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Abstract The vascular smooth muscle cell (SMC) is one of the most plastic cells in the body. Understanding how non-coding
RNAs (ncRNAs) regulate SMC cell-fate decision making in the vasculature has significantly enhanced our under-
standing of disease development, and opened up exciting new avenues for potential therapeutic applications.
Recent studies on SMC physiology have in addition challenged our traditional view on their role and contribution
to vascular disease, mainly in the setting of atherosclerosis as well as aneurysm disease, and restenosis after angio-
plasties. The impact of SMC behaviour on vascular disease is now recognized to be context dependent; SMC prolif-
eration and migration can be harmful or beneficial, whereas their apoptosis, senescence, and switching into a more
macrophage-like phenotype can promote inflammation and disease progression. This is in particular true for
atherosclerosis-related diseases, where proliferation of SMCs was believed to promote lesion formation, but may
also prevent plaque rupture by stabilizing the fibrous cap. Based on newer findings of genetic lineage tracing studies,
it was revealed that SMC phenotypic switching can result in less-differentiated forms that lack classical SMC
markers while exhibiting functions more related to macrophage-like cells. This switching can directly promote athe-
rogenesis. The aim of this current review is to summarize and discuss how ncRNAs (mainly microRNAs and long
ncRNAs) are involved in SMC plasticity, and how they directly affect vascular disease development and progression.
Finally, we want to critically assess where potential future therapies could be useful to influence the burden of vas-
cular diseases.
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This article is part of the Spotlight Issue on Novel concepts for the role of smooth muscle cells in vascular disease.

1. Non-coding RNAs

New technologies such as next-generation deep sequencing have revealed
that the vast majority of our genome is transcribed into RNAs.
Interestingly, <2% of the human genome codes for proteins,1 leaving many
RNAs without coding potential. These RNAs are referred to as non-coding
RNAs (ncRNAs). Historically DNA being transcribed into ncRNA was con-
sidered ‘junk DNA’. This view has shifted quite dramatically with increasing
evidence that suggests a crucial mediating role for ncRNA on the molecular
level. Furthermore, the amount of ncRNAs in an organism correlates with
its complexity, which lets scientists assume a key influence of ncRNAs on
the development and organization of higher developed animals.2

NcRNAs are divided into two subclasses according to a relatively broad
size threshold. NcRNAs longer than 200 nucleotides (nt) are termed long

non-coding RNAs (lncRNAs), while shorter ncRNAs (<200 nt) are called
small or short ncRNAs. Small ncRNAs can range from very few to 200 nt,
while lncRNAs have a size up to several kilobases.3 MicroRNAs (miRNAs)
with a size of �20 nt have certainly received most of the attention over
the last two decades, in particular for their role in tempering gene expres-
sion. Several clinical trials have been initiated that utilize miRNA inhibitors
in various diseases, mainly targeting kidney and liver pathologies, but also
cancer.4 Currently no miRNA-based trial in the cardiovascular field has
been initiated, but several candidates are being pre-clinically explored.5

MiRNAs are defined as single-stranded, endogenously expressed
ncRNAs that regulate gene expression on the post-transcriptional level.
Genes encoding for miRNAs are located throughout the genome, with a
large proportion being transcribed within clusters.2 miRNA biogenesis is
comprised of a multistep process that involves transcription, nuclear
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processing, export into the cytoplasm, and maturation before reaching
the stage of a functional molecule.6

Unlike miRNAs, the mechanisms of action for lncRNAs thus far are only
poorly understood. Importantly, lncRNAs can regulate gene expression at
multiple levels in the cell, either in the nucleus or the cytoplasm, through
complex molecular mechanisms (summarized in Figure 1). Furthermore,
lncRNAs are unlike miRNAs less well-conserved across different species
when it comes to the nucleotide sequence, even though lncRNA tran-
scripts can be found in almost all living cells.7 As one can imagine, this sub-
stantially limits experimental in vitro and in vivo models for investigation of
lncRNA functionality, even though a difference in nucleotide composition
can still lead to the same 3D geometrical pattern and genomic or epigenetic
function.8,9 LncRNAs appear as crucial epigenetic regulators of almost
every cellular process, and expression of these molecules is distinctly medi-
ated under physiological and pathological conditions, including cardiovascu-
lar disease (CVD). Intriguingly, the vast majority of disease-associated single
nucleotide polymorphisms (SNPs) derived from recent genome wide asso-
ciation studies appear in non-coding regions of the human genome.9–11

Based on the large number of existing lncRNAs, it becomes evident that
only a minority have already been described and investigated thoroughly.
However, the ones that have been functionally characterized have proven
to regulate gene expression at the transcriptional and post-transcriptional

level through structural and sequence-specific manners.12,13 One important
feature regarding their true classification as a non-coding transcript is obvi-
ously the exclusion of their potential to code for protein. This becomes
increasingly evident, as it has indeed been recently reported that some pre-
viously considered lncRNAs actually do code for (micro)-peptides.14

Whether these peptides are really functional and have any relevance for
the molecular signalling control of lncRNAs remains to be determined.

