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This editorial refers to ‘Diverging effects of enalapril or

eplerenone in primary prevention against doxorubicin-

induced cardiotoxicity’ by R. Hullin et al., pp. 272–281 and

‘Inhibition of the cardiac myocyte mineralocorticoid receptor

ameliorates doxorubicin-induced cardiotoxicity’ by A. Lother

et al., pp. 282–290.

1. Anthracycline cardiotoxicity and
cardioprotection in humans

Cardiotoxicity is an established complication of cancer therapies; the
cardiomyopathy caused by anthracyclines is a classic example.1

However, some new therapies used in conjunction with anthracyclines
have introduced an assortment of cardiovascular complications.1 An in-
depth understanding of the early- and long-term cardiovascular compli-
cations of anti-neoplastics is essential.1

Anti-neoplastic agents, by design, work most effectively by killing rap-
idly dividing malignant cells. However, they also cause toxicity by damag-
ing normal cells with high division rates, a state that is more common for
human hearts early in life. Cardiomyocytes, unlike bone marrow and
other cells, are often terminally differentiated cells with a limited capacity
to regenerate; hence, they are vulnerable to long-term damage from
these types of medications.

Therefore, cardiomyocytes are particularly sensitive to anthracyclines,
even though they are a relatively mitotically quiescent cell population.
The susceptibility of cardiomyocytes to anthracyclines is manifold and
not hinged on a single theory.2 Once damaged by chemotherapeutic
agents, cardiomyocytes may never recover. We speculate based on our
work that this may be for at least three reasons, as noted below: First,
with anthracycline-associated free radical injury there is a loss of cardio-
myocytes, as measured by serum cardiac troponin elevations,3 which
results in human children as they grow with increasing age having hearts
that are too small for their body-surface areas due to this loss of cardio-
myocytes, resulting in the remaining cardiomyocytes being enlarged but

of inadequate number.4 This results in the inadequate left ventricular
mass for body-surface area that we have observed in long-term survi-
vors.5 Second, because the heart is one of the most energy dependent
organs, and anthracycline therapy can lead to an irreversible mitochon-
driopathy in both rodents and humans,6,7 the anthracycline mitochon-
drial effects may result in disproportionate toxicity for cardiomyocytes
compared with other cells. Third, the limited regenerative stem cell pop-
ulations that could serve as precursors for differentiated cardiomyocytes
may be disproportionately more sensitive to the toxic effects of anthra-
cyclines than are the non-cardiomyocyte stem cell populations.

Dexrazoxane provides significant protection against anthracycline
cardiotoxicity without reducing oncologic efficacy.8–10 However, this
drug does not completely suppress anthracycline cardiotoxicity.
Strategies other than dexrazoxane such as continuous (vs. bolus) anthra-
cycline infusions,11,12 angiotensin-converting enzyme inhibitor therapy,13

tailoring chemotherapy to a patient’s left ventricular systolic perform-
ance,14–16 growth hormone replacement therapy,17 and phosphocrea-
tine with a control treatment (vitamin C, adenosine triphosphate,
vitamin E, and oral coenzyme Q10)18 have thus far not provided both
long-term cardioprotection while simultaneously maintaining or enhanc-
ing oncologic treatment efficacy in pediatrics patients.

2. Pre-clinical models of
anthracycline cardioprotection

Developing animal models of human pediatric anthracycline cardiotoxic-
ity that include realistic treatment courses, risk factors, and validated bio-
markers are essential for relevant cardioprotection studies.19 Therefore,
the potential to explore divergent cardioprotective strategies can be
addressed, which is why the two studies published in this issue of the
Journal are so important. These studies examined the impact of modulat-
ing mineralocorticoid receptor activity, either pharmacologically or
genetically, on anthracycline-induced cardiotoxicity. The outcome of
these studies revealed divergent results. Lother et al.20 found that the
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..mineralocorticoid receptor pathway is cardioprotective, whereas stud-
ies by Hullin et al.21 failed to demonstrate comparable results.

It was a surprise that these two respected groups generated discrepant
results. We find it difficult to concoct explanations for these differences
but could perceive situations after the fact, thereby making it explainable
and predictable with the benefit of hindsight. However, what we don’t
know is far more relevant than what we do know. This illustrates a severe
limitation to our current state of learning from observations or experi-
ence and the fragility of our knowledge on this topic. Inductive reasoning
by editorialists who make broad generalizations from specific observa-
tions may be dangerous. In this editorial, we have therefore taken the
approach of highlighting some of the common factors that may contribute
individually or cumulatively to the outcome of the present studies. By
considering these factors, which may be responsible for the observed dis-
crepancies, more relevant experimental models can be developed.

The influence of mineralocorticoid receptor activity, and its potential
anthracycline cardioprotective activity, differs in these two experimental
studies, as well as in other animal and human studies.22–24 The reasons
for such differences may be due to the variety of animal models that are
utilized to examine the cardioprotective activity. The effects of anthracy-
clines in the laboratory can, but do not always, reproduce the clinical sit-
uation.19 A consistent clinical observation is that doxorubicin
cardiotoxicity develops chronically over-time. The wisdom of compress-
ing the time to injury by acute high-dose studies in animals to mimic the
chronic in vivo situation is thus questionable.

