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Abstract
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease 
upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research 
into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regenera-
tion. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable 
sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used 
clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with 
the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, 
and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and 
regeneration.
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Abbreviations
ALF	� Acute liver failure
HLCs	� Hepatocyte-like cells
hESCs	� Human embryonic stem cells
HybHP	� Hybrid hepatocytes
iHeps	� Induced hepatocytes
iPSCs	� Induced pluripotent stem cells
NK	� Natural killer cells
PHx	� Partial hepatectomy
PHH	� Primary human hepatocytes
PSCs	� Pluripotent stem cells
2D	� Two-dimensional
3D	� Three-dimensional
LPCs	� Liver progenitor cells
R&D	� Research and development
OLT	� Orthotopic transplantation

Introduction

Acute and chronic liver damage are significant causes of 
human ill health. The World Health Organization (WHO) 
estimated that 46% of global diseases and 59% of mortal-
ity are due to chronic diseases, with more than one million 
deaths in 2010 [1]. Thirty-five million individuals in the 
world die each year from chronic diseases and the numbers 
are increasing steadily [2]. Management of those patients 
with liver disease is complicated, but in most cases, the acute 
and end-stage liver diseases are treated by orthotopic liver 
transplantation (OLT). However, the shortage of ‘healthy’ 
donor organs results in a considerable disparity between the 
number of patients on the waiting lists and available organs. 
This results in patient mortality whilst on the waiting list 
for OLT [3].

There is a growing collection of therapeutic options that 
may benefit patients with acute or chronic liver disease 
including: the use of marginal grafts; defined as an organ 
with an increased risk for poor function or failure [4, 5], 
living donors, and cell-based therapies. Among the factors 
contributing to organ shortage crisis are steatotic organs, 
cost, cultural and psychological barriers to donation [6]. 
Marginal grafts also refer to the “expanded” donor and 
“extended criteria” donor [7], for example, elderly donors, 
split livers, steatotic livers, and donors with long ischaemia 
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times. This increased use of marginal grafts has also been 
driven by data demonstrating that marginal grafts may be 
used with favorable outcomes [8]. In addition, due to a criti-
cal shortage of cadaveric organs for adults, the donor pool 
has been expanded to living donors. In most cases, this pro-
cedure requires the removing of the large right lobe of the 
liver from a donor [9].

Liver cell transplants attempt to provide organ support 
and promote liver regeneration. Recently, hepatocyte trans-
plantation has been used to treat patients with liver failure 
[10, 11]. However, the use of fresh human hepatocytes has 
limitations which include: organ availability, limited cell 
proliferation, loss of function, and the risk for immune rejec-
tion [12]. New understanding of the mechanisms behind of 
liver regeneration and differentiation, including hepatic 
progenitor cells and pluripotent stem-derived liver cells, 
provides a renewable and genetically defined cell source for 
clinical trials in the future. The use of those cell types in 
two- and three-dimensional (2D and 3D) formats is being 
developed to generate tissue-like structures of clinical 
relevance.

Recent advances in genome editing have further aided the 
field, with the promise of disease-corrected cells for clinical 
treatment of hereditary diseases such as Crigler–Najjar syn-
drome, glycogen storage disease [13, 14] and hemophilia A 
(Factor VIII deficiency) [15]. Other potential candidates for 
liver cell therapy include familial hypercholesterolemia and 
Wilson’s disease [16] and advanced liver cirrhosis [17]. In addi-
tion to disease-causing mutations, promising applications of 
cell therapy have been evidenced in preclinical models of liver 
failure, such as acetaminophen-induced acute toxicity [18, 19].

Our review discusses the current progress in the field and 
ongoing research and development (R&D), with a focus on 
cell isolation, cell differentiation, optimal cell delivery and 
long-term performance in vivo.

Current therapeutic options and on‑going 
trials

Therapeutic options for the end-stage liver disease are suc-
cessful but are extremely limited. Thus, the level of mor-
tality whilst on the waiting is high as 20% [20]. To date, 
hepatic steatosis is a common clinical problem in developed 
countries, affecting up to 30% of donors for liver transplanta-
tion [21–23]. Due to the shortages of healthy liver donors, 
steatotic liver grafts have been clinically trialled. However, 
compared to normal livers, steatotic livers are particularly 
susceptible to ischemia/reperfusion (I/R) injury and oxida-
tive stress, leading to poor outcome following surgery [5, 
24–27]. Encouragingly, the blockade of CD47 (integrin 
associated protein, involved in apoptosis) with a specific 
antibody significantly reduced the extent of the I/R injury 

in donor steatotic liver allografts in rats, increasing survival 
of lean recipients, and represents a potential strategy for the 
use of fatty livers [28].

Numerous attempts have also been made to improve 
transplant outcome with healthy donor organs. Several 
methods of graft preservation have been developed, includ-
ing simple cold storage, hypothermic machine perfusion, 
normothermic machine perfusion, and oxygen persufflation. 
A gradual rewarming of cold-preserved livers for 4 h by 
placement on normothermic extracorporeal liver perfusion 
(NELP) demonstrated beneficial effects in porcine livers. 
This included the reduction of the hepatocellular damage, 
reduced Kupffer cell activation and less cholangiocyte and 
sinusoidal endothelial cell dysfunction [29]. Despite the cur-
rent progress, a significant unmet clinical need exists. This 
has prompted the development of alternative approaches to 
treat compromised liver function and disease [30].

Regeneration of the normal liver

Liver parenchymal cells turn over slowly, but display high 
regenerative capacity, and are capable of restoring 70% tis-
sue loss within a few weeks following injury [31]. The liver 
is composed of different cells types including hepatocytes, 
cholangiocytes, liver progenitor cells (LPCs, accounting 
for ~ 0.3–0.7% of healthy liver mass), hepatic stellate cells, 
Kupffer cells and endothelial cells. In uninjured livers, the 
source of newly generated hepatocytes has remained to be 
identified. Font-Burgada et al. have defined a distinct popu-
lation of hepatocytes that exist in the periportal region of 
the uninjured mouse liver was so-called hybrid hepatocytes 
(HybHP), as these cells express several bile duct-enriched 
genes, including low amounts of Sox9 [31]. HybHPs are 
highly efficient in repairing of livers deficient in healthy 
hepatocytes [31]. Lineage-tracing results demonstrate that 
the biliary compartment may not play a role in normal liver 
homeostasis [32, 33]. Restoration of hepatocyte mass is 
mediated by the replication of remaining healthy hepatocytes 
(and cholangiocytes) in minor liver injury [34]. By lineage 
tracing in mice, a population of proliferating and self-renew-
ing cells adjacent to the central vein in the liver lobule have 
been identified [33], while others showed there is no prefer-
ential proliferation across hepatocytes from all zones [35].

