulators28 but in S. cerevisiae, the intronic regions represent only a total of 3.8% 
of the ORFs. Predictions of various types of transcripts belonging to protein coding (ORF) as well as non-coding 
RNAs (CUTs, SUTs and other RNAs such as rRNA, tRNA and SnoRNA) has been considered for checking the 
performance of the algorithm. Precision, recall and F-score values shown in Table 4 suggest that PromPredict can 
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annotate putative promoters of different classes of transcripts. It should be noted that PromPredict identifies the 
promoters associated with SUTs and CUTs which are related to pervasive transcription12.

In yeasts, gene promoters can be classified into TATA-box containing and TATA- less promoters based on the 
presence of TATAWAWR consensus motif 33 in the vicinity of TSS. In S. cerevisiae ~17% of the gene promoters 
belong to TATA- containing class. The two categories of genes vary in their biological functions and gene expres-
sion. Further, the TATA-containing promoters are shown to be flexible while TATA-less promoters are rigid in 
different species of yeast34. In S. cerevisiae, TATA-containing promoters are less stable, more bendable and slightly 
curved compared to TATA-less promoters22. PromPredict has been tested on the promoters of two classes of 
genes. Recall and precision values are ~83% and ~43% for TATA-containing and ~77% and ~36% for TATA-less 
genes respectively (Table 4). Better performance of PromPredict for TATA-containing gene promoters compared 
to TATA-less promoters can be attributed to the lower stability of promoters22 as well as smaller median length of 
ORFs in the former class35. The analysis has also been extended for genes with variable expression.

Gene expression variability, which is essential for phenotypic variability, can be measured in the contexts of 
the environment, evolution, etc. Seven measures of variability, stochastic noise, responsiveness, stress response, 
trans variability, mutational variance, inter-strain variance and expression divergence have been used in an ear-
lier study36. The performance of PromPredict was compared with high and low expression variability classes 
in all above mentioned measures (Supplementary Table 1). Genes with high or low expression variability are 

Figure 3.  Positional distribution of predictions in promoter regions of different eukaryotes. The plot shows 
the distance of predictions from TLS in 50 nt bins for 48 different eukaryotes representing 14 species of yeast, 
five species of worm, 12 species of fly, three marine invertebrates, six fish species, seven mammals, and chicken. 
Color codes for the background of subplots (white for fungi, yellow for the worm, blue for fly, cyan for marine 
invertebrates, green for fishes and pink for mammals and bird) have been used to differentiate between different 
domains of life.
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associated with specific biological functions. To define two categories, first, we have sorted the genes, based on 
their corresponding expression values and created ten bins, each containing 10% of the gene dataset. Top and 
bottom percentile bins are regarded as low and high expression categories. Precision, recall and F-score values for 
the seven measures suggest that less and more responsive genes exhibit major differences (Fig. 6c). In our earlier 
study, we have shown that gene responsiveness is intimately linked to DNA structural properties of promoters, 
nucleosome occupancy and promoter architecture20. Figure 6a shows an example of difference in the associa-
tion of less responsive and more responsive genes with their biological function. The gene ontology (biological 
process) analysis shows that high responsive genes are linked to heterocyclic metabolic process, carbohydrate 
metabolism and response to chemical stimulus while being less responsive class associated with processes such as 
RNA metabolism, transcription, protein modification and transport etc. Distinct differences are also observed in 
free energy profiles of less responsive and more responsive genes. Less responsive genes have broader low stability 
region with two split peaks while more responsive ones have a comparatively narrow peak (Fig. 6b, additional 
file). More responsive genes (F-score = 57%) are better predicted by PromPredict compared to less responsive 
genes (F-score = 48%). The whole genome predictions suggest that PromPredict can be applied to yeast promot-
ers and can be helpful to differentiate various classes of promoters.

Conclusions
In silico promoter characterization is a great tool for identification of transcription initiation events, prediction 
of DNA-Transcription factor binding events and can help experimental molecular biologists to perform low-cost 
screening. Promoter prediction using in-house software PromPredict in the promoter sequences of six eukaryotic 
systems S. cerevisiae, C. elegans, D. melanogaster, zebrafish, mouse and human with transcription start site (TSS) 
data along with 48 eukaryotic systems with translation start site (TLS) data reveals that differential stability is a 
good criterion for promoter prediction. Whole genome prediction in S. cerevisiae using PromPredict suggests 
that it can be applied to yeast genomes, and its performance is observed to be different in distinct classes of genes 
such as TATA-containing and TATA-less, and variably expressed genes. Also, promoter prediction in 1001 nt long 
sequences flanking the TLS of 48 eukaryotes suggests that PromPredict is a good predictor of promoter regions in 
eukaryotes. Overall the recall values indicate that PromPredict can be applied for predicting promoter regions in 
different domains of life, even though it was initially designed for prokaryotes. PromPredict can be implemented 

Figure 4.  Performance of PromPredict in different eukaryotes. The box plot shows the recall in 14 species of 
yeast, five species of worm, and 12 species of fly, three marine invertebrates, six fish species, seven mammals and 
chicken. The −500 to +100 region relative to TLS is considered as true positive region in this study.