In addition to these classic linear RNA transcripts, it appears that there
is also a back-splicing variant of expression which gives rise to circular
RNAs (circRNAs). CircRNAs lack a 50 cap and 30 tail, and they are proc-
essed as covalently closed continuous loops.15 Interestingly, circRNAs
are stably conserved across species and appear relatively tissue-specific
compared with other ncRNAs.16 Due to their stability in circulation and
tissue specificity, circRNAs might in particular become interesting as
future biomarkers in CVD.17,18

2. SMCs and vascular disease
development

As this current article is part of a series of reviews for a Spotlight Issue on
‘Novel concepts for the role of smooth muscle cells (SMCs) in vascular

Figure 1 Schematic overview of prominent mechanisms of action for ncRNAs (miRNAs and lncRNAs). lncRNAs can act within the nucleus, where they
exert regulation on the transcriptional level, as well as in the cytoplasm (mainly affecting mRNA/miRNA and protein stability). Within the nucleus lncRNAs
have been shown to be important regulators for splicing events, to modify chromatin activity, and to repress or activate transcription of genes. Within the
cytoplasm, lncRNAs mediate mRNA and protein stability and thus translational activity; they can act as sponges for miRNAs, meaning that they capture them
before they get uploaded into the RISC where they suppress target gene expression. Furthermore, lncRNAs can serve as chaperons (scaffolds) for proteins
(e.g. transcription factors) trying to enter the nucleus. Mature, single-stranded miRNAs can originate from lncRNA transcripts and act upon loading into the
RISC via repressing translation or induction of mRNA degradation.

612 N.J. Leeper and L. Maegdefessel
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..disease’, the physiology and contribution to pathology surrounding
SMCs in the vasculature will only be briefly discussed. Under
physiological—somewhat un-diseased conditions in healthy arteries—
SMCs express a range of SMC markers, including SMC-a actin (ACTA2),
smoothelin, SMC myosin heavy chain (MYH11), and transgelin (TGLN),
among others. SMCs in culture—as well as during disease development
and progression—reduce expression of these markers, and at least
in vitro become prone for mechanisms that involve proliferation, migra-
tion, calcification, and production of various extracellular matrix (ECM)
proteins and cytokines.19 In the following paragraphs, several SMC-
related mechanisms, their contribution to vascular disease, and the regu-
latory role specific ncRNAs play in this context, will be discussed
(summarized in Tables 1 and 2).

3. SMC de- and trans-differentiation

Several ncRNAs have been shown to control the varying mechanisms,
which govern SMC plasticity and fate (Figure 2). A strong indicator for the
importance of miRNAs in this context, are studies being performed in
mice with a genetic deletion of Dicer.20–22 The enzyme Dicer plays a cen-
tral role in miRNA biogenesis, as it has the ability to cleave pre-miRNA
(as well as other double-stranded RNAs) into short double-stranded
RNA fragments (of about 18–25 base pairs), facilitating the activation of
the RNA-induced silencing complex (RISC), in which mature miRNAs act
upon their target mRNAs.6 The consequences of deficiency in SMCs are
impaired vascular development and embryonic lethality.23,24 Recent data
from Zahedi et al.25 revealed that conditional deletion of Dicer in SMCs
of Apoe�/� mice reduces their proliferation rate. The SMC-specific

deletion mediated a network of anti-proliferative miRNAs and targets in
wire-injured mouse carotid arteries. Albinsson et al.23,26 further revealed
that Dicer-deficient mice displayed significant blood pressure reductions
with limited SMC contractile functionality. Interestingly, the same
researchers were able to show that miR-145 can to some extent rescue
the contractile phenotype of Dicer-deficient SMCs.

Phenotypic switching of SMCs has long been considered as an impor-
tant contributing factor to vascular disease development. Recent studies
have discovered that SMCs that undergo phenotypic switching resemble
a more macrophage-like phenotype, which is mainly based on the
markers being expressed on their surface.27 The stem cell and differentia-
tion mediator Kruppel-like factor 4 (KLF4) has been shown previously to
be required for phenotypic switching of cultured SMCs in response to
platelet-derived growth factor BB (PDGF-BB),28,29 oxidized phospholi-
pids,30,31 and interleukin (IL)-1b,32 while repressing SMC marker genes to
limit the activation of myocardin (MYOCD)-responsive genes.29,33 One
of the first studies investigating the role of miRNAs in SMC differentiation
led to the discovery of the miR-1/miR-133a family in this context. In par-
ticular miR-1, which becomes activated through MYOCD, destabilizes
the cytoskeleton in contractile state-bound SMCs.34 miR-24 and miR-29a
are additional miRNAs that get induced through MYOCD. Both have
been investigated for their regulatory role in migrative and proliferative
processes in SMCs through facilitating the expression of PDGFRb lev-
els.35 miR-24 has further been shown to mediate Tribbles-like protein 3
upon PDGF-BB stimulation, which through SMURF1 and reduced
SMAD1 enhances SMC differentiation.36,37

Regarding the specific role of KLF4 in SMCs in vivo, it could be shown
that this transcription factor is strongly associated with an augmented
phenotypic transitioning in response to carotid ligation injury.38 More

..............................................................................................................................................................................................................................