Liver progenitor cell niche

The LPCs, known also as hepatic stem cells, are located 
at the level of Canals of Hering which are small branches 
of intrahepatic biliary trees [36]. The liver progenitor cells 
niche is rich in laminin which maintains their characteristics 
[37]. They exhibit bipotential plasticity [38] and are capable 
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of regenerating both biliary and hepatic epithelia [39]. LPCs 
demonstrate proliferative capacity after acute and chronic 
liver damage in human livers [40–43]. However, the engraft-
ment and repopulation efficacies of LPCs are considered to 
be lower compared to mature hepatocytes [13].

Controversies in the role of the LPCs in liver 
regeneration

Controversial findings have been obtained using rodent and 
zebrafish models regarding the origin of cells that exhibit a 
proliferative capacity in injured livers [32]. Therefore, it is 
highly debated whether the cells adjacent to the portal tract 
[31, 43] or central vein [33] are responsible for liver regen-
eration. Understanding the LPCs contribution to hepatocyte 
generation is essential to better understand the mechanisms 
of liver regeneration and translating this to a favorable reso-
lution of human liver injury [44, 45].

Injured livers and the response of LPCs

Cells responsible for hepatocyte restoration in an injured 
liver remain not fully characterized. In a mouse model of 
liver injury, hepatocyte self-replication seems to provide 
practically all hepatocyte regeneration with minimal con-
tribution from LPCs in the absence of senescence [46, 47]. 
When a considerable injury is incurred, resident LPCs are 
activated and expand from the periportal to the pericentral 
zone giving rise to reactive ductules. Reactive ductules, 
known as the ductular reaction, are strands of LPCs repre-
senting a population of cells with variable phenotypes [36]. 
They constitute a heterogeneous population of proliferating 
cells ranging from cells expressing stem cell markers with 
an immature phenotype, to more committed cells with an 
intermediate hepatobiliary phenotype [44, 48].

Ductular reactions

For LPCs differentiation, Notch and Wnt are required, and 
their interaction is necessary for appropriate delineation 
of hepatocellular or biliary fates [49]. LPCs also express 
osteopontin and these cells are thought to emerge from bile 
ducts, capable of directly differentiating into hepatocytes 
[50]. Importantly, LPCs regenerate hepatocytes following 
chronic hepatocyte injury but not following biliary injury, 
demonstrate that the microenvironment is critical for HPC 
expansion and fate choice [36].

Ductal Lgr5+ stem cells can give rise to hepatocytes 
in vivo and in vitro [51]. These ductular reactions are impor-
tant for biliary regeneration after cholestatic injury (by bile 
duct ligation) [52]. Rodrigo-Torres and colleagues found that 
the contribution of hepatocyte nuclear factor 1β (HNF1β+) 
biliary duct cells to liver regeneration was dependent on 

the liver injury model. HNF1β+ cells do not contribute to 
hepatocyte mass in the healthy liver, but after certain liver 
injury, they can differentiate into hepatocytes contributing 
to liver regeneration [44].

It has been reported that ductular cells spread from the 
portal tract in choline-deficient ethionine diet-induced hepa-
tocellular injury in mice [53, 54]. During this insult, a mas-
sive hepatocyte loss is observed, where the remaining hepat-
ocytes are unable to replicate. In this context, LPCs provide 
a hepatocyte-regenerating capacity to restore epithelial cell 
mass, architecture, and function [34, 43]. It still needs to 
be clarified in a variety of models whether hepatocytes can 
contribute to ductular cell populations. Evidence exists that 
hepatocytes can partially contribute to the ductular cell pop-
ulation [55]. Most notably, it was shown that when hepato-
cyte regeneration is impaired, ductular cells act as facultative 
stem cells to regenerate the liver parenchyma [56].

Animal models to study liver repopulation 
following cell transplantation

The significance of the therapeutic benefits achieved in pre-
clinical models, traditionally rodents and zebrafish, leads 
to new clinical interventions [32]. Several animal models 
have been developed to show “proof of principle” that trans-
planted hepatocytes are capable of replacing liver tissue and 
restoring liver function after engraftment in the recipient’s 
liver. A summary of various models used in studying liver 
regeneration and grafting of cells is discussed below.

Genetically modified models

The first group of in vivo models is characterized by genetic 
modifications of the host liver that cause a severe liver injury 
providing transplanted hepatocytes with a strong growth/
repopulation advantage. Sandgren et al. developed a trans-
genic mouse in which the overexpression of an albumin-
urokinase-type plasminogen activator (Alb-uPA) fusion con-
struct led to increased plasma uPA concentrations, resulting 
in a severe liver damage. Importantly, they observed that 
three or fewer transgene-deficient cells in the liver paren-
chyma were able to effectively reconstitute > 90% of the 
hepatic mass [57, 58].

The establishment of several immunodeficient ani-
mal models enables human hepatocyte transplantation. 
The severe combined immunodeficiency (SCID) [59] and 
recombinase 2 gene (Rag2) knockout [60] mice have spon-
taneous mutations in the prkdc locus or targeted mutation 
disrupting Rag2 results in a lack of mature T and B cells, 
respectively. Whereas Beige [61] and perforin 1 gene (pfp) 
knockout [62] mice have mutations that lead to an impair-
ment of natural killer (NK)-cell function. Il2 (γC) knockout 
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targeting mutation disrupts the Il2 receptor gamma chain 
gene. The knockout creates a lack of functional receptors for 
many cytokines leading to an impaired lymphocyte develop-
ment and a lack of NK cells [63]. Non-obese diabetic (NOD) 
SCID gamma mice (NSG, NOD.CB17-Prkdcscid/J) and NOG 
mice (NOD.Cg-Prkdcscid Il2rgtm1Sug/Jic) are also excellent 
recipient mouse models for human cell engraftment [64].

 Inducible double knockout models have been estab-
lished as well. Lu et al. have induced hepatocyte injury 
and senescence in adult mouse liver; the inducible AhCre 
Mdm2flox/flox which is triggered by β-napthoflavone admin-
istration. Deletion of Mdm2 results in accumulation of p53 
and induces p53-mediated cell death and senescence. This 
results in a rapid activation of LPCs throughout the liver, 
which in turn proliferate and differentiate into hepatocytes 
[43]. Fumarylacetoacetate hydrolase knockout (Fah−/−) and 
Rag2−/−Il2rg−/− mice lack the B cells, T cells, and NK cells 
are completely immunodeficient. FAH is part of a subpath-
way involved in phenylalanine and tyrosine degradation, 
and its deficiency causes metabolic liver disease [65]. The 
advantage of this mouse strain is that liver injury can be 
controlled by 2-(2-nitro-4-trifluoro-methyl-benzoyl)-1, 3 
cyclohexanedione (NTBC) administration that restricts toxic 
metabolite accumulation [66].