Promoter 
sequences Genome GC

Total predictions (−500 
to +500 w.r.t TSS at ‘0’) TP (−500 to 100) GC% in TP region TP genes Recall

S. cerevisiae 4912 38.3 11227 6312 37.6 4182 85.1

C. elegans 18457 35.4 28823 23063 35.1 16178 87.7

D. melanogaster 12898 42.1 18332 16232 39.8 11856 91.9

Zebrafish 5366 36.1 8220 5464 37.6 4313 80.4

Mouse 17451 41.9 22017 14281 54.6 11721 67.2

Human 29456 40.9 43043 27138 53.1 21009 71.3

Table 2.  Promoter predictions in six systems using “PromPredict” algorithm. Predictions in −500 to +500 
regions w.r.t TSS of S. cerevisiae, C. elegans and D. Melanogaster, zebrafish, mouse and human have been carried 
out. PromPredict performs better in the case of yeast and invertebrates as compared to mammals. The −500 to 
+100 region relative to TSS is considered as true positive region.
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Figure 5.  Distribution of ‘TP’ promoter predictions by PromPredict and EP3. Predictions in −1000 to +1000 
region relative to TSS for both mouse and human have been considered. PromPredict uses a 250 nt sliding 
window with the midpoint of a 100 nt window being considered as a prediction, if it satisfies GC based cut-offs, 
while EP3 prediction is given in a 400 nt non-overlapping window and defines the window as a true or false 
prediction based on genome-specific thresholds. In case more than one ‘TP’ prediction is obtained for a gene, 
then the position closest to TSS has been considered. Hence, the total number of TPs plotted corresponds to ‘TP 
genes’.

Promoter 
sequences

Total predictions in −1000 to 
+1000nt region w.r.t TSS at ‘0’ TP TP genes Recall

PromPredict
Mouse 17451 50834 50834 17301 99.1

Human 29456 90622 90622 29246 99.3

EP3
Mouse 17451 87255 13336 8052 46.1

Human 29456 147279 18810 10522 35.7

Table 3.  Comparison between performance of PromPredict and EP3. Prediction for −1000 to +1000 region 
w.r.t TSS for both human and mouse are used for prediction. The whole region −1000 to +1000 region has been 
used as a truepositiveregion16 to calculate recall values. PromPredict gives far better recall value when compared 
to EP3.

Number of 
sequences

Transcript 
median length TP FP TP promoters Precision Recall F-score

ORF 4912 1548 5317 9072 3934 37.0 80.1 50.6

Cuts 501 428 540 242 404 69.1 80.6 74.4

Suts 729 964 727 704 552 50.8 75.7 60.8

Other 300 1272 296 447 223 39.8 74.3 51.9

All 6442 1436 6880 10465 5113 39.7 79.4 52.9

TATA and TATA-less promoters

TATA 842 1384 978 1298 701 43.0 83.3 56.7

TATA-less 4070 1544 4206 7529 3139 35.8 77.1 48.9

Table 4.  Whole genome promoter prediction in S. cerevisiae using “PromPredict”. Promoter prediction for 
16 chromosomes for both forward and reverse strands has been carried out. −500 to +100 region relative to 
transcript start was chosen as a true positive region. The performance of PromPredict has been evaluated using 
the parameters precision, recall, and F-score. Precision is the ratio of number of true positives to the sum of 
true and false positive predictions, while recall is the ratio of the numbers of promoters with an identified true 
positive gene to the total number of promoters. TATA-containing and TATA-less gene promoters are defined 
based on the criterion of presence of TATA-box in −150 to −1 region relative to TSS22. Recall values for 
prediction of different transcripts belonging to ORF, non-protein coding CUTs, SUTs and other RNA classes 
(tRNA, rRNA, and SnoRNA) suggest that PromPredict is a good predictor for yeast promoter sequences. The 
algorithm performs better for TATA-containing gene promoters as compared to TATA-less promoters.
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without any specified cut-off to any genome, which makes it a very useful tool for global promoter annotation. 
The software is available as standalone as well as online version (http://nucleix.mbu.iisc.ac.in/prompredict/
prompredict.html). Implementation of various sliding window sizes can be done on user’s request.