Table 1 miRNAs in SMC fate and functionality

miRNA (cluster) Regulation Target(s) Role and function in SMC dynamics References

miR-1/-133a " KLF4, SRF, CCND, RUNX2 Differentiation, migration, proliferation 33,42–45,84

miR-21 " PTEN, PDCD4, BCL2 Proliferation, apoptosis 86–90

miR-23b/-24/-27b "# TLP3, CHI3L1, FOXO4, Proliferation, differentiation, cytokine

production & release

34–35,91,92

miR-26a # SMAD1, SMAD4 Differentiation 93

miR-29a/b/c "# COL1A1, COL3A1, COL5A1, ELN,

MMP2, MMP9, PTEN

ECM production, proliferation 34,116–120

miR-34a "# SIRT1, NOTCH1 Proliferation, migration 97

miR-130a " MEOX1 Proliferation, migration 99

miR-138 "# SIRT1 Proliferation, migration 98

miR-143/-145 "# KLF4/5, MYOCD, ELK1, SRF Differentiation, proliferation 23,48–56

miR-146a " KLF4/5 Differentiation, proliferation 57

miR-155 " SMAD2, BCL6, CTLA4 Differentiation, inflammation 58–60

miR-195 # ELN, MMP2 ECM production, remodelling 118

miR-204 # PTPN11 Proliferation 100

miR-205 # SMAD1, RUNX2 Proliferation, calcification 95

miR-206 # ARF6, SLC8A1 Differentiation 94

miR-210 # APC Apoptosis 125

miR-221/-222 " CDKN1B, CDKN1C Proliferation, migration, and anti-apoptotic effects 101,102

miR-424/-322 # CCND1, CALU, STIM1 Proliferation 103

miR-663 # JUNB Proliferation 104

miRNAs and their regulation (up- or down) under vascular disease relevant conditions and stimuli. Further depicted in the table are the direct downstream targets of specific
miRNAs, their main effect in SMC dynamics, and the respective references. Abbreviations of target genes are explained in the running text.

Non-coding RNAs and smooth muscle cells 613
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..recent studies from the Owens laboratory have shown that conditional
SMC-specific genetic deletion of KLF4 does not necessarily prevent
SMC phenotypic switching, but substantially limits the size of athero-
sclerotic lesions in parallel with increased fibrous cap and plaque stabil-
ity.27 Interestingly, overall SMC numbers were not affected by KLF4
deletion, but a substantial reduction in SMC-derived macrophage-like

and mesenchymal stem cell-like cells was discovered, indicating a crucial
and novel role for KLF4 regulating SMC-macrophage transition. The
gene expression of SMC-derived macrophages was importantly different
from classical macrophages, dendritic cells, or monocytes.39 The SMC-
derived macrophages showed a reduction in phagocytic capacity when
being compared with activated peritoneal macrophages. This study

..............................................................................................................................................................................................................................

Table 2 lncRNAs in SMC fate and functionality

lncRNA Regulation Related targets and factors Role and function in SMC dynamics References

ANRIL #" CDKN2A, CDKN2B, DAB2IP, LRP1, LRPR, CNTN3 Proliferation 10, 109–112

RNCR3 " KLF2, miR-185 Proliferation 108

H19 " miR-675, IGF2, let7, p53, NOTCH1, miR-106a, MYC, miR-19b, SOX6 Differentiation and proliferation 64–76

lnc-362 " miR-221/222 Host-gene for miRNAs, proliferation 105

SENCR " FLI1 Migration and proliferation 77,78

Lnc-GAS5 # ANXA2 Differentiation, proliferation, and migration 106,107

Lnc-MEG3 – p53, MMP2, IFN-c Proliferation, migration, and apoptosis 137,138

MYOSLID – MYOCD, MRTF-A, TGF-b (SMAD) Differentiation and proliferation 79

HIF1a-AS1 " HIF1A, BRG1 Apoptosis and proliferation 45,135,136

HAS-AS1 " HAS2 ECM remodelling and deposition 122

lincRNA-p21 " p53, p300 Apoptosis 133,134

lncRNAs and their regulation (up- or down; if applicable) under vascular disease relevant conditions and stimuli. Further depicted in the table are the associated up- and down-
stream targets, their main effect in SMC dynamics, and the respective references. Abbreviations of lncRNAs and associated mediators/genes are explained in the running text.