Models of induction liver and biliary injury

Studying the performance and engraftment of transplanted 
human hepatocytes has been performed in various models 
of liver injury, as presented in Table 1. These models can 
be used to study liver regeneration, in the context of non-
alcoholic steatohepatitis [67], fibrosis/cirrhosis [68], partial 
hepatectomy (PHx), or administration poisoning using car-
bon tetrachloride (CCl4) [32]. Whereas, the 3,5-diethoxy-
carbonyl-1,4-dihydrocollidine (DDC) diet has been used to 
induce biliary injury. Other protocols for preconditioning the 
liver by hepatic irradiation [69, 70], portal vein emboliza-
tion, and surgical resection are effective for clinical trials.

In other studies, rodents were treated by CCl4 with or 
without PHx and retrorsine; a cell cycle inhibitor, to block 
the proliferation of native hepatocytes. Subsequently, mice 
received freshly isolated β-galactosidase-labeled liver cells 
[71] or fetal liver-derived mesenchymal stem cells (MSCs) 
[72] to investigate their efficiencies in compensating the 
injured livers. Analogously, 5 × 105 tail vein-injected multi-
potent MSCs improved liver regeneration and function in 
obese mice with hepatic steatosis after 70% PHx [73]. Inter-
estingly, human umbilical cord-derived MSC transfusion has 
been reported to improve liver function in acute-on-chronic 
liver failure patients associated with HBV infection [74]. 
Likewise, the plant-derived pyrrolizidine alkaloid, mono-
crotaline, causes widespread injuries to hepatocytes, liver 
sinusoidal endothelial cells (LSECs), and Kupffer cells [75, 

76]. Ingestion of 0.2% of ursodeoxycholic acid and cholic 
acids for 5 days caused cholestasis, apoptosis and liver 
injury in the bile salt export pump knockout (Bsep−/−) mice 
[77]. After intrasplenic transplantation of freshly isolated 
wild-type hepatocytes, biliary total bile acids increased sig-
nificantly after 1 week in recipient Bsep−/− mice.

A clinically relevant model, in which acute liver fail-
ure (ALF) has been induced in NOD/SCID young mice by 
300 mg/kg acetaminophen (APAP) administration, has been 
developed. Three hours after APAP injection, intraspleni-
cally transplanted GFP-labeled VAL9 hepatocytes (2 × 106) 
were able to engraft and repopulate up to 20% of the liver, 
rescuing the mice after 2–8 weeks of the transplantation 
[18].

Limitations of modeling liver disease in rodents

In animals, hepatocyte transplantation has been shown 
to correct enzymatic, receptor, or transport defects [16]. 
However, these positive results cannot be always translated 
through to successful clinical therapies. Hence, there is a 
need for more translational preclinical models to recapitu-
late the severity of liver injury seen in human disease [16]. 
Differences between animal models and clinical studies of 
liver regeneration involve signals and cellular sources that 
control liver regeneration [32]. Moreover, genetic diversity 
of rodents (inbred versus outbred) do not capture the wide 
diversity seen in patients. Furthermore, challenges, such 
as the route of cell administration to ensure optimal cell 
engraftment and function need to be further considered, as 
do the size of laboratory models.

Potential cell sources to treat liver disease

Chronic scarring, fatty liver disease, prior chemotherapy and 
massive liver injury can all inhibit the normal program of 
liver regeneration and lead to liver failure [32]. Cell-based 
therapies provide a promising alternative to solid organ 
transplantation in patients with liver diseases [78, 79]. Cell 
therapy could also delay disease progression and facilitate a 
more aggressive resection of the liver in patients with hepa-
tocellular carcinoma [16]. In addition, hepatocyte therapy 
has been successfully employed in humans to treat hepatic 
insufficiency or inborn metabolic disorders using primary 
human hepatocytes (PHH) [80]. Two billion viable hepato-
cytes were infused via portal vein into a glycogen storage 
disease type 1a patient, followed by immunosuppression 
regimens. Nine months post-transplant, the patient was able 
to eat a normal diet and could fast for 7 h without experi-
encing hypoglycaemia [81]. However, organ scarcity, allo-
graft immune rejection, and difficult logistics of PHH use 
have driven researchers to explore alternative cell sources, 
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Table 1   Induction of liver failure models

ADMSC adipose-derived mesenchymal stem cells, HC hepatocytes, HLC hepatocyte-like cell, HPCs hepatic progenitor cells, HybHP hybrid 
hepatocytes, hiPSC-LB human induced pluripotent stem cells-liver buds, s.c. subcutaneously, i.p. intraperitoneal, i.v. intravenous, Tx transplanta-
tion, EGFP enhanced green fluorescent protein or human Kusabira-Orange (KO1) for live imaging [126], hFLMSC human fetal liver mesenchy-
mal stem cells, ND or (–) non determined, DPPIV dipeptidyl peptidase IV
a The cell populations that are involved in liver regeneration per experiment
b Composed of cocoa butter, cholesterol, cholate, and corticotropin-releasing factor-1
c HybHP have an elevated Sox9 promoter activity and expression of other ductal markers were studied in Sox9-CreERT;R26RtdTomato mice

Treatment Model Term Age (weeks) Regenerative cellsa Graft % Engraftment References

Acetaminophen 
(paracetamol)

Mouse Acute 4–6 VAL9 hESCs, hiPSC derived 
cells

1 × 106 GFP-labeled 
VAL-Hep, intras-
plenic

10.2, at day 30 post-
Tx

[18, 44]

2-Acetylaminofluo-
rine

Rat Chronic 7–8 HPCs, WB-F344 – – [192]

Carbon tetrachloride Mouse Acute ND LPCs – – [44]
Diethoxycarbonyl-

1,4-dihydro-colli-
din (DDC)-diet

Mouse Chronic ND HNF1β+ – – [44]

Choline-deficient 
ethionine-supple-
mented (CDE)-diet

Mouse Chronic ND HNF1β+ – – [44]

Atherogenic + high 
fat dietb

Mouse Chronic 8 HCs 1 × 105 GFP-Tg 
ADSCs, intras-
plenic

Detected ≤ 2 weeks 
in liver post-Tx

[67]

Tamoxifen Mouse Chronic ND GFP+HNF4+ CK19− HCs. 
YFP+CK19− HNF4α+ peri-
portal HCs

HybHPc

– Tracked for 
9 months

[31]

Diethylnitrosamine Mouse Chronic 6–9 hESC/iPSC-derived HCs 0.1–2 × 106 hESC/
iPSC-derived 
HLCs, i.v.

