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Abstract
Atrial natriuretic factor and brain natriuretic peptide are two important biomarkers in clinical cardiology. These two natriuretic 
peptide hormones are encoded by the paralogous genes Nppa and Nppb, which are evolutionary conserved. Both genes are 
predominantly expressed by the heart muscle during the embryonic and fetal stages, and in particular Nppa expression is 
strongly reduced in the ventricles after birth. Upon cardiac stress, Nppa and Nppb are strongly upregulated in the ventricular 
myocardium. Much is known about the molecular and physiological ques inducing Nppa and Nppb expression; however, 
the transcriptional regulatory mechanisms of the Nppa–Nppb cluster in vivo has proven to be quite complex and is not well 
understood. In this review, we will provide recent insights into the dynamic and complex regulation of Nppa and Nppb dur-
ing heart development and hypertrophy, and the association of this gene cluster with the cardiomyocyte-intrinsic program 
of heart regeneration.

Keywords  Atrial and brain natriuretic peptide · Epigenetics · Gene cluster · Heart development · Heart regeneration · 
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Abbreviations
ANF	� Atrial natriuretic factor
BAC	� Bacterial artificial chromosome
BNF	� Brain natriuretic peptide
BZ	� Border zone
CTCF	� CCCTC-binding factor
Irx	� Iroquois
PE	� Phenylephrine
Pol II	� RNA polymerase II
TADs	� Topologically associated domains

Introduction

Pathological stress in the heart results in physiological 
changes accompanied by alterations at both the transcrip-
tional and epigenetic level. These stresses include cardiac 
hypertrophy and ischemic injury (myocardial infarction). 
During hypertrophy, the myocardium undergoes adverse 
structural remodeling that can lead to heart failure, the heart 
being unable to meet the circulatory demands of the body 
[1]. Myocardial infarction leads to loss of muscle mass, scar 
formation and compensatory hypertrophy [2]. A commonly 
observed response during cardiac hypertrophy is reactiva-
tion of the “fetal gene program”. Normally, these fetal genes 
are abundantly expressed in the prenatal heart but become 
downregulated after birth. Once the heart undergoes patho-
logical stress, the expression of these genes is induced and 
this response is thought to play a role in the process of car-
diac remodeling and compensation [3–6]. The induction, 
however, may be orchestrated by a stress-induced regulatory 
mechanism different to that of the developmental regulatory 
program [7, 8].

Nppa and Nppb, cardiac genes encoding atrial natriu-
retic factor (ANF) and brain natriuretic peptide (BNP), 
respectively, belong to this fetal gene program. Both genes 
are abundantly expressed in the atrial and ventricular 
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myocardium during embryonic and fetal stages. After birth, 
both genes remain expressed in the heart, however, postnatal 
expression of Nppa is strongly downregulated in the ventri-
cles [9–11]. Upon stress, the pro-peptides are released by 
the heart and the ventricular expression of both Nppa and 
Nppb is strongly increased in the cardiomyocytes [12, 13]. 
Because of this feature, the gene products, especially NT-
pro-BNP that has a longer half-life compared to BNP and 
ANF, serve as reliable molecular markers to assess cardiac 
disease and heart failure progression [14, 15]. Additionally, 
Nppa has also become an important marker for myocardial 
chamber differentiation and congenital heart defects [16, 
17]. The importance of Nppa and Nppb in heart develop-
ment and disease has initiated in-depth studies on the tran-
scriptional regulatory mechanisms of these genes. Insights 
into these mechanisms have already substantially increased 
our understanding of the molecular events underlying heart 
development and pathological stress of the heart [18].

The paralogous genes Nppa and Nppb are positioned in 
close proximity to each other and organized in an evolution-
ary conserved gene cluster [19–21]. The structural organi-
zation and regulation of Nppa and Nppb expression have 
proven to be more complex than was initially thought [7, 8, 
22–24]. Therefore, the identification and functional analysis 
of regulatory sequences of the Nppa–Nppb cluster has been 
challenging. Nevertheless, current genomic technologies 
applied to study epigenetic landscapes, chromatin structure 
and gene regulation (e.g. chromatin immunoprecipitation 
sequencing and chromatin conformation capturing com-
bined with transgenic reporter mice) has shed light on the 
regulatory mechanisms of the Nppa–Nppb cluster in vivo [8, 
13, 23, 24]. In this review, we will discuss recent progress 
in deciphering the regulatory landscape of the Nppa–Nppb 
cluster during heart development and disease.