Figure 2 Schematic overview of miRNAs and lncRNAs involved in SMC fate decisions. Contractile SMCs upon different stimuli (injury, hypoxia, inflamma-
tion, etc.) undergo phenotypic switching (A) to a more synthetic, proliferative cellular subtype. Proliferation (B), migration (C), ECM production (D), and cell
death (apoptosis) (E) of SMCs has been shown to be regulated by several miRNAs as well as more recently lncRNAs. For details on specific mechanisms of
action and targets of all displayed ncRNAs, please refer to the main text.

614 N.J. Leeper and L. Maegdefessel
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challenges our more classical view on the role of SMCs, being considered
as purely protective in fibrous caps of advanced atherosclerotic
lesions.40,41 Certainly SMC function might vary quite drastically depend-
ing on the stimulus and outcome of their phenotypic switching and
transformation.

The aforementioned miR-1 directly targets KLF4, guiding the differen-
tiation process of embryonic stem cells into SMC progenitors,42 while
miR-1 depleted mice display abnormal SMC differentiation.43 Two human
miR-1 genes exist (miR-1-1 and miR-1-2), and both are co-transcribed
with the respective miR-133a genes (miR-1-2 and miR-133a-1 on chro-
mosome 18; miR-1-1 and miR-133a-2 on chromosome 20).44 miR-1-1
and miR-1-2 become stimulated by MYOCD and myocyte enhancer fac-
tor-2 in cardiac and skeletal muscle precursor cells.45 Mice with genetic
deletions of miR-133a display abnormal SMC gene expression in the heart
and limited cardiomyocyte proliferation during development, which the
authors at least partially attribute to increased expression of its direct tar-
gets serum response factor (SRF) and cyclin D2 (CCND2).46 An addi-
tional study was able to indicate a role for miR-133a in SMC-driven
arterial calcification processes.47 In this study, miR-133a overexpression
limited the trans-differentiation of SMCs into osteoblast-like cells,
whereas inhibition of miR-133a was able to promote a pro-osteogenic
response by inducing the expression of its direct target RUNX2.

The miR-143/-145 cluster originates from a bi-cistronic transcript
sharing a common promoter,48 harbouring various binding sites for tran-
scription factors known to be involved in SMC differentiation.49–51 Both
miRNAs are augmented in SMC progenitors in vascular development,52

and influence SMC dynamics by directly targeting KLF4 and KLF5, which
then induces MYOCD.49,53 In most studies, induction of miR-145 limits
neointima formation upon experimental vascular injury.48,53 Contrary
results were reported for cultured SMCs originating from clinical tissue
specimen and experimental animal models of pulmonary arterial hyper-
tension (PAH). Here, miR-145 appeared initially up-regulated, and
Caruso et al.54 revealed that vector-based repression of miR-145 halted
SMC differentiation and switching towards a pro-proliferative
phenotype.

Two interesting studies have assessed the intercellular communica-
tion and potential differentiation of SMCs and endothelial cells (ECs)
being triggered through miR-143/-145. Climent et al.55 discovered that
SMCs can at least partially control EC functionality via sending miR-143/-
145 through tunnelling nanotubes, enhancing the pro-angiogenic capabil-
ities of ECs in a transforming growth factor-b (TGF-b) dependent
manner. Hergenreider et al.56 have demonstrated the exchange of
miRNAs (as well as other RNAs) from ECs to SMCs, discovering a key
role for travelling miR-143-/-145 in SMC differentiation and vascular
functionality. In this study, laminar shear stress was able to KLF2-
dependently increase expression, exosomal release, and intercellular
transfer of miR-143/145, exerting atheroprotective effects.

Another interesting KLF-4 related mechanism in SMC differentiation
is exerted by miR-146a. This miRNA directly targets KLF4, but at the
same time has binding sites for both KLF4 and KLF5 in its own promoter
region. The two KLF transcription factors have opposing effects on SMC
phenotypic switching and proliferation depending on active binding to
the miRNA gene.57

Finally, miR-155 has been indicated to revoke SMC differentiation by
limiting SM-MHC levels.58,59 Apart from its role in differentiating SMCs,
miR-155 is well known in vascular disease-related mechanisms for its
repression of B-cell CCL, lymphoma 6 (BCL6) in macrophages.60

Apart from miRNAs, several lncRNAs have been suggested to play a
role in SMC differentiation. H19 was one of the first RNAs discovered to

act as a transcript without protein-coding ability.61 Initially, H19 was dis-
covered as a paternally imprinted ncRNA, which remains highly
expressed throughout embryonic and foetal development, with its
expression being shut down in most tissues (including the vasculature)
shortly after birth.62 This onco-fetal behaviour pattern and its uni-
parental monoallelic expression are considered principal characteristics
of imprinted genes, with many of these genes becoming altered in vari-
ous malignancies.63