2–17% in the liver, 
8 weeks post-Tx

[111]

Retrorsine + PHx Rat Acute 4 HCs 5 × 106 HCs, intras-
plenic

Detected ≤ 2 weeks 
in liver post-Tx

[39, 68]

Mouse Acute ND HCs, MSCs 2 × 106 hu fetal HCs 
and/or hFLMSC

Co-Tx 81,000/mm3 
liver

[72]

Monocrotaline Rat Acute 8–10 DPPIV+ HCs 1 × 107 fresh 
DPPIV+ HCs, 
intrasplenic

≤ 1000 cells/50 
consecutive liver 
lobules 3 months 
post Tx

[193]

Irradiation + PHx Rat Acute 7–8 HCs + fibroblasts Co-Tx fibro-
blast + multilay-
ered HCs sheets, 
s.c.

Detected 2 months 
post-Tx

[69]

HCV Mouse Chronic 5–8 months hESCs- and hiPSCs-derived 
HLCs

4 × 106 HLCs, 
intrasplenic

– [194]

Ganciclovir Mouse Chronic 7–8 Endothelial 12 EGFP- or KO1-
hiPSC-LB on the 
mesentery

– [145]

Diphtheria toxin 3–4  ×  106 hu HCs 
under kidney 
capsule

–

Thioacetamide Mouse Acute 7–8 ADMSC, HLCs, CK8+ 5 × 106 EGFP-
labeled ADMSC, 
intrasplenic or i.v.

Detected ≤ 4 weeks 
in liver post-Tx

[126]

Phenobarbi-
tal + CCl4

Rat Chronic 38 – – – [67]

Galactosamine Rat Acute 8–10 – 8.8–10.5 × 106 HC, 
i.p.

1 week post-Tx [174]
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including liver cell lines and pluripotent stem cells [82]. 
Below, we discuss the potential sources of hepatic cells that 
could be used in the clinic to treat liver diseases.

Novel cell sources for transplantation

Pluripotent stem cells

Pluripotent stem cells (PSCs) display the ability to self-
renew and retain pluripotency [83]. Human embryonic stem 
cells (hESCs) are one example and may serve as a renew-
able source of human tissue. More recently, Takahashi and 
Yamanaka generated induced pluripotent stem cells (iPSCs) 
from somatic cells using a combination of four reprogram-
ming factors, including Oct4 (Octamer-binding transcrip-
tion factor-4), Sox2 (Sex-determining region Y)-box 2, Klf4 
(Kruppel Like Factor-4), and c-Myc [84, 85]. Therefore, in 
theory, PSCs could be used in combination or as an alter-
native to hESCs in various clinical or research settings, 
with the added benefit that iPSC-derived liver tissue can be 
immune matched [86–90].

PSCs‑derived hepatic cells

PSCs have been shown to efficiently differentiate into 
hepatocyte-like cells (HLCs) [91]. Several groups have 
reported the generation of HLCs from PSCs through step-
wise protocol by using various growth factors [92–94], or by 
combinational transduction of FOXA2 and HNF1α. These 
directed HLCs have many hepatocyte characteristics induc-
ing cytochrome P450 enzyme activity, the ability to uptake 
LDL and Indocyanine green, store glycogen, and synthesize 
urea [95]. Although PSCs are promising cell sources for the 
mass production of HLCs, their limitations include incom-
plete gene expression, scale-up limitations, and heteroge-
neous culture [96]. With the consensus that PSC-derived 
HLCs are phenotypically and functionally more similar to 
fetal human hepatocytes [96, 97].

Improving of HLC differentiation and function

Advancements in cell culture matrices and media have led 
to significant improvement in HLC function and viability 
[91, 98]. Moreover, the generation of functional human 
ES-derived HLCs has been developed under chemically 
defined conditions which are compatible with good man-
ufacturing practice (GMP) grade for clinical applications 
[91, 99]. Recently, Cameron et al. have improved hepatic 
specification and function by using fully defined recombi-
nant laminin substrates (laminin 521 and 521/111 blend) 
as coating matrix [98, 100]. Laminin matrix was also used 
to improve the differentiation of HLCs from human bone 

marrow MSC (hBM-MSCs) [101]. These approaches should 
facilitate the development of clinical grade hepatocytes for 
transplantation.

Small molecules that can activate the mesenchymal–epi-
thelial transition and induce the rapid proliferation have 
been  also developed for improving the differentiation 
towards hepatic cells. Of these small molecules, A-83-01, 
an inhibitor of Smad signaling, inhibits TGFβ-induced epi-
thelial–mesenchymal transition and CHIR99021, an inhibi-
tor of glycogen synthase kinase 3β (Gsk-3β), enhances 
iHepgeneration by inducing rapid proliferation of somatic 
cells [102]. Siller et al. have devised a growth factor-free 
protocol that relies on small molecules to efficiently dif-
ferentiate human PSCs toward a hepatic phenotype [103], 
however, their approach still relied on fetal bovine serum and 
Matrigel, limiting GMP-grade. In addition, Hnf1α supported 
by a cocktail of small molecules was sufficient to induce 
direct hepatic reprogramming from mouse fibroblasts. The 
induced hepatocyte-like cells (iHeps) by this technology 
represented functional hepatic cells [102].

In addition,  to improve the function of ESCs-derived 
hepatic cells, human ESCs or iPSCs have been transduced 
with several transcription factors to promote their differentia-
tion in vitro [95]. Adenovirus vector-mediated Hnf4α over-
expression led to an upregulation of epithelial and mature 
hepatic markers, such as cytochrome P450 enzymes, and 
secretion of urea and albumin [95]. A multistage procedure 
including hepatocyte growth factor was used to differentiate 
hESCs directly into HLCs which exhibit mature hepatocyte 
morphology, and express albumin and HNF4α [91, 93, 94]. 
Further refinement and development of more sophisticated, a 
non-viral based, methodologies are still required to generate 
improved and phenotypically stable HLCs for downstream 
application [96, 104].

Transplantation of HLCs could also represent an alterna-
tive to OLT in ALF, late-stage liver disease such as cirrho-
sis, or in maintaining liver function in patients who do not 
meet the clinical eligibility for OLT [30]. Key advantages of 

Table 2   Advantages of cell-based therapy

Factor Cell transplant Organ transplant

Cost Less More expensive
Complexity Simple administra-

tion via intravas-
cular catheters

Complex surgery

Availability Large scale Limited
Invasiveness Minimal Involve incision, open 

surgery
Occurrence Could be provided 

repeatedly/multi-
ple recipients

Usually one/patient
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replacing primary hepatocytes with HLCs are summarized 
in Table 2.