Gene clusters: conceptual framework 
of sharing and co‑regulation

The spatial and temporal pattern of gene expression is regu-
lated through cis-regulatory DNA elements (e.g. promot-
ers, enhancers, insulators, repressors) that function in strictly 
context-dependent manners. The transcriptional machinery 
that drives cell-specific gene expression involves the binding 
of transcription factors and co-factors at specific locations 
on the DNA via sequence-dependent affinity. This process 
is coordinated by epigenetic motifs and signatures, and 
the three-dimensional arrangement of chromatin, which is 
responsible for bringing necessary components in spatial 
proximity [18, 25–27]. During evolution, the natriuretic pep-
tide genes Nppa and Nppb have arisen from the ancestral 
CNP-3 gene through the process of gene duplication fol-
lowed by divergence [28]. Nppa and Nppb are positioned 

in close proximity to each other in the mammalian genome, 
separated by only several kilo base pairs (kbp) of DNA 
sequence. Comparative studies have demonstrated that these 
paralogous genes show very similar expression patterns in 
the developing atrial and ventricular chamber myocardium 
of mouse, rat and human. In contrast, birds have lost the 
Nppa gene, and their Nppb gene is expressed at high levels 
in both atria and ventricles [9, 29]. Both Nppa and Nppb are 
upregulated in response to hypertrophy [30] and in the injury 
border zone after myocardial infarction [13]. These common 
features of Nppa and Nppb suggest that this gene cluster 
may contain cis-regulatory sequences shared by both genes, 
and a topology that facilitates co-regulation during develop-
ment and stress. Sharing of regulatory sequences and co-
regulation of clustered paralogous genes has been proposed 
previously; however, to date only few examples have been 
comprehensively described, including the Iroquois (Irx) and 
Hox gene clusters.

The Irx gene cluster is present in both invertebrates and 
vertebrates. In mammals, the Irx genes are divided into two 
paralogous clusters, IrxA (Irx1, Irx2 and Irx4) and IrxB 
(Irx3, Irx5 and Irx6), located on different chromosomes 
[31]. In both clusters, the orientation of the three genes is 
strictly conserved and organized. The developmental expres-
sion patterns of clustered genes Irx1 and Irx2, and of Irx3 
and Irx5, respectively, are highly similar [32]. All six genes 
are expressed in specific patterns in the heart, and Irx3, 4 
and 5 are involved in cardiac development and conduction 
[33, 34]. Extensive screening of the genomic regions of the 
IrxA and IrxB cluster revealed highly conserved non-coding 
regions with cis-regulatory elements. These cis-regulatory 
elements physically interact with the promoters of the first 
two genes of the Irx gene clusters. Furthermore, Irx1/Irx2 
and Irx3/Irx5 are engaged in promoter–promoter interaction 
and this explains why their expression patterns overlap dur-
ing development. The third genes Irx4 and Irx6, respectively, 
do not seem to interact with the other two genes of their 
cluster or their shared regulatory elements and consistently 
show distinct expression patterns [35].

Hox genes play a crucial role in vertebrate anterior–poste-
rior patterning and limb development [36–38]. In mammals, 
39 Hox genes are found organized in four genomic clusters 
(HoxA, B, C and D) that are localized on different chromo-
somes. The regulation of Hox genes is controlled by shared, 
distant regulatory regions. Moreover, the epigenetic state 
and chromatin organization of the Hox clusters determine 
the function of regulatory elements in the regulation of the 
Hox genes [39, 40]. The regulation of HoxD cluster during 
limb development has been shown to be tightly controlled by 
a collection of regulatory elements distributed over two gene 
deserts (a regulatory archipelago) on either side of the HoxD 
cluster. Through conformational changes in the HoxD locus, 
these regulatory elements are brought together to regulate 
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HoxD gene transcription and coordinate the transition from 
early to late limb development [41–43].