The multiple functions of H19 in vascular disease progression in rela-
tion to pathological processes involving SMCs are under current investi-
gation by several labs. Of interest to SMC dynamics, H19 is a known
regulator of p53,64 which mediates cellular differentiation and apoptosis.
Other important functions of H19 include its hosting of the pri-miR-675
gene that suppresses growth and migration,65,66 as a modulator of
miRNA expression (including let-7 and miR-106a),67–69 or mediating
RNA: protein interactions.70,71 One SMC-specific study revealed that
let-7a attenuates migration and proliferation in vitro and in vivo by target-
ing V-myc avian myelocytomatosis viral oncogene homologue (MYC).72

Additional effects in the cardiovascular system of H19 include increasing
proliferation, while blocking apoptosis during late-stage cardiac differen-
tiation via regulation of miR-19b and SOX6.73 H19 inhibition was further
detected to limit human umbilical vein endothelial cell (HUVEC) growth
and capillary formation,74 while H19-bourne miR-675 was shown to
magnify restenosis development by targeting phosphatase and tensin
homologue (PTEN) in SMCs.75 Recently, altered DNA methylation in
the promoter region of H19 in calcified aortic valve disease was shown
to accelerate mineralization by silencing NOTCH1.76

The Miano Lab has recently shown the first lncRNA being predomi-
nantly expressed in ECs and SMCs.77 The investigators assessed human
aortic SMCs via RNA-sequencing and revealed an antisense RNA over-
lapping the Friend Leukaemia Integration virus 1 (FLI1) gene, an estab-
lished regulator of endothelial development.78 They termed the
transcript smooth muscle and endothelial cell enriched migration/
differentiation-associated lncRNA (SENCR), which has two variants with
enhanced expression in arterial ECs and SMCs, as well as other tissues
(e.g. lung, skeletal muscle). SENCR depletion led to SMC de-
differentiation and induction of migration, mainly being indicated through
increased expression of midkine and pleiotrophin. Repression of both
pro-migratory genes upon SENCR inhibition halted this effect.
Interestingly, SENCR appears to be mainly expressed and active cyto-
plasmaticly, and thus not regulating FLI1 on the transcriptional level.77

Additional studies looking at the mesodermal and endothelial lineage
commitment upon SENCR modulation discovered that its overexpres-
sion promotes proliferation, migration, and angiogenesis in HUVECs.78

A novel transcript termed myocardin-induced smooth muscle
lncRNA (MYOSLID)79 has been shown to increase SMC phenotypic
switching while reducing SMC proliferation rates. MYOSLID gets
induced via TGF-b/SMAD pathways, as well as MYOCD and SRF.
Inhibition of MYOSLID unsettles actin formation by blocking nuclear
translocation of the MYOCD-related transcription factor A (MRTF-A),
while limiting the TGF-b1-induced phosphorylation of SMAD2.

4. SMC migration, proliferation, and
ECM production

Absolute or relative quantification of SMC migration in human arteries is
considered very difficult—if not impossible to perform—due to the lack
of solid and specific markers. Thus, in vitro studies are providing us with

Non-coding RNAs and smooth muscle cells 615
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.
the only evidence that human SMCs can migrate in response to varying
stimuli.39 As a result, the contribution of SMC migration to aneurysm
development (or its limitation), as well as restenosis, or the maturation
of atherosclerotic plaques in patients appears largely unclear. Also, until
now it could not be clarified whether migration occurs independently—
or is dependent on SMC proliferation.80 Classically, the presence of a
large number of intimal SMCs in aortic aneurysms as well as in fibrous
cap formation in advanced atherosclerosis has been taken as evidence
that SMC migration from the media plays an important role in vascular
disease progression. Unlike humans, rodents have no SMCs in the intima
of a healthy artery, which leads to the assumption that neointimal SMCs
must have migrated from the intima—or originate from invading myeloid
cells from the lumen that underwent trans-differentiation.39,81

Accelerated SMC proliferation rates can be observed in response to
vascular injury as well as during early atherogenesis and upon vascular
injury.82 On the contrary, SMCs derived from either aged arteries,
aneurysmal disease, or advanced atherosclerotic plaques display aug-
mented proliferation rates and extended population doubling times.83,84