Stem cell‑derived hepatic cells: post‑transplant challenges

Before cell transplantation for treating liver disease, cells 
should fulfill numerous criteria, including safety, reproducibil-
ity, xeno-free, and long-term function (Table 3). ES-derived 
cells are allogeneic and, therefore immunogenic, increasing 
the risk for allograft rejection and necessitating immunosup-
pression [105]. It has been shown that HLCs led to a tumor 
after transplantation. Payne et al. reported that human ES-
derived hepatocytes recipient mice developed large splenic 
and liver tumors that contained endodermal and mesodermal 
cell types 3 months post-transplantation [106]. Despite cur-
rent shortfalls, PSC-derived HLCs provide a unique opportu-
nity to study the mechanisms involved in human hepatocyte 
differentiation and liver function in more detail [93]. Encour-
agingly, HLCs generated from hESCs or human iPSCs have 
been shown to model human liver disease ‘in a dish’ [107] 
and to accurately predict and modulate human drug-induced 
hepatotoxicity [91, 108–110]. Optimistically, when hESC-
derived HLCs were injected into immunocompromised mice, 
after CCl4-induced liver injury, human serum albumin was 
detected for 3 months post-transplantation [106]. Addition-
ally, it has been reported that iPSC-derived HLCs successfully 
repopulated the liver tissue and secreted human-specific liver 
proteins in the blood of mice with a liver cirrhosis [111].

In addition, adult-derived human liver progenitor cells 
(ADHLPCs) have been tested for the degree of immuno-
genicity when they were co-cultured with allogeneic human 
adult peripheral blood mononuclear cells (PBMCs) [112] and 
tested for oncogenicity in 5-week-old Balb-c nude mice for 
24 weeks [113], Table 3. Sana et al. reported that ADHLPCs 

were associated with a low immunogenic profile in vitro 
[112]. Tumorigenicity, phenotypic and genetic stability, and 
differentiation potential of ADHLPCs have been studied 
in vitro and in a xenograft assay. These cells, however, after 
a prolonged culture displayed cytogenetic instability [113].

Induced hepatocyte (iHep) transdifferentiation 
in vivo

Direct induction of somatic cells into induced hepatocyte 
(iHep) that closely resemble hepatocytes has been achieved 
by viral transduction and expression of various transcription 
factors. Combinations of Hnf4α and Foxa1, Foxa2 or Foxa3 
or Gata4, Hnf1a and Foxa3 have been used to convert mouse 
embryonic or adult fibroblasts into iHep [114, 115]. More 
recently, human iHeps have been generated from fibroblasts 
by overexpression of FOXA3, HNF1α, and HNF4α. Upon 
transplantation into Fah−/− mice with concanavalin-A-induced 
acute liver failure, iHeps restored the liver function and pro-
long survival, demonstrating successful lineage conversion of 
non-hepatic human cells into hepatocytes [65]. Moreover, stel-
late cell transdifferentiation has been successfully carried out 
in vivo, in the context of liver fibrosis, providing proof of con-
cept [116]. Direct cell lineage conversion through reprogram-
ming is a promising field of research for different applications 
in regenerative medicine and personalized disease modeling.

Mesenchymal stem cells (MSCs)

Numerous studies have reported therapeutic effects of trans-
planted MSCs on hepatic fibrosis, cirrhosis, and other liver 
diseases, which may be related to the differentiation of MSCs 
into functional hepatocytes [117, 120]. MSCs are a group of 
pluripotent stem cells with self-renewal and multi-directional 

Table 3   Criteria of in vitro generated cells that they should meet to be used in cell therapy for liver diseases

NT not tested, ND not determined, GMP good manufacturing practice, ADHLPCs adult-derived human liver progenitor cells
a For in vivo use, immunocompromised (mouse) models were used
b Tested in Ref. [112]
c Tested in Ref. [113]

Criteria hPSC [98] hESCs, iPSCs 
[103, 195]

hESC-derived 
HLCs [106]

ADHLPCs 
[112, 113]

Autologous 
iPSCs [87]

hESC-
derived 
HLCs [196]

GMP-grade √ × × √ × ×
Xeno-free √ × × × × ×
Immunogenicitya NT NT NT √b √ NT
Tumorogenicity NT NT √ √c × NT
Scalability √ √ √ √ √ √
Resistance to cryopreservation NT NT NT √ NT √
Long-term efficacy NT NT √ √ √ √
Display mature hepatocyte functions √ √ √ √ NT √
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differentiation potential derived from mesoderm, which are 
widely distributed in various tissues, such as bone marrow, 
umbilical cord, and adipose tissues. MSCs have been trans-
planted alone or with HLCs to treat injured liver (Table 4). 
HLCs have been generated also  from placenta-derived 
human amniotic epithelial cells (hAEC) and placed in bar-
ium alginate microcapsules to prevent immune cell-medi-
ated rejection post-transplantation [118]. The differentiated 
HLCs performed key functions of hepatocytes during 7 days 
in culture without losing their viability. An improvement of 
liver function has been achieved in patients having end-stage 
liver disease (liver cirrhosis, hepatitis B virus (HBV), HCV, 
and alcoholic) after autologous MSC injection [117, 119, 
120]. However, the improvements in survival rate in cirrhotic 
patients using autologous bone marrow-derived MSC trans-
plantation through peripheral vein was not significant, based 
on randomized controlled trial [121].

Intrahepatic and extrahepatic MSC transplantation

Intrahepatic and extrahepatic MSCs transplantation 
approaches have been trialled and their contribution in liver 
regeneration has been studied. Human adipose-derived 
stem cells (ADSCs) differentiate into albumin-secreting 
HLCs after 1 week of intrahepatic transplantation in thio-
acetamide (TAA)-induced rat model of chronic liver damage 
[122]. Patients with HBV related acute-on-chronic liver fail-
ure (HBV-ACLF) received plasma exchange, entecavir and a 
single transplantation of umbilical cord-derived MSC (UC-
MSC) transplantation (100 × 106 cell suspension via the 
hepatic artery) compared to another group which received 
only plasma exchange and entecavir. Notably, an improve-
ment in liver function tests and higher cumulative survival 
rate at 24 months have been observed in the patient groups 
who were transplanted with UC-MSC [123].

In addition, extrahepatic transplantation of MSCs is thought 
to play an important role in liver repopulation. The outcomes 
of intrasplenic or intrahepatic autologous bone marrow MSC-
derived hepatocytes transplantation have been evaluated in 
patients with end-stage liver cell disease. The results showed 

significant improvement in ascites, edema, serum albumin, and 
performance status, and amelioration of fatigue scale, demon-
strating the safety and short-term efficacy of autologous bone 
marrow-derived MSC injection in treating liver failure [124]. 
Amer et al. found no significant difference between the out-
comes observed from the group which received cells directly 
into the liver (intrahepatic) and indirectly (intrasplenic) [124]. 
MSC-seeded silk fibroin matrices were placed onto the liver 
surface of mice with ALF showed an obvious therapeutic 
ability for injured liver function [125]. The effects of different 
routes of adipose-derived MSC (ADMSC) transplantation on 
the restoration of liver functions in acute mouse liver failure 
were assessed. Mice were injected with enhanced GFP-labeled 
ADMSCs by intrasplenic or intravenous (tail vein) routes. 
Transplantation via tail vein provided a significant survival 
benefit compared to intrasplenic cell administration [126]. 
Furthermore, the transplanted cells were well integrated into 
injured livers and produced albumin and cytokeratin-8 in both 
groups. Deng et al. concluded that direct intravenous ADMSCs 
transplantation is an effective treatment for ALF rather than 
intrasplenic transplantation [126].