The examples of the Irx and Hox gene clusters provide a 
conceptual framework for co-regulation by shared cis-regu-
latory elements in the locus or even at long distance. It has 
been proposed that the structural stability of these clusters 
throughout evolution is maintained by the sharing of con-
served regulatory elements by the genes within the cluster 
[44]. More recently, other loci harboring clustered paralo-
gous genes that are functionally important for heart devel-
opment and function have come to our attention, including 
Tbx3–Tbx5, Scn5a–Scn10a and Nppa–Nppb, and have pro-
vided insights into the role of structure and composition of 
the chromatin in genomic function and gene transcription 
[8, 45, 46].

Spatial and functional organization 
of Nppa–Nppb cluster

With the development of new technologies, different 
approaches are being used to study loci with respect to their 
regulatory landscapes of gene loci. These include functional 
testing of regulatory elements [enhancer and bacterial arti-
ficial chromosome (BAC) transgenesis], chromosome con-
formation capturing, analysis of epigenetic states (ChIP-seq, 
etc.), and have improved our understanding of the regulatory 
domains controlling the Nppa–Nppb cluster [8, 13].

In gene clusters such as Irx and Hox, the promoters 
and their shared distal regulatory regions must be brought 
together physically in order to regulate transcriptional activ-
ity. In general, regulatory elements find their target genes 
within topologically associating domains (TADs). TADs are 
chromosomal regions, typically about 1 Mbp in size, within 
which sequences preferentially contact each other. They are 
separated by boundary regions for CCCTC-binding factor 
(CTCF) binding sites [47–49]. It has been established that 
chromatin loops direct enhancers to target genes, thereby 
creating a three-dimensional regulatory landscape [25, 
50, 51]. High-resolution chromatin conformation captur-
ing (4C) revealed that the intergenomic interactions of the 
Nppa–Nppb cluster are confined to a domain between the 
two closest CTCF sites, which is a stretch of approximately 
60 kbp [8]. Notably, the chromatin conformation of Nppa 
and Nppb differs only little between heart tissue and other 
tissues, indicating it is permissive, existing in a pre-formed 
3D conformation, and not instructive and cell-type depend-
ent [8, 25]. This phenomenon of pre-formed chromatin loops 
has been demonstrated for other loci as well, including the 
Tbx3–Tbx5 cluster [52].

Although the exact role of the CTCF sites in Nppa–Nppb 
regulation has yet to be investigated, it is thought that 
CTCF sites maintain the stability of the regulatory domain. 

Previously it has been described that deletion of CTCF 
sites in the Hox gene clusters (HoxA and HoxD) disrupted 
the chromatin conformation and altered the regulatory and 
transcriptional activities in the TADs [53, 54]. Similarly, 
changing the orientation of a CTCF site influences DNA-
looping interactions, consequently leading to transcriptional 
misregulation [54, 55]. Recent studies of the functional role 
of CTCF in chromatin folding and transcriptional regula-
tion describe that CTCF is indeed required for the formation 
and maintenance of loops between CTCF target sites and 
architecture of TADs at the genomic level [49, 56, 57]. Con-
ditional depletion of CTCF in mouse embryonic stem cells 
caused insulation defects at most TAD boundaries and abro-
gation of chromatin loops between CTCF sites. This resulted 
in altered enhancer–promoter interactions across the DNA 
region leading to upregulation of a subset of genes that were 
previously insulated from neighboring regulatory elements. 
In addition, it has been suggested that CTCF might also have 
a direct impact on transcriptional regulation independent of 
loops and chromatin folding. CTCF sites were often found 
near transcription start site and were mostly in direct orienta-
tion with transcription of the downregulated genes prior to 
CTCF depletion. In contrast, CTCF depletion did not affect 
genomic compartments. Restoring CTCF levels reversed the 
chromatin interactome to its normal state [57].