The aforementioned miR-1 has been reported as an important regulator
to limit SMC proliferation via mediating the expression of PIM1.85 A
more prominent and well-studied miRNA in determining SMC fate in
aortic aneurysm development as well as after vascular injury and neoin-
tima formation is miR-21, which provides mainly pro-proliferative and
anti-apoptotic effects in SMCs.86,87 Inhibition of miR-21 diminishes the
neointimal response via induction of PTEN expression (Figure 3). In stud-
ies investigating the development of in-stent restenosis (ISR), miR-21-
depleted mice appeared protected from this complication by limiting the
burden of neointima formation in response to vascular injury. The
authors of the study associated this to an increase of anti-inflammatory
M2 macrophage signalling in conjunction with a compromised prolifera-
tive reaction in miR-21�/� SMCs.88 Wang et al.89 were able to show that
local delivery using anti-miR-21 coated drug eluting stents limited SMC-
driven myointimal hyperplasia, and thus effectively blocked ISR develop-
ment. One of the early studies on miR-21 by Davis et al.90 was able to
discover an opposing effect for this miRNA in SMC differentiation and
proliferation. Here, miR-21 down-regulated programmed cell death 4
(PDCD4), which acts as a negative regulator of SMC contractile genes.
Interestingly, enhanced signalling of TGF-b and bone morphogenic pro-
tein pathways led to increased expression of mature miR-21 through a
post-transcriptional regulatory circuit, which triggered the processing of
the pri-miR-21 gene into pre-miR-21.

Another cluster with implication for SMC dynamics and cell-fate decision
making is the miR-23b/-24/-27b family.91 miR-23b limits SMC proliferation
and migration, effecting neointimal hyperplasia in an arterial injury model
through targeting of FOXO4.92 miR-24 has further been shown to limit
aortic aneurysm progression by targeting cytokine release and survival rates
in SMCs (and macrophages) by targeting chitinase 3-like 1 (CHI3L1).91

miR-26a has been shown to limit serum starvation-induced differentia-
tion, while enhancing proliferation of SMCs. Leeper et al.93 identified
SMAD1 and SMAD4 as direct targets of deregulated miR-26a with direct
implications for angiotensin II (ANGII)-induced aortic aneurysms in
ApoE�/� mice. Interestingly, another study discovered that miR-206 in
HUVECs helps to maintain the contractile phenotype of SMCs by sup-
pressing exosome release of miR-26a-enriched particles via the adeno-
sine diphosphate (ADP)-rybosilation factor 6 (ARF6) and soluble carrier
family 8 member A1 (SLC8A1, previously known as NCX1).94 Another
miRNA targeting SMAD1 (as well as RUNX2) expression levels is miR-
205, which adversely regulates b-glycerophosphate-induced calcification
of human SMCs.95

Another prominent miRNA regulating migration and proliferation is
miR-34a, which modulates Sirtuin1 (SIRT1),96 as well as NOTCH1
expression levels.97 Induction of miR-34a led to limited neointima forma-
tion in murine models of arterial injury. Another miRNA targeting SIRT1
is miR-138, which has been indicated to enhance SMC migration and
proliferation in a diabetic model utilizing db/db mice.98 A similar mecha-
nism aiming at the proliferative response in SMCs could be reported for
miR-130a, which regulates Mesenchyme Homeobox 1 (MEOX1) in this
process.99

Interesting observations on the regulation of miRNAs in SMC prolifer-
ation and contribution to vascular disease progression stem from studies
investigating PAH. Here, it was discovered that miR-204 was repressed
in human PAH disease specimens and murine models. Upon down-
regulation of miR-204, Protein tyrosine phosphatase, non-receptor type
11 (PTPN11, also known as SHP2) increases, enhancing STAT signalling,
which mediates SMC proliferation and intimal hyperplasia in pulmonary
arteries.100

miR-221 is another miRNA that has been shown to stimulate SMC
proliferation downstream of PDGF. Induction of this miRNA decreased
the expression of c-Kit and p27Kip1, which are both critical mediators of
cell proliferation.101 A similar mechanism was observed for miR-221’s
cluster member miR-222.102

MiRNA profiling studies using microarray technology led to the dis-
covery of miR-424 and its rat ortholog miR-322 in studies investigating
myointimal hyperplasia and SMC responsiveness. Functional in vitro and
in vivo studies identified CCND, as well as Ca(2þ)-regulating proteins cal-
umenin (CALU) and stromal-interacting molecule 1 (STIM1) as direct
targets.103 Adenoviral overexpression of miR-424/-322 limited the pro-
proliferative response in an arterial injury model in rats.

Through direct targeting of the oncogene and transcription factor
JUNB, miR-663 was identified as a crucial inducer of SMC prolifera-
tion.104 Again, utilization of adenoviral overexpression limited SMC pro-
liferation in a mouse model of carotid ligation injury.