MSCs have positive effects during regeneration such inhib-
iting apoptosis in hepatocytes and Kupffer cells, secreting of 
various bioactive molecules to promoting liver regeneration and 
reducing inflammation [117]. In addition, MSCs contribute in 
the restoration of the liver parenchymal tissue by hepatocytes or/
and LPCs, and also they could contribute in the wound healing 
after injury in terms of angiopoiesis by liver sinusoidal endothe-
lial cells or/and sinusoidal endothelial progenitor cells [127]. 
These findings highlight the importance of different sources and 
options for MSCs in the treatment of liver disease.

Could bioengineering approaches be 
exploited in improving cell‑based therapy?

Bioengineering approaches may provide alternative 
approaches to improve cell engraftment and/or function and 
to control ESC and iPSCs differentiation into distinct cell 
and tissue types. While both “top–down” and “bottom–up” 

Table 4   Various sources of stem cells

Stem cells References

hESCs Carpentier 2014 [194], Cameron 2015 [98]
hiPSCs Yu 2007 [88], Beers 2015 [89], Wang 2017 [100]
Bone marrow-derived MSCs Mohamadnejad [121]
Autologous mesenchymal stem cells (AMSCs) Kharaziha 2009 [119], Amer 2011 [124]
Mesenchymal stem cells (MSCs) Xu 2017 [125]
Human adipose-derived stem cells (ADSCs) Harn 2012 [122], Seki 2013 [67]
Human Amnion epithelial cells Vaghjiani 2014 [118]
Umbilical cord-derived mesenchymal stem cell (UC-MSC) Li 2016 [123]
Hepatic progenitor cells (HPCs) Sacho-Bru 2012 [42], Lu 2015 [43]
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approaches have been used for biofabrication, the emergence 
of additive manufacturing or three dimensional (3D) bioprint-
ing has brought manufacturing of functional tissue one-step 
closer to reality. In combination with defined culture media 
and suitable growth factors, researchers have made significant 
progress in this space, although at present HLCs are less func-
tional than their PHH counterparts. In the following sections, 
we discuss the new bioengineering systems to improve HLC or 
organoid culture, activity and their long-term function in vitro 
and in vivo.

Extracellular matrix: 2D and 3D cultures

The extracellular matrix (ECM) plays an important role in 
cell organization and function. Phenotypic instability of 
primary hepatocytes and HLCs in vitro is a major obsta-
cle to the widespread application [128]. 2D systems have 
proved to be invaluable for studying basic cell biology and 
are facile and cost-effective to use. However, these systems 
are associated with limitations such as remodeling of the 
internal cytoskeleton and limited cell–cell contact [129] and 
cell–ECM interaction provide a suboptimal environment to 
cells. To overcome these problems, various strategies have 
been explored including co-culture with non-parenchymal 
liver cells and development of 3D platforms to better mimic 
in vivo microenvironment [82, 128]. The 3D systems can be 
categorized into scaffold-based and scaffold-free systems. 
In scaffold-based systems, synthetic or natural materials are 
employed to provide support to the cultured cells, while in 
scaffold-free platforms self-aggregation of cells is a major 
driving force to generate 3D structures.

Scaffold-based 3D culture systems allow the production and 
organization of cells in vitro in a controllable and reproduc-
ible manner. Several synthetic polymers, such as a poly lactic 
co-glycolic acid (PLGA) and natural materials, such as colla-
gen, have been evaluated for in vitro differentiation and main-
tenance of HLCs [130]. PSC-derived HLCs have also been 
cultured on polyurethane-coated scaffolds which supported 
cell phenotype and performance in vitro [131]. More recently, 
modulation of hepatic function was investigated following co-
culture of rat bone marrow-derived MSCs and freshly isolated 
hepatocytes on a PLGA scaffold. Cell-seeded PLGA scaffolds 
have been transplanted into the abdominal cavity of mice. The 
result suggested that the best in vitro and in vivo performance 
can be achieved using a 1:5 ratio of MSC to hepatocytes [132].

Due to the complexity of ECM and its tissue-specific prop-
erties, the role of the decellularized liver has been evaluated 
by several groups. Improved cell function was achieved fol-
lowing culture of iPSCs-derived HLCs on liver-derived ECM 
compared to poly-l-lactic acid (PLLA) scaffold coated with 
collagen or Matrigel [133]. Mazza et al. have also developed 
a protocol for complete decellularization of a whole human 
liver to form an extracellular matrix scaffold with a preserved 

architecture a preserved architecture [134]. Biocompat-
ibility was demonstrated by either omental or subcutaneous 
xenotransplantation of liver scaffold cubes into immuno-
competent mice for 3 weeks, resulting in absent foreign body 
responses or local signs of inflammation.

To circumvent some of the limitations presented by scaf-
fold-based methodologies, several methods have been devel-
oped to generate scaffold-free microtissues. While culture on 
ultra-low adherent surface and molds are among the most 
common approaches, hanging drop, spinner culture, rotating 
wall vessels and microfluidic-based methodologies have also 
been used. Recently, FP001, a low-acyl gellan gum polymer, 
was used to form of HepaRG [135] 3D spheroids and main-
tenance of the culture without the requirement for stirring 
[136]. Nanopillar plate technology has also been applied to 
control the configuration of spheroids and to generate more 
mature HLCs [110].

Organoid cell culture

Stem cell-derived organoids are 3D human micro-tissues 
generated in vitro [137]. The development of methodol-
ogy was pioneered by the Clevers’ lab and culture system 
for several organs has been developed including intestine 
[138], stomach [139], pancreas [140] and the liver [141, 
142]. Long-term maintenance and expansion of liver orga-
noids in undefined conditions has been achieved from liver 
biopsy to form functional hepatic cells both in vitro and 
in vivo [51]. A more recent protocol describes how to grow 
adult mouse and human liver and pancreas organoids in a 
gel-based ECM and defined medium in vitro [143]. Epithe-
lial organoids recapitulate multiple aspects of real organs, 
making them promising models of organ function to model 
and treat human disease [137, 144].