As noted in the papers of Lother et al.20 and Hullin et al.21 myocardial
fibrosis was a consistent observation following doxorubicin treatment. In
our anthracycline cardiotoxicity studies in children, we have observed
minimal fibrosis compared to a substantial loss of cardiomyocytes, result-
ing in an inadequate number of cardiomyocytes for body-surface area.4,25

Studies with doxorubicin have shown this agent has strong effects on
reducing scar and connective tissue formation, fibrosis, collagen and
matrix deposition, and fibroblast proliferation and survival. In rats, a single
exposure to doxorubicin caused a progressive loss and redistribution of
myocardial interstitial collagen matrix.26 If this anti-fibrotic finding repre-
sents a true anthracycline action, the decrease in myocardial fibrosis asso-
ciated with mineralocorticoid receptor antagonist treatment may be of
limited cardioprotective value. Appropriate animal models are of consid-
erable value in elucidating important cardioprotective activities.19

3. Considerations for animal models
of anthracycline cardiotoxicity

Many animals receiving anthracyclines experience lesions that are mor-
phologically similar to those occurring in patients taking these drugs.27,28

Studies exploring the possibility that certain drugs could protect the
myocardium were begun once appropriate animal models of anthracy-
cline cardiotoxicity were developed.27,29

At present, the most consistent cardioprotective agent identified in
animal models and confirmed in clinical studies is provided by dexrazox-
ane.8–10,29 Although dexrazoxane significantly suppresses anthracycline
cardiotoxicity, the cardioprotective activity is not complete. This may be
due to the multiple potential cardiotoxic actions elicited by exposure to
anthracyclines.2,30 Dexrazoxane may interfere with some but not all of
the cardiotoxic activity. As evidenced by the papers of Lother et al.20 and
Hullin et al.21 in this issue there continues to be a need for appropriate
animal models with which investigators can examine the potential multi-
ple cardiotoxic anthracycline pathways. These models would be the

basis for identifying potential cardioprotectant agents. To increase the
likelihood of successful identification, pre-clinical studies searching for
new cardioprotective agents should consider utilizing procedures that
could be reproducible between experimental sites. Some of the varia-
bles affecting experimental reproducibility are summarized below and in
Table 1.

3.1 Dosing regimen
Many studies have used regimens in which animals were treated with sin-
gle or multiple high doses of an anthracycline. High doses cause toxicity
in non-cardiac tissues, such as the gastrointestinal tract and bone mar-
row, and the animals may die before myocardial changes occur.31 A
more realistic approach would be to use smaller repeated doses that
result in myocardial changes that develop gradually over weeks to
months.32 The changes induced by this chronic treatment are morpho-
logically similar to those observed in patients. Dosages in such studies
should be matched as closely as possible to those used clinically.

3.2 Animal models
The advantages and disadvantages of animal models of chronic anthracy-
cline cardiotoxicity vary according to species. In some animals (mice,
rats, and rabbits), nephrotic lesions develop simultaneously with cardiac
lesions, whereas in other animals (dogs and miniature pigs), anthracy-
clines primarily affect the heart.27,28

3.3 Species variability
Sex and species strain can influence anthracycline cardiotoxicity studies.
Male rodents are more sensitive to anthracycline cardiotoxicity than are
female rodents.33,34 Thus, studies should include both male and female
animals. Cardiac lesions also develop at lower doses in certain strains of
mice and rats than in other strains.35

3.4 Route of administration
Clinically, anthracyclines are administered intravenously, so pre-clinical
studies intended to replicate the clinical situation should also administer
them intravenously.

3.5 Duration of the study
Serious myocardial changes can occur during and after anthracycline
therapy. Studies examining potential cardioprotective agents should
compare the severity of myocardial lesions at the end of treatment with
that evident after a prolonged drug-free period.36

......................................................................................................

Table 1 Design of relevant pre-clinical anthracycline cardi-
oprotection studies

Consideration Suggestion

Animal species Rodent (initial)/non-rodent (dog)

Age Adult animal-rodent/young animal-to

be determined

Gender Male/female

Dosing route Intravenous

Dosing regimen Weekly

Study duration Multiple weeks

Cardioprotectant regimen Prior to anthracycline dose

Cardioprotection persistency Determination after drug free period

Useful cardiac biomarkers Cardiac troponins/NT-proBNP
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3.6 Biomarkers
To evaluate the progression of myocardial alterations, concentrations of
cardiac biomarkers for anthracycline cardiotoxicity should be
measured at baseline, pre-treatment, during, and after treatment.37,38

Measurements of blood cardiac troponins are sensitive and specific bio-
markers of cardiac injury in both animals and humans.39–41 Therefore,
they may be useful in the pre-clinical characterization of cardiac risk as
biomarkers of that risk, which can guide relevant clinical application and
interpretation.39–41 However, cardiac troponin blood levels can vary
according to the strain, gender, and age of the animal.39–41 As a result,
they may need adjustment based on the kinetics of the test article, the
kinetics of the biomarker in the test species, and also based on the
severity of the anticipated cardiovascular perturbation.39–41