Materials and Methods
Promoter sequence datasets.  Genome sequences of 48 different eukaryotes representing various domains 
of life are used in current study. Genomic sequences −500 and +500 relative to translation start site (TLS) for dif-
ferent species of invertebrates (Caenorhabditis elegans, C. brenneri, C. briggsae, C. remanei, C. japonica, Drosophila 
melanogaster, D. annanassae, D. erecta, D. grimshawi, D. mojavensis, D. persimilis, D. pseudoobscura, D. sechellia, 
D. virilis, D. yakuba, Anopheles gambiae, Apis mellifera, lancelet, sea squirt, sea hare), and vertebrates (zebrafish, 
fugu, lamprey, medaka, stickleback, tetraodon, mouse, human, chicken, cow, elephant, pig, platypus and rat) have 
been extracted from UCSC table browser37. Datasets for fungi are retrieved from the Saccharomyces Genome 
Database (SGD) (http://www.yeastgenome.org/) for Saccharomyces species (S. cerevisiae, S. castellii, S. bayanus, 
S. kluyveri, S. kudriazvevii, S. mikatae and S. paradoxus) and from the Candida Genome Database (CGD) (http://
www.candidagenome.org/) for Candida and closely related species (C. albicans, C. dubliniensis, C. glabrata, C. 
lusitaniae, C. tropicalis, Debaryomyces hansenii and Lodderomyces elongisporus). Total number of sequences and 
the whole genome GC percentages are listed in Table 1. Transcription start site (TSS) information of three verte-
brates, zebrafish, mouse, and human was obtained from Database of Transcription Start Sites (DBTSS), database 
version 7.038. TSS information of C. elegans and D. melanogaster was retrieved from modENCODE database 
(http://www.modencode.org/) and Graveley et al.39 transcriptome profiling studies respectively. In case of S. cer-
evisiae transcript positions with both ends mapped have been considered12. Transcript information of 4912 open 
reading frames (ORFs), 501 cryptic unstable transcripts (CUTs), 729 stable unannotated transcripts (SUTs) and 
300 other transcripts (dubious ORF, tRNA, SnoRNA, rRNA, etc.) is used for whole genome promoter prediction. 
The TSS positions of each system are mapped to respective genomes and sequences upstream as well as down-
stream are extracted. Genomic sequence data is downloaded from SGD, Wormbase (https://www.wormbase.
org/), Flybase (http://flybase.org/) and UCSC genome browser (https://genome.ucsc.edu/) for S. cerevisiae, C. 
elegans, D. melanogaster and vertebrates (zebrafish, mouse and human) respectively.

Promoter sequences used in this study are 1001 nt long, starting 500 nt upstream, extending up to 500 nt 
downstream of either TSS or translation start sites (TLS) and the position ‘0’ corresponds to TSS or TLS. 2001 
nucleotide long sequences are also considered for mouse and human promoter with TSS data.

TATA-containing and TATA-less promoters and gene expression variability data.  Consensus 
sequence TATA[A/T]A[A/T][A/G]33 has been considered to extract TATA-containing and TATA-less gene pro-
moters in S. cerevisiae. TATA-containing promoters are regarded as those sequences, which contain TATA-box 
within −150 to −1 region relative to TSS22. Gene expression data of S. cerevisiae for seven different gene expres-
sion variations namely stochastic noise, responsiveness, stress response, trans variability, mutational variance, 
inter-strain variance and expression divergence is taken from Choi and Kim 2009 study36. Top and bottom ten 
percentile expression variability values have been used to define genes with lowest and highest expression varia-
bility categories20.

Figure 6.  Performance of PromPredict in less responsive and more responsive genes. Top and bottom ten 
percentile list of gene (or) promoter sequences considered for this analysis. The dataset contains 459 genes in 
each category. (a) The frequency of genes in each class of biological process has been plotted to compare the 
two classes of genes. The less responsive genes are overrepresented in few biological processes compared to 
more responsive genes. The genes categorized in the gene ontology GO SLIM categories were retrieved from 
Saccharomyces genome database (http://www.yeastgenome.org/). (b) AFE profiles plotted using 15 nt window 
shows the differences in the distribution of low stability regions for two classes of gene promoters. (c) Precision 
and recall values shown as bar plot suggest that PromPredict comparatively a better predictor for more 
responsive genes. The −500 to +100 region relative to TSS is considered as true positive region.

http://nucleix.mbu.iisc.ac.in/prompredict/prompredict.html
http://nucleix.mbu.iisc.ac.in/prompredict/prompredict.html
http://www.yeastgenome.org/
http://www.candidagenome.org/
http://www.candidagenome.org/
http://www.modencode.org/
https://www.wormbase.org/
https://www.wormbase.org/
http://flybase.org/
https://genome.ucsc.edu/
http://www.yeastgenome.org/
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DNA duplex stability or Free energy calculation.  DNA duplex stability is referred to the ability of DNA 
to open up or melt, depends on its hydrogen bonding and base pair stacking. The dinucleotide step energy values 
corresponding to the 16 dinucleotide steps are taken from melting studies on 108 oligonucleotides40. Free energy 
calculations are computed using 15 nucleotide sliding window27.