Co‑culture

In line with previous studies, co-culture of human iPSC-
derived hepatic endoderm with umbilical vein endothelial 
cells and MSCs resulted in a generation of improved liver 
buds. Following mesenteric transplantation, the liver buds 
improved the survival of mice following ganciclovir-induced 
liver failure [145]. A recent study has shown that the co-
culture strategy could improve mouse survival than those 
treated with one cell type [132]. The transplantation of orga-
noid-PLGA scaffold has significantly rescued the damaged 
liver in mice and showed a lower immunogenic response 
level compared to single MSC-PLGA or Hep-PLGA scaffold 
treatments [132]. Furthermore, aggregation into organoid-
like structures has been tested using PHHs and stem cell-
derived HLCs with MSC co-culture, and yielded promising 
results both in terms of cell function and engraftment [146].
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Co-cultures of different cell types have been also used 
to form transplantable organoids. Asai et al. have identified 
paracrine signals that regulate the differentiation of human 
hepatocytes. For this purpose, they established a liver orga-
noid using human iPSCs, MSCs, and human umbilical vein 
endothelial cells. The cells have self-assembled into 3D 
organoids, resulting in improved hepatocyte differentiation 
[129]. Multicellular liver organoid units composed of hetero-
geneous cell populations that contain human adult stem and 
progenitor cells, hepatocytes, bile ducts and vascular struc-
tures, hepatic stellate cells, and endothelial cells have been 
transplanted under the abdominal skin in immunodeficient 
mice with a liver failure [147]. The transplanted organoids 
provided a functional support up to 4 weeks post-transplan-
tation [147]. While these studies are very encouraging, it is 
not yet feasible to transplant organoids via blood vessels, 
due to their large size, making routine deployment difficult.

Modular biofabrication

Construction of large tissue fragments through an assem-
bly of smaller modules is known as modular biofabrication. 
Such a “bottom–up” approach is an alternative to conven-
tional “top–down” methodology of seeding a large porous 
scaffold. Various techniques have been developed including 
cell sheet [148], microfabrication of cell-laden hydrogels 
[149], and self-assembled aggregation [150]. Intraportal or 
intrasplenic hepatocyte transplantation can create issues, 
such as cell death, embolism, portal vein thrombosis and 
hypertension [151, 152]. To get around this, cell sheet-
based tissue engineering approaches have been developed to 
deliver a large number of cells to the desired location while 
preserving cell to cell contact and ECM, and reducing the 
loss of transplanted cells [64, 153–156]. Early attempts used 
temperature responsive surfaces to manufacture cell sheets 
from PHHs. Efficient engraftment and long-term stability for 
longer than 200 days were observed following subcutane-
ous implantation [157]. More recently, Kim et al. developed 
a methodology to generate endothelial–hepatocyte hybrid 
sheets [154]. Bile canaliculi networks were formed among 
the hepatocytes in the hybrid cell sheet. Albumin secretion 
level was preserved for 4 weeks in the hybrid Hep-EC sheet, 
which was in contrast to hepatocytes cultured in a monolayer 
[154].

A similar approach was used to manufacture hybrid cell 
sheets consisting of human fibroblasts PHH cell sheets to 
improve neoangiogenesis following subcutaneous implanta-
tion [64]. Most recently, a fetal liver mesothelial cell sheet 
was developed to prevent postoperative adhesion in a mouse 
model of PHx. Interestingly, secreted paracrine growth 
factors enhanced proliferation of hepatocytes after PHx 

indicating the potential to improve regeneration [158]. Addi-
tionally, human iPSC-derived HLC sheets were implanted 
directly onto the surface of the liver after performing PHx. 
Considerable cell engraftment and liver-specific protein pro-
duction were observed in cell sheet transplanted mice com-
pared to the control group receiving a similar number of 
cells through intrasplenic infusion. In addition, cell sheet 
recipient mice were rescued from CCl4-induced lethality, 
and provided better therapeutic support than intrasplenic 
infusion [12].

Improving hepatocyte isolation 
and preservation

Hepatocytes are isolated from cadaveric donors, primarily in 
the form of resected segments recovered after hepatectomy. 
Several parameters are critical in this process, affecting both 
the quality and yield of hepatocyte prepartion. This includes 
the donor’s medical history, preservation conditions, and the 
isolation procedure [159]. Generally, parenchymal and non-
parenchymal cells are isolated from the liver by collagenase 
perfusion with a low-speed centrifugation, density gradient 
centrifugation, and magnetic-activated cell sorting. This 
yields cell populations of high purity and quality [160].

Although freshly isolated primary human hepatocytes 
(PHHs) are the gold standard for various cell-based mod-
eling and for in vivo transplant, they are limited by scarcity 
and ‘shelf life’. Therefore, current strategies have focused on 
improving cryopreservation media and protocols to preserve 
hepatocyte phenotype. Being able to cryopreserve human 
hepatocytes will allow for the repeated use of the same pre-
characterized hepatocyte lots in different studies [161], per-
mitting lab to lab comparisons [161].

Cryopreservation refers to the processes required to main-
tain the health and function of biologics outside the body, 
and to ensure a return to function post-resuscitation. Cellular 
damage occurs due to the freezing process [162] which is 
reduced when hepatocytes are suspended in human plasma 
[163]. Hepatocyte pre-incubation with medium supplements 
such as, sugars, insulin, reduced glutathione (GSH) and 
N-acetyl-l-cysteine prior to cryopreservation has also been 
shown improve cell recoveries after thawing [162]. The cryo-
protectants used in freezing medium include, glycerol, dime-
thyl sulfoxide, polyvinylpyrrolidone and polyethylene glycol 
[162]. Trehalose has also been used in combination with 10% 
DMSO to stabilize the plasma membrane [164]. Post thawing, 
3D approaches have been developed to maintain the long-term 
function of PHHs [161]. Recently, Nguyen et al. developed a 
bioprinting approach to building 3D liver tissue culture in a 
24-well Transwell® plate using PHHs, human hepatic stellate 
cells, and human umbilical vein endothelial cells [165].
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Routes of cell delivery and associated 
challenges

In liver cell therapy, studies have defined the critical compo-
nents for the optimal repopulation by transplanted cells. This 
includes their isolation, characterisation, and storage prior 
to their engraftment in the liver (or extrahepatic sites) [16]. 
This requires an ideal route of transplantation that assures 
maximal cells delivery with the best engraftment. In addi-
tion, transplanted cells must survive over defined period of 
time and proliferate to impart therapeutic benefit. This may 
require preconditioning of recipients before or after cell 
transplantation and development of suitable regimens to 
control for allograft rejection [16].