In summary, pre-clinical studies of anthracycline cardiotoxicity are
necessary and would be of more clinical value by considering:

(1) Being designed to incorporate a chronic component because the human
cardiac phenotype in children with anthracycline cardiomyopathy shifts
from an early dilated cardiomyopathy to a later progressive restrictive car-
diomyopathy.5 These models have also revealed an irreversible mitochon-
driopathy similar to that found in exposed humans.6,7 For example, a
recent study showed that the mitochondria from adults are ‘apoptosis
refractory’.42 In contrast, the mitochondria from the heart and brain tis-
sues in young mice and humans are primed for apoptosis, pre-disposing
them to undergo cell death in response to genotoxic damage.42 This result
supports the hypothesis that children with cancer may be more pre-dis-
posed to the severe side effects of toxic chemotherapy than are adult can-
cer patients, in whom this apoptotic machinery is almost absent42;

(2) Anthracycline chemotherapy is virtually always given as part of multi-
agent chemotherapy in humans, so testing these drug combinations in
animal models may improve translational understanding;

(3) Multi-agent cardioprotection against multi-agent chemotherapy should
be tested in pre-clinical models. New animal studies should examine new
agents, such as mineralocorticoid receptor antagonists, with or against
dexrazoxane to determine whether cardioprotection is incremental;

(4) Use of validated cardiac biomarkers should be incorporated into pre-
clinical animal studies as surrogate endpoints in assessing attenuation of
anthracycline cardiotoxicity43 and;

(5) We, and others, have identified and validated genetic pre-disposition
for anthracycline cardiotoxicity. On the basis of animal model findings44

we determined in human children that having certain mutations of the
hemochromatosis gene resulted in a nearly nine-fold increased risk of
having dead and dying cardiomyocytes after having received anthracy-
cline treatment for childhood cancer when compared to children
receiving anthracyclines who did not have this mutation.45 This enables
us clinically to identify children at high-risk for cardiotoxicity prior to
their receiving anthracyclines to target cardioprotective strategies.
Using animal models to define high-risk groups for cardiotoxicity, and
to also illuminate important mechanisms of cardiotoxicity and its pro-
tection, should be encouraged.

4. Why might mineralocorticoid
receptor antagonist therapy be
encouraging in addition to
dexrazoxane for anthracycline
cardioprotection?

Cardiac mineralocorticoid receptor activation in cardiomyocytes, mac-
rophages, endothelial cells, and vascular smooth muscle cells in the heart

is important in developing cardiac ventricular dysfunction, conduction
abnormalities, tissue inflammation, oxidative stress, fibrosis, aging, and
heart failure through direct signal mediation and paracrine activities.46–52

Mineralocorticoid receptor antagonist blockade, such as with the potas-
sium sparing diuretics, suppresses fibrosis and effectively treats chronic
heart failure and post-myocardial infarction, improving clinical outcomes
and supporting the function of aldosterone signalling in extra-renal
organs.46–52

Major clinical considerations in anthracycline cardiotoxicity in children
are the differences between boys and girls in the incidence, course, and
outcome of this type of cardiotoxicity, with girls being significantly more
sensitive to anthracycline cardiotoxicity25 and deriving significantly more
cardioprotection from dexrazoxane than do boys with equivalent dosing
based on body-surface area.9 Unexpectedly, our rodent anthracycline
cardiotoxicity models exhibited the opposite gender susceptibility com-
pared with human children.33,34

However, this human anthracycline cardiotoxicity gender relationship
is similar to that reported for mineralocorticoid receptors, in which clini-
cal evidence indicates that females are also more sensitivity to endoge-
nous mineralocorticoid receptor activity and experimental evidence
indicates that mineralocorticoid receptor-targeted interventions may be
more efficacious in females.47 This similarity suggests that the mecha-
nisms of mineralocorticoid receptor-related activities need to be eval-
uated in a sex-specific manner, similar to what we have done in human
anthracycline and dexrazoxane studies, to help provide a basis for devel-
oping cardiac-specific anthracycline cardioprotective therapies, which
may also be sex-specific.47

The gender differences were not specifically explored in the Lother
et al.20 and Hullin et al.21 studies. Yet, the mineralocorticoid receptor
antagonist literature shows gender differences in terms of adverse car-
diac effects related to excess mineralocorticoid receptor activity that
again is very similar to what has been observed with human children
receiving anthracycline chemotherapy. We suggest this as an area for
future study. The gender similarity creates enthusiasm to encourage fur-
ther studies of the manipulation of the mineralocorticoid receptor to
determine if it may reduce anthracycline cardiotoxicity in a clinically
meaningful way.

In conclusion, the importance of horizontally integrating pre-clinical
and clinical discoveries cannot be overstated when considering safer
ways to treat cancer patients with anthracyclines.53,54 These needed syn-
ergies will facilitate the more rapid implementation of cardioprotective
strategies to this population at high-risk for cardiovascular morbidity and
mortality. But, as investigators we must ensure that these translational
approaches to anti-cancer therapy require a quality-of-life-driven agenda
if we are to achieve the optimal patient benefit.55
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