Similar to the molecular mechanisms regulating SMC differentiation,
several lncRNAs were identified in recent years to contribute to SMC
proliferation and migration. One of the first studies using RNA deep
sequencing in rat SMCs discovered that ANGII stimulation deregulates
several lncRNAs. Interestingly one of them, lncRNA-362 functions as a
host for the aforementioned miR-221/-222 cluster. Inhibition of
lncRNA-362 limited SMC proliferation rates in response to ANGII
treatment.105

Further profiling approaches using microarrays identified several
deregulated transcripts in varicose great saphenous veins compared with
un-diseased controls. Co-expression analysis revealed their potential
importance in metabolic pathways; however, none of the lncRNAs was
experimentally or functionally analysed.106 A second study performed in
saphenous veins and SMCs originating from these vessels identified
lncRNA-GAS5A as a novel mediator in SMC proliferation. RNA pull-
down experiments indicated a direct binding for this lncRNA to the
RNA-binding protein Annexin A2 (ANXA2). Inhibition of lncRNA-
GAS5 was able to limit ANXA2 expression and SMC proliferation, while
ANXA2 overexpression increased proliferation rates.107

The retinal lncRNA 3 (lncRNA–RNCR3) has been linked to
atherosclerosis-related vascular dysfunction with a potential mechanism
relating to SMC dynamics.108 RNCR3 levels are augmented in human
and mouse atherosclerotic lesions, in which the lncRNA co-locates with
ECs and SMCs. Inhibition of RNCR3 sufficiently enhances pro-
inflammatory signalling during atherogenesis and hypercholesterolaemia,
while blocking proliferation in SMCs. Cell-fate decisions in SMCs are
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..regulated by RNCR3 through the formation of a feedback loop with
KLF2 and miR-185.

The anti-sense RNA in the INK4 locus (ANRIL) is localized in the
CVD-associated 9p21.3 region of the human genome.9,109 ANRIL is a
crucial regulator of cell cycle genes, which it mediates in cis through poly-
comb repressive complexes.110 SMCs stemming from humans with a
SNP variant in the ANRIL locus exhibit increased proliferation rates.111

Holdt et al.112 reported that the molecular mechanism controlled by
ANRIL affects target-genes in trans, which leads to cellular proliferation,
adhesion, and concomitantly a reduction in apoptosis. Importantly, the
reported trans regulatory mechanisms relied on Alu motifs, which were
responsible for identifying the promoters of the respective ANRIL
targets.

SMCs synthesize components of the ECM, in which they are
embedded. Earlier studies revealed that the ECM suppresses phenotypic
switching, keeping SMCs in a contractile state while being less responsive
to varying stimuli (e.g. cytokines). On the contrary, ECM breakdown and
anti-fibrotic factors (like matrix-metalloproteinases released from mac-
rophages and SMCs) were shown to promote phenotypic switching and
to induce a pro-migratory and -proliferative response in the arterial wall
as well as the plaque.113,114 Interestingly, no study has been conducted
until now that uses knockout of a certain ECM gene exclusively in SMCs
to prove that this affects disease progression by de-stabilizing athero-
sclerotic lesions.115

Regarding miRNA involvement into ECM production and release
mechanism, it was shown that miR-29b and miR-195 are targeting

several pro-fibrotic components (collagen isoforms) and mediators of
inflammation,116–118 and that their inhibition can limit aneurysm progres-
sion, as well as stabilize experimental atherosclerotic lesions.119 miR-29b
is again part of a cluster, together with miR-29a and miR-29c.
Interestingly, miR-29b appears lower expressed in SMCs compared with
the other two, underlining differences in miRNA processing between
the cluster members in SMC-related cell-fate decisions. In this study by
Bretschneider et al.,120 aldosterone was labelled as a distinct regulator
being capable of adjusting miR-29b expression levels.

Accumulation of hyaluronan into the matrix of arteries increases wall
thickening, and thus contributes to atherogenesis and vascular disease
progression.121 The natural antisense transcript (NAT) hyaluronan syn-
thase 2 gene (HAS2)-AS1 is transcribed opposite to the HAS2, and
appears generally required to induce the transcription of the protein-
coding gene, and its depository and remodelling effects in the vascular
matrix.122

5. SMC apoptosis

Cell death of any kind plays a crucial role in vascular disease develop-
ment.123 Aortic aneurysms continue to expand rapidly if SMC survival is
augmented,86 and the importance of apoptosis in advanced atheroscler-
otic lesions has been indicated in numerous studies.82,83,124,125 In the set-
ting of atherosclerosis, the level of apoptosis seems low in early lesions
(Stary126 Grades I–III), but substantially increases as lesions progress.

Figure 3 miR-21 regulates SMC proliferation, while lincRNA-p21 mediates apoptosis. miR-21 has been reported to get induced by different factors
involved in vascular disease evolvement and progression, such as nuclear factor kappa-b and ANGII.86 SMC-enriched miR-21 targets and down-regulates
expression of PTEN, activating proliferation.86,87 lincRNA-p21 is a transcriptional target of p53, which is enabled to feed back to accelerate p53 activity
through binding to other factors (mouse double minute 2 = MDM2, an E3 ubiquitin-protein ligase not shown in the scheme).133 Increased levels of lincRNA-
p21 allow p53 to interact with p300, which leads to SMC apoptosis.