Promoter Prediction.  Promoter prediction analysis in 48 different eukaryotic systems is carried out using 
in-house algorithm “PromPredict”17,27. The promoter predictions in mouse and human are also achieved using 
other structure-based algorithm EP316.

PromPredict.  PromPredict discriminates between promoter and non-promoter sequences by using the most 
informative energy related feature, DNA duplex stability. The algorithm considers the Gibbs free energy change 
(average free energy) of a DNA stretch, which is computed as a sum of the constituent of dinucleotides over two 
100 nt (or 50 nt) segments separated by 50 nt window, and the difference of energy values between two segments 
are evaluated and GC percentage based cut-off values are used to call putative promoter regions17. The scoring 
function D(n) is used to look for differences in free energy of the two neighbouring regions with respect to every 
nucleotide position ‘n’ (equation 1). The average energy is assigned to the centre position ‘n + 50’ corresponding 
to each 100 nt window.

D n E n E n( ) 1( ) 2( ) (1)= −

+ = ∑ ∆ °+
E n
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100 (2)
n
n 100

+ =
∑ ∆ °+

+
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The functions E1(n + 50) and E2(n + 50) correspond to the mean free energy for 100 nt segments starting 
from nucleotide position ‘n’ and ‘n + 150’, respectively (equations 2 and 3). D(n) is the difference between E1 and 
E2. A stretch of DNA sequence is assigned as a promoter only if its average free energy (E1) and the difference in 
free energy (D(n)) as compared to its neighbouring downstream region are greater than the chosen cut-off values 
for the respective %GC range, as defined in the TSS- TLS based cut-off values17. ‘PromPredict’ outputs predicted 
promoter region, start and end of the predicted promoter region along with the least stable position (lsp) in the 
predicted promoter region. In the current study, the ‘lsp’ of a predicted region has been chosen as a measure for 
defining true and false predictions.

The algorithm is scalable and flexible, allowing the setting of sliding window sizes, such as [50 + 25 + 50], 
[100 + 50 + 100] or [200 + 50 + 200]. The default [100 + 50 + 100] window size restriction has been implemented 
based on previous analyses27,41. However, a statistical analysis on efficiency of “PromPredict” algorithm for vari-
ous window sizes has been presented as boxplot (Supplementary Figure 7). The recall, precision and F-score were 
calculated for S. cerevisiae chromosomes (16) for both forward and reverse strands separately. It should be noted 
that the default window is best suited for both quantitative (recall) and qualitative (precision) analysis as revealed 
by the F-scores. Notably, with the bigger sliding window (such as 200), the computational time and ambiguity in 
assigning promoter location increases.

Easy Promoter Prediction Program (EP3).  The EP3 program implements a base-stacking property to 
demarcate promoter regions from other genomic regions. For a given sequence of DNA, it computes inverted 
base-stacking energy values over a predefined window size in non-overlapping fashion and calls a DNA fragment 
as a promoter when the feature value crosses the genome specific threshold score10,16. EP3 uses two empirically 
determined parameters: length of the window and deviation of feature value from genomic average. Window size, 
400 has been defined as optimal, and threshold-values of base-stacking are predetermined for genome size. The 
EP3 program is available at the site: http://bioinformatics.psb.ugent.be/webtools/ep3.

Evaluation of performance.  To assess the performance of PromPredict or EP3, evaluating parameters, 
recall, precision and F-score (harmonic mean of recall and precision) have been used (equations 4–6). These 
measures for the predictions are calculated using the following formulae:

=
.Recall No of gene promoters with an identified True Positive genes

Total number of genepromoters (4)

=
+

Precision True Positives
True Positives False Positives (5)

‐ ⁎ ⁎F Score Precision Recall
Precision Recall
2

(6)
=

+

Several true positive regions have been used for eukaryotes for assessing the performance of promoter predic-
tors such as [−1000, +1000] nucleotide42, [−500, +500] nucleotide and [−500, +100] nucleotide28. In this study, 

http://bioinformatics.psb.ugent.be/webtools/ep3
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the [−500, +100] nucleotide region is considered for evaluating the performance of PromPredict for both TSS 
(six systems) and TLS (48 systems) datasets. To compare PromPredict with EP3, the true positive (TP) region is 
chosen as [−1000, +1000] as the latter program gives a prediction in 400 nt non-overlapping windows. False pos-
itive (FP) prediction is regarded as the prediction outside the TP region, but for whole genome predictions, only 
the predictions that lie in the coding regions are chosen, and other predictions are omitted. The closest prediction 
for a TP gene is considered as a strong signal, which might correspond to the core promoter region28.
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