The accessibility of chromatin relies on structural fea-
tures, which is tightly controlled by epigenetic processes 
including DNA methylation, histone modifications and 
ATP-dependent chromatin remodeling. Particular epige-
netic mechanisms are associated with active promoters 
and cis-regulatory elements. In adult cardiomyopathy, 
including cardiac hypertrophy and heart failure, epige-
netic changes such as histone acetylation and methyla-
tion are observed in response to cardiac stress. This can 
contribute to transcriptional reprogramming in the heart 
and changes in cardiac gene expression [58]. Genome-
wide analysis of the epigenetic signature of hypertrophied 
hearts of mice showed that multiple genes implicated in 
hypertrophic cardiomyopathy and associated enhancers 
are modified through histone-3 lysine-27 acetylation 
(H3K27ac), a modification associated with activation 
[59]. In patients with heart failure, reactivation of NPPA 
and NPPB is correlated with demethylation of H3K9 
at their promoter regions, although a modest increase 
in H3K27ac could also be observed [60]. The cofactor 
p300, important in acetylation of histones, promotes car-
diac remodeling (e.g. left ventricular dilation) in infarcted 
mouse hearts through interaction with transcription factor 
Gata4 [61]. Furthermore, p300 is found to be recruited 
to the Nppa and Nppb promoter, which is associated with 
increased histone acetylation such as H3K27ac [62]. 
Within the Nppa-Nppb regulatory domain, physical inter-
actions are found between cis-regulatory regions and the 
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promoters of Nppa and Nppb. These regulatory sequences 
function to control either developmental or stress-respon-
sive expression of Nppa and Nppb. Analysis of the dis-
tribution of H3K27ac and RNA polymerase II (Pol II) 
across the Nppa–Nppb locus revealed that epigenetic 
signatures within the regulatory domain change during 
cardiac stress. During pressure overload-induced cardiac 
hypertrophy in mice, H3K27ac is enriched near and at 
the promoters of Nppa and Nppb, whereas Pol II occu-
pation, associated with active promoters and enhancers, 
changed much less. Even though no significant change in 
Pol II occupation has been observed, both promoters may 
still be involved in stress-induced expression of Nppa and 
Nppb. In the conserved upstream regulatory region that 
is associated with fetal expression of Nppa, the levels of 
H3K27ac and Pol II are decreased upon stress [7, 8, 63]. 
It should be noted that in the normal adult heart, this 
regulatory region is already highly occupied by H3K27ac 
and presumably maintains Nppb expression after birth 
(Fig. 1a) [8, 59].

Regulation of the Nppa–Nppb gene cluster 
during development and hypertrophy

Genome-wide association studies have found a correlation 
between genetic variants identified in the NPPA–NPPB locus 
and the levels of natriuretic peptides in blood of patients 
with cardiac dysfunction. A variant (rs5065) in the coding 
region of NPPA [64] and an intronic variant (rs1023252) 
in CLCN6 [65] are associated with NT-pro-BNP levels in 
severe heart failure patients. Furthermore, genetic variants 
identified upstream and downstream of NPPB has proven to 
significantly affect levels of BNP [66]. Together, this suggest 
that variants in the NPPA–NPPB regulatory domain (and in 
linkage disequilibrium with the reported variants) influence 
regulatory DNA function. Genetic variants associated with 
blood pressure and hypertension at the AGTRAP–PLOD1 
locus are suggested to influence the expression of multiple 
genes, including NPPA and NPPB, within this region [67]. 
These genetic variants are in linkage disequilibrium with 
the NPPA–NPPB regulatory domain and, therefore, may 
only report the presence of variants influencing regulatory 
DNA function of NPPA and NPPB during disease. Indeed, 

Fig. 1   The regulatory land-
scape of the Nppa-Nppb locus. 
a Developmental and stress 
response regulatory regions 
of Nppa and Nppb are located 
within a 60 kbp domain between 
two CTCF sites arranged in 
a convergent orientation [49, 
91]. Purple, shared regulatory 
regions of Nppa/Nppb; green, 
regulatory regions of Nppa; 
red, regulatory regions of 
Nppb. Gray bars, BAC clones. 
Displaying EMERGE track for 
heart and H3K27ac track for 
mouse cardiomyoyctes [92, 93]. 
b Nppa and Nppb are regulated 
by different regulatory ele-
ments during stress. The Nppa 
promoter interacts with Nppb 
promoter and several distal and 
proximal regulatory elements. 
Stress-induced expression of 
Nppb is regulated by a upstream 
regulatory region and the 
Nppa/Nppb promoters
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it has been reported that genetic variants positioned within 
the regulatory domain of NPPA–NPPB locus potentially 
affect gene expression by a yet undefined mechanism [68]. 
The biological and clinical relevance of Nppa and Nppb is 
probably the major reason the transcriptional regulation 
of these genes has been the subject of several studies [7, 
8, 22–24]. Nppa and Nppb are reactivated in the stressed 
myocardium as part of an induction of a “fetal gene pro-
gram”. The question remained whether the transcriptional 
mechanisms involved in hypertrophic stress induction are 
the same as those governing the fetal gene program. Previ-
ously, it has been suggested that the proximal Nppa promoter 
mediates the developmental expression pattern of Nppa, 
although later it was found that its capacity to drive ven-
tricular expression was largely absent [7, 22, 69, 70]. Fur-
thermore, this promoter is inducible in cell culture systems, 
but not sufficient for stress-induced Nppa expression in vivo, 
suggesting the involvement of other distal regulatory ele-
ments [7, 22]. Furthermore, ventricular expression of Nppa 
was found to be driven by distal sequences, whereas stress 
induction required more proximal sequences, demonstrating 
that the transcriptional mechanisms driving fetal expression 
and stress-induced expression are different [7].