LPCs, PHH, and human iPS-HLCs have been trans-
planted into the rodents with liver injury, by intrasplenic 
or portal venous infusion [166, 167]. A suspension of BM-
derived HLCs (0.5 × 106–2 × 108) has been also injected 
intravenously, intrasplenically or intrahepatically with 
ultrasonographic guidance [124]. The most common sites 
of ectopic hepatocyte transplantation in patients with major 

hepatectomy or liver cirrhosis are the spleen. The spleen can 
be accessed by direct injection into the splenic artery through 
a catheter inserted through the femoral artery [168]. Because 
of a high mortality rate-associated intrasplenic injection in 
NSG mice, human PSC-derived HLCs [111] or primary 
MSCs [73] were transplanted via tail vein injection. Other 
potential routes of cell administration are depicted in Fig. 1 
and those include: subcutaneous cell implantation and 
immune isolation, transplanting human HLCs into immuno-
competent mice following co-aggregation with stromal cells 
and encapsulation in a biocompatible hydrogel [169]. Algi-
nate has also been employed to encapsulate the cells prior 
to implantation in the abdominal cavity [170]. The structure 
of formed microbeads is porous allowing for efficient mass 
transfer and protection from the immune system [171].

Cell tracking

Tracking cells during regenerative cytotherapy is crucial for 
monitoring their engraftment, safety, and efficacy. A reliable, 
clinically applicable cell-tracking agent would be a powerful 

Fig. 1   Directed differentiation of pluripotent stem cells (PSCs) and 
their potential applications. PSCs were maintained on laminin extra-
cellular matrix (ECM) and differentiated toward hepatic tissue using 
a four-stage process employing Activin A (ACTA), Wnt3a, and 
using differentiation medium (80% knockout DMEM (KO-DMEM), 
20% knockout serum replacement (KSR), GlutaMAX, non-essential 
amino acids, β-mercaptoethanol, 1% Dimethyl sulfoxide (DMSO), 
and penicillin/streptomycin), and HepatoZYME maturation medium 

supplemented with  Oncostatin M (OSM) and human hepatocyte 
growth factor (HGF). Following differentiation and tissue engineer-
ing, monolayer, co-culture, sphere and organoids could be applied in 
the future to model human biology, generate artificial liver devices, 
and used as cell-based therapies in vivo. The liver is shown in brown, 
the spleen in reddish-brown, and the liver bandage as a patch on the 
liver. Arrows (red) point to the site of cell delivery
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tool to study cell biodistribution, viability, performance, 
and differentiation. Superparamagnetic iron oxide nanopar-
ticles (SPIONs) have been used to label macrophages for 
MRI-based cell tracking in vivo [172]. Similarly, magnetic 
labeling of primary and stem cell-derived pig hepatocytes 
has been employed for MRI-based cell tracking [173]. In 
addition, PLGA encapsulated magnetic nano- and micro-
particles and photoconvertible near-infrared lipophilic cell 
membrane dyes have also been employed [174, 175].

Long-term in vivo monitoring of ADHLPCs has been per-
formed to determine differences in biodistribution following 
intrasplenic and intrahepatic transplantation in immunodefi-
cient/beige mice. In this experiment [176], ADHLPCs were 
transduced with a lentiviral vector expressing a triple fusion 
reporter comprising renilla luciferase, monomeric red fluo-
rescent protein, and truncated HSV-1 thymidine kinase and 
were monitored by bioluminescence imaging, positron emis-
sion tomography, and contrast-enhanced computed tomog-
raphy. It has been concluded that ADHLPCs could be moni-
tored by bioluminescence imaging for up to 4 weeks with 
widespread biodistribution following intrasplenic injection 
[176]. These techniques and others such as bioluminescence 
and fluorescence have also aided the study of cell biodistri-
bution and engraftment post-transplantation.

Clinically, cell labeling with 111In-oxine is a safe and 
suitable method for tracking the biodistribution of trans-
planted cells. A short-term biodistribution of ADHLPCs 
has been assessed over 5 days post portal vein infusion in 
a patient with glycogen storage disease type 1A. Defresne 
et al. labeled ADHLPCs with 111-Indium and single-photon 
emission computed tomography used for whole body imag-
ing. No signal was detected in extrahepatic organs, con-
firming retention of the transplanted cells [14]. A patient 
suffered from hemophilia A has been injected over 50 days 
with 1.21 × 109 111In-DTPA radiolabelled ADHLPCs via 
the humeral vein. Biodistribution analysis revealed an initial 
temporary entrapment of the cells in the lungs, followed by 
homing to the liver and to a joint afflicted with hemarthrosis 
[15]. In vivo tracking of 111In-oxine labeled MSCs follow-
ing intravenous infusion in patients with advanced cirrhosis 
revealed an accumulation of radioactivity in the lungs at 
first, and then it gradually increased in the liver and spleen 
in all patients within 10 days [17].

Long‑term function and off‑target effects

Cell delivery is not the only concern when designing cell-
based therapies. It is also important to monitor whether or 
not cells proliferate appropriately following engraftment 
[177]. Although several groups have administered human 
iPS-HLCs intrasplenically or intraperitoneally [111, 178], 

their engraftment efficiencies were limited. Using con-
ventional cell administration methods, it is quite diffi-
cult to control for efficient engraftment and avoid off-
target engraftment in other organs [12, 179]. Therefore, 
in addition to improving cell phenotype, precondition-
ing the liver niche may aid transplanted cells to engraft, 
function and persist [39]. Such approaches include PHx, 
portal embolization, liver irradiation, and repeated cell 
infusion [180]. Bile acids have been reported to acceler-
ate liver regeneration [32, 181] as have growth factors 
[182] and the thyroid hormone T3 [183]. Several studies 
also demonstrate a key role of adiponectin during tissue 
regeneration [184, 185].

Cell modeling and cell utility

Freshly isolated primary hepatocytes, cryopreserved hepato-
cytes, immortalized cancer cell lines, liver tissue slices and 
animal models broadly categorize the liver models avail-
able to study the human pathophysiology of the liver [186]. 
More recently, PSCs have been used to model human biol-
ogy successfully recapitulating key features of the cellular 
pathology seen in liver disease [187]. Recent transcriptomic 
analysis of human NAFLD, cirrhosis, HCC and hepatitis B 
virus-infected tissue was compared to cultured cells, demon-
strated a strong similarity between cell modeles and human 
disease [188].

In addition to genetic diseases, drug-induced liver injury 
is a complex problem which accounts for approximately 65% 
of ALF cases in the United States [189]. This demonstrates 
the requirement for a step change in current cell-based safety 
systems. There have been reports where human PSC-derived 
HLCs are capable of modeling drug-induced liver injury [95, 
190]. Most recently, hepatoblasts, derived from pluripotent 
stem cells, have been employed to better understand in utero 
exposure to maternal smoking [191].

Conclusions

There have been important advances in human liver regen-
erative medicine. This includes the development of scalable 
cell sources that offer potential to overcome the shortages 
of donor organs and hepatocyte instability, and challenges 
associated with the immune system. Despite those advances, 
stem cell-derived liver cells require further development 
before they are suitable for the clinic. On-going efforts 
are exploring numerous avenues to improve cell function, 
engraftment and stability in vitro and in vivo, offering an 
exciting future for the field.
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