Non-coding RNAs and smooth muscle cells 617
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Apoptosis appears predominantly in SMCs, but can also be detected in
macrophages.127 However, in general all cellular subtypes of the
vasculature can potentially undergo apoptosis. As with other mecha-
nisms driving SMC functionality and fate; interpretation of the apoptosis
effect in actual human patients is limited due to the lack of specific
markers.

Although apoptosis is seen in all kinds of different vascular diseases,
conclusions about the absolute rates of cell death are almost impossible
to be estimated, as our understanding of the initiation and duration of
the process in vivo is limited.115,128 Chronic SMC apoptosis accelerates
vascular disease progression (in particular aneurysm disease as well as
atherosclerosis-related pathologies), promotes calcification, and induces
features of medial degeneration, like atrophy, elastin fragmentation, as
well as enhanced glycosaminoglycan deposition.129 Cystic medial degen-
eration, which becomes visible for example in Erdheim-Chester disease,
Marfan syndrome, and to a lesser extent in normal aging, are good exam-
ples of SMC loss being connected with apoptosis.130–132

A recent study from our lab by Eken et al.125 has shown that miR-210
can stabilize fibrous caps of advanced atherosclerotic lesions by blocking
SMC apoptosis via inhibition of the tumour suppressor Adenomatous
polyposis coli (APC) and canonical Wnt-pathway signalling. p53 was
identified as a negative upstream regulator of miR-210.

Another molecular process involving p53-mediated apoptosis signal-
ling in atherosclerotic lesions relates to lincRNA-p21, which was
recently identified as a crucial mediator of SMC and macrophage sur-
vival.133 lincRNA-p21 is decreased in lesions of ApoE-deficient mice and
plaque specimens from individuals suffering from coronary artery dis-
ease. Inhibition of lincRNA-p21 enhanced neointimal hyperplasia in a
murine model of carotid artery injury. The overall effect of this lncRNA
could be linked to p53:p300 interactions, allowing these factors to bind
to their promoters and enhancers in apoptotic signalling pathways
(Figure 3). In addition, p53 and lincRNA-p21 form a feedback loop, in
which p53 regulates the transcriptional activity of the lncRNA.134

The NAT to the transcription factor HIF1a (HIF1a-AS1) has been dis-
covered to be elevated in circulation of patients with aortic aneur-
ysms.135 siRNA-guided inhibition of this NAT in aortic SMCs limited the
apoptotic response as indicated by different markers of cell death (e.g.
Caspases 3 and 8).45

Another study linking HIF1a-AS1 to thoracic aneurysms was able to
identify Brahma-related gene 1 (BRG1) as a potential target.
Overexpression of BRG1 in human aortic SMCs could increase apopto-
sis, while inhibition of HIF1a-AS1 not only reduced BRG1 levels, but also
promoted cellular proliferation.136 The direct molecular mechanism
behind this regulation remains to be determined.

The lncRNA MEG3 is another recently unravelled transcript with
important implications in vascular disease. Boon et al.137 have shown that
MEG3 regulates endothelial aging while mediating angiogenesis. For SMC
plasticity, MEG3 seems of potential interest, as it has been shown to be
under the control of dNK-derived interferon c (IFN-c), negatively affect-
ing SMC survival and migration in uterine spiral arteries during vascular
transformation.138

6. Conclusion and perspectives

The emerging links between ncRNAs and diseases have opened up a
new field of therapeutic and diagnostic opportunities. Many miRNAs
have already successfully been shown to serve as biomarkers or thera-
peutic targets for many different pathologies. There is also evidence that

the same holds true for lncRNAs (and maybe circRNAs). It is evident
that RNA molecules exhibit many more functions beyond their classic
role as templates for protein synthesis. Considering the ability of RNA
to form 3D structures and interact with DNA, proteins, and other RNA
molecules, non-coding transcripts are assumed to be as versatile as pro-
teins, allowing them to mediate all major cellular processes. The classical
view on SMCs and how they are involved in vascular disease develop-
ment and progression has been challenged in recent times. Many studies
in the field have moved SMCs, with their plastic and dynamic features,
into the centre of attention. Potential new therapies should be consid-
ered for being directed towards manipulating SMC fate decisions, ena-
bling us to limit the burden of SMC apoptosis and transformation into
macrophage-like cells with enhanced pro-inflammatory activity.
Strategies that modulate the expression of ncRNAs, like miRNAs and
lncRNAs, could play an important role in this regard, as they have been
shown to be master regulators of SMC plasticity in vascular disease
evolvement.
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