The Nppa promoter has been used as a model for under-
standing transcriptional gene regulation during cardiac 
development [9, 69, 71, 72]. It was thought that the Nppa 
promoter drives embryonic and fetal Nppa expression 
in the atria and ventricles but different fragment sizes of 
the promoter could not recapitulate the correct ventricu-
lar expression [7, 70]. Several regulatory elements that lie 
upstream of the proximal Nppa promoter region appeared 
to be involved in the ventricular expression of Nppa during 
development. Two reporter BAC clones with 85 kbp of over-
lapping sequences (BAC336-EGFP and BAC337-EGFP) 
(Fig. 1a) covering the Nppa–Nppb locus were used in an 
attempt to define the distal regulatory regions that control 
the pre- and postnatal expression of Nppa in the ventricles 
(Fig. 1a). BAC337-EGFP was shown to lack the regula-
tory sequences necessary for Nppa ventricular activity, 
and unique sequences located in BAC336-EGFP (− 141 to 
– 27 kbp relative to Nppa) drove Nppa-like expression pat-
terns during development [7]. The potential of this regula-
tory region (− 141 to – 27 kbp relative to Nppa) in mediating 
the developmental expression of Nppa was further supported 
by analysis of Nkx2–5 occupancy and function in vivo. The 
transcription factor Nkx2–5 has a major role in the regu-
lation of gene expression in the developing heart. In vivo 
screening of the regulatory elements within the Nppa–Nppb 
locus in inducible Nkx2–5 knockout mice showed a dimin-
ished expression in the heart, indicating an essential role 
of Nkx2–5 in the regulation of Nppa. Indeed, 3C analysis 
showed that these regulatory elements enriched for Nkx2–5 
interact with the Nppa promoter. However, stress-induced 

expression of Nppa did not depend on Nkx2–5 transcrip-
tional regulation [23]. Further studies on BAC336-EGFP 
and BAC337-EGFP revealed that both were able to induce 
reporter gene expression upon hypertrophic stress. This 
demonstrates that both BAC clones contain regulatory 
sequences that mediate stress-induced Nppa expression. 
These sequences are thought to be located in the overlapping 
85 kbp region and downstream of Nppa (Fig. 1a) [7]. Analy-
sis of both BAC clones revealed that the distal regulatory 
region is responsible for Nppa expression in the embryonic/
fetal and adult heart, whereas the proximal regulatory region 
is required for stress-induced Nppa expression.

The development and stress-induced regulatory elements 
of Nppb were less well described compared to Nppa. There 
is evidence that the promoter constitutively drives weak 
Nppb expression in the normal and stressed heart [73, 74]. 
As described below, later studies showed other regulatory 
elements within the Nppa–Nppb locus are required [8].

Recently, a more extensive characterization of the spa-
tial and functional organization of the Nppa–Nppb cluster 
in vivo has been provided. Based on H3K27ac and Pol2 
ChIP-seq data, heart-specific regulatory regions were 
defined in the Nppa–Nppb locus (Fig. 1a), which were func-
tionally tested in a transgenic mouse model carrying a BACs 
with two modifications. The function of the Nppa–Nppb 
cluster can be monitored simultaneously for both Nppa and 
Nppb due to the insertion of the Luciferase and Katushka 
genes at the translation start sites of these genes, respec-
tively, within the BAC. Both reporter genes recapitulate 
the tissue-specific and developmental pattern of expres-
sion and stress response of endogenous Nppa and Nppb 
[8, 13]. Analyses of the BAC transgenic mice showed that 
developmental expression of Nppa and Nppb is mediated 
by shared cis-regulatory elements located approximately 
27 kbp upstream of Nppa (Fig. 1a). This regulatory region, 
roughly 10 kbp, is enriched for epigenetic features includ-
ing heart-specific DNaseI hypersensitivity sites and histone 
modifications, and binding sites for various cardiac tran-
scription factors (e.g. Nkx2–5 and Gata4). Furthermore, this 
regulatory region is being described as a “super enhancer” 
[75, 76]. According to the conformation of the Nppa–Nppb 
locus, this region contacts the promoters of both genes, sug-
gesting that regulatory elements within this region drive the 
fetal ventricular expression of Nppa and Nppb. Furthermore, 
this region might also contain regulatory elements involved 
in Nppb expression during hypertrophic stress in the adult 
heart (Fig. 1a, b) A 650-bp fragment located in the same 
region was implicated in stress-induced Nppa expression 
[24]; however, the BAC transgenesis study indicates it may 
be involved in Nppb regulation. This finding is further sup-
ported by analysis of transgenic lines with BAC337 that 
lacks this region, in which strong EGFP expression (report-
ing for Nppa) was observed in stressed ventricles [7, 8, 24]. 
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However, it is uncertain whether this 650 bp fragment is 
involved in induction during hypertrophy as no response has 
been observed in vitro after stimulation with phenylephrine 
(PE) or hypertrophic stress in transgenic mice with this frag-
ment (Sergeeva, unpublished data).

Which particular regulatory elements drive stress-induced 
Nppa expression remains unresolved. There are indications 
that the Nppb promoter might be involved; its deletion 
within the double reporter BAC rendered Luciferase/Nppa 
non-responsive to hypertrophy. However, the Nppb pro-
moter alone was not sufficient to drive Nppa expression 
upon hypertrophic stress. The Nppb promoter is necessary 
for the embryonic/fetal and adult expression of Nppb itself, 
but not required for hypertrophic induction. Nevertheless, 
the Nppb promoter drives Luciferase expression in rat ven-
tricular cardiomyocytes after PE stimulation. Together, these 
data suggest that the Nppb promoter is part of a complex 
of proximal and distal regulatory elements, all required 
in vivo, whereas several of these elements may drive stress-
responsive expression when tested outside their endogenous 
context (Fig. 1a) [8].

Nppa–Nppb cluster locus containing 
conserved regulatory elements activated 
during zebrafish heart regeneration

Myocardial infarction causes loss of heart muscle. In con-
trast to lower vertebrates like fish and amphibians, the mam-
malian heart has a highly insufficient capacity to regenerate 
and restore this muscle tissue. Studies on zebrafish heart 

regeneration have demonstrated through genetic lineage trac-
ing that proliferating cardiomyocytes are the source of the 
newly formed cardiomyocytes. These (adult) cardiomyocytes 
have first undergone dedifferentiation, which is characterized 
by disassembly of sarcomeric structures and re-expression 
of genes such as Gata4 involved in heart development and 
Nppa/Nppb [77–80]. Recently is has been shown that a simi-
lar regenerative response is found in neonatal mice, in which 
the cardiomyocytes retain for a short period of time the abil-
ity to proliferate [81]. Cardiomyocyte renewal in adult mice 
(and humans) is very limited under normal conditions with 
a less turnover rate of less than 1 percent per year [82, 83]. 
In adult mouse myocardial infarction models, cardiomyocyte 
proliferation has been observed, but too low to regenerate 
the injured heart [82, 84, 85].

During fetal and neonatal development, cardiomyocytes 
rapidly proliferate and, therefore, the myocardium can 
regenerate upon injury. From studies aimed at understand-
ing the regulation of cardiomyocyte proliferation and regen-
eration it has been suggested that cardiomyocyte-intrinsic 
programs can promote these regenerative processes upon 
cardiac injury [86]. Exploiting the transcriptional dynam-
ics during zebrafish heart regeneration suggest that these 
transcriptional regulatory mechanisms recapitulate the 
fetal gene program [79, 87]. Furthermore, the spatial gene 
expression profile of a cryo-injured zebrafish heart revealed 
the transcriptional activation of nppa and nppb in a district 
region (the border zone) within the heart where also regen-
eration occurs (Fig. 2a) [80]. Interestingly, reactivation of 
Nppa and Nppb is also restricted to the border zone of an 
injured mouse heart (Fig. 2b) [10]. This raises the question 

Fig. 2   Expression of zebrafish nppa and nppb and of mouse Nppa mRNA in sections of an injured zebrafish and mouse heart. a, b Both fetal 
genes are reactivated in the border zone (bz) after cryo-injury and myocardial infarction, respectively [10, 80]
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whether conserved stress responsive regulatory elements for 
Nppa/nppa and Nppb/nppb exists in the mouse and zebrafish 
heart that are associated with an intrinsic mechanism for 
cardiomyocyte renewal. Only recently, evidence suggests 
that conserved regulatory elements may indeed be present 
that can induce the transcriptional programs for heart regen-
eration upon tissue damage. In the zebrafish leptin b locus 
a distal regulatory element has been identified that directs 
gene expression after injury, including fin amputation and 
cryo-injury [88]. This regulatory element and response of 
leptin are not conserved in the mouse, and the regulatory 
element is active in the endocardium. Nevertheless, the 
leptin-linked regulatory element was activated in an injured 
neonatal mouse heart. Furthermore, the leptin-linked regu-
latory element could activate Nrg1/ErbB2/ErbB4 pathway 
to promote cardiomyocyte proliferation after re-sectioning 
of the zebrafish heart [88]. Recent histone H3.3 replace-
ment profiling of regenerative zebrafish hearts uncovered 
thousands of putative regenerative-responsive enhancers in 
the fish genome [89]. These findings raise the possibility 
that the Nppa–Nppb cluster might also harbor conserved 
regulatory elements which are activated after cardiac injury 
that can initiate transcriptional programs for dedifferentia-
tion and proliferation of adult cardiomyocytes. Studying the 
transcriptional regulation of Nppa and Nppb during disease 
may uncover these regulatory elements.

Conclusion and future perspectives

The natriuretic peptides ANF and BNP are widely used 
as biomarkers in various cardiovascular diseases in clini-
cal settings. Studies of the structure and function of the 
Nppa–Nppb cluster has provided novel insights into the 
transcriptional regulatory mechanisms of Nppa and Nppb 
expression during heart development and disease. The tran-
scriptional regulation of Nppa and Nppb has proven to be 
complex. Nppa, which is highly expressed during ventricu-
lar stress, is controlled by several different proximal and 
distal regulatory elements, including the Nppb promoter, 
to regulate its dynamic expression in the embryonic/fetal 
and adult heart. Nppb expression relies on the interaction of 
its promoter and a conserved large distal regulatory region, 
classified as a “super enhancer”. Moreover, the Nppa–Nppb 
cluster shares (developmental) enhancers found in the super 
enhancer region. The Nppa–Nppb gene cluster provides a 
conceptual framework for understanding gene cluster func-
tion and enhancer sharing that likely applies to other loci 
that harbor clustered genes. Other interesting gene clusters 
such as Tbx3–Tbx5 [45], Scn5a–Scn10a [46], Kcne1–Kcne2, 
Kcnj2–Kcnj16, HoxA and HoxB [90] are being studied or 
have yet to be studied with respect to transcriptional (co-)
regulation and genomic function in the heart. Although the 

paradigm of heart regeneration in the mammalian adult heart 
is being debated, evidence suggests that conserved regula-
tory elements are activated after cardiac injury, which con-
trols the transcriptional programs for heart regeneration in 
fish. Therefore, an intriguing question is whether the regula-
tory elements found in the Nppa–Nppb cluster respond to a 
regenerative mechanism in the stressed myocardium. Future 
research may focus on the manipulation of the regulatory 
sequences of the Nppa–Nppb locus in vivo by CRISPR/Cas9 
genome editing to determine their physiological relevance 
in the context of hypertrophic stress or ischemic injury. 
Furthermore, stress response regulatory elements of the 
mammalian Nppa–Nppb cluster can be integrated into the 
zebrafish genome by site-directed transgene integration to 
assess whether these sequences are transcriptionally acti-
vated during zebrafish heart regeneration. The identification 
of these conserved regulatory elements can provide tools to 
drive therapeutic genes that promote adult mammalian heart 
regeneration.
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