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Traditional models of recognition and categorization
proceed from registering low-level features, perceptually
organizing that input, and linking it with stored
representations. Recent evidence, however, suggests
that this serial model may not be accurate, with object
and category knowledge affecting rather than following
early visual processing. Here, we show that the degree
to which an image exemplifies its category influences
how easily it is detected. Participants performed a two-
alternative forced-choice task in which they indicated
whether a briefly presented image was an intact or
phase-scrambled scene photograph. Critically, the
category of the scene is irrelevant to the detection task.
We nonetheless found that participants ‘‘see’’ good
images better, more accurately discriminating them from
phase-scrambled images than bad scenes, and this
advantage is apparent regardless of whether participants
are asked to consider category during the experiment or
not. We then demonstrate that good exemplars are
more similar to same-category images than bad
exemplars, influencing behavior in two ways: First,
prototypical images are easier to detect, and second,
intact good scenes are more likely than bad to have been
primed by a previous trial.

Introduction

Human observers are surprisingly adept at catego-
rizing briefly presented natural scenes. Not only are
they able to extract scene category from very short
presentation durations (e.g., ,50 ms; Walther, Caddi-
gan, Fei-Fei, & Beck, 2009), but category judgments

themselves can be made in less than 350 ms (VanRullen
& Thorpe, 2001a). Similarly, event-related potential
data show that the brain differentiates categories of
scenes in 150 ms (Thorpe, Fize, & Marlot, 1996) and
under some conditions possibly even less time (Van-
Rullen & Thorpe, 2001b). Finally, all of this can be
done under conditions of limited attention (Li,
VanRullen, Koch, & Perona, 2002; Rousselet, Faber-
Thorpe, & Thorpe, 2002).

Such fast and efficient categorization is surprising
given traditional models of recognition. Most recogni-
tion models proceed from registering low-level features,
perceptually segmenting and organizing that input, and
culminating in recognition and categorization processes
that link the visual input with stored learned repre-
sentations (Bregman, 1981; Driver & Baylis, 1996;
Marr, 1982; Nakayama, He, & Shimojo, 1995; Palmer
& Rock, 1994a, 1994b; Rubin, 1958). In recent years,
these serial models of vision, which dominated theo-
retical models of vision for almost half a century, have
given way to predictive coding models that argue
against a unidirectional view of vision (Bullier, 2001;
Chen et al., 2007; Hochstein & Ahissar, 2002;
Panichello et al., 2012; Rao & Ballard, 1999). Rather
than simply building a representation with each
successive step in the visual hierarchy, it is posited that
later areas not only make a prediction based on the
input from hierarchically earlier areas but send it back
to the earlier area, thus generating an error signal that
can be used to iteratively shape the signal in line with
both the input and predictions. It follows from such
models that stimuli that conform to expectations
should emerge more quickly than those that do not.
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In keeping with a model in which prediction
influences even early visual processes, regions in a two-
toned image that denote a meaningful object are more
likely seen as a figure than their nonmeaningful
counterparts (Peterson, Harvey, & Weidenbacher,
1991; Peterson & Gibson, 1994). More important with
respect to the current work, Grill-Spector and Kan-
wisher (2005) have shown not only that participants are
very fast at categorizing natural images but also that
this categorization occurs in the same time frame as
simply detecting the presence of a natural image. This
result argues against a model of visual processing in
which detection precedes categorization and instead
suggests that observers can categorize images as soon
as they can see that the image is meaningful. However,
at best (see Bowers & Jones, 2008, and Mack, Gauthier,
Sadr, & Palmeri, 2008, for alternatives), these data
indicate only that detection and categorization co-
occur. In the present study, we ask whether categori-
zation not only co-occurs with detection but actually
influences it. In particular, we ask whether images that
are more easily categorized are actually detected more
readily.

Torralbo and colleagues (2013) found that briefly
presented natural scene exemplars that were rated as
more representative of their category (‘‘good’’ images)
were later categorized by a separate group of partici-
pants more quickly and accurately than exemplars that
were rated as less representative (‘‘bad’’ images). Such a
result is in line with numerous typicality results (Rosch,
Simpson, & Miller, 1976); participants are more
quickly able to categorize good examples simply
because they more readily evoke the concept of their
category. Such results were not taken to mean that
perception is better or worse for good and bad
examplars but rather that once perceived, some images
made better contact with the conceptual category.
Here, we take this effect a step further and ask whether
good exemplars are actually ‘‘seen’’ better than bad
exemplars. Specifically, we ask whether human ob-
servers are better able to discriminate briefly presented
intact scenes from phase-scrambled versions when the
images are good exemplars rather than bad exemplars
of a scene category. Critically, scene category is not
relevant to the detection task; participants are not
asked what the image is but simply whether it is a
coherent image of any sort (as opposed to noise). If
prediction is part of the perceptual process, however,
then not only will participants know ‘‘what’’ the image
is at the same time that they know whether it is intact
but they should also be able to make the intact
judgment more readily when the image is representative
of its category.

Images were presented either in their original, intact
state or with their power-spectrum amplitude intact but
their phases randomized (‘‘phase-scrambled’’; Sadr &

Sinha, 2004). Phase scrambling maintains an image’s
amplitude spectrum but disrupts its structure; disrup-
tion of local information is known to impair catego-
rization performance (Loschky et al., 2007; Vogel,
Schwaninger, Wallraven, & Bulthoff, 2007) but pro-
duces images that are similar to scenes in their first-
order image statistics. Participants responded to each
image by simply indicating whether it was intact or
phase scrambled. We used 100% phase scrambling
because our purpose was to create stimuli in which no
discernible structure was present, ensuring that partic-
ipants were simply judging whether or not an intact
image was present. It is important to note that scene
category is completely irrelevant to our detection task.
We were interested in whether participants’ sensitivity
(d0) to the intact/phase-scrambled distinction differed
for good and bad exemplars. Because participants are
not judging what is out there, just whether there is an
intact image or not, a difference in sensitivity to good
versus bad exemplars would indicate that good
exemplars are actually perceived better.

We also asked whether such an effect may be
dependent on whether or not observers perceived scene
category as an important part of the experiment. Thus,
in three experiments, we manipulated whether category
was relevant to the participant by having participants
perform an additional rating task after each intact/
scrambled judgment; one group of participants made a
category-related judgment and were informed of the
categories used in the experiment (Experiment 1), a
second group simply indicated whether the images were
seen clearly (Experiment 2) and no reference to
category was mentioned, and a third group performed
only the intact/scrambled judgment.

Experiment 1

Does category representativeness influence scene
detection? Participants performed a two-alternative
forced-choice discrimination task, indicating whether a
briefly presented image was intact or phase scrambled
(Sadr & Sinha, 2004). Viewers’ ability to successfully
discriminate an unaltered photograph from a phase-
scrambled image would imply the detection of coherent
local structure in that image (Loschky et al., 2007),
whereas a failure to do so would indicate that an image
of a natural scene was not perceived as such. In other
words, sensitivity to the intact/scrambled distinction
provides a measure of whether a coherent image was
detected or not.

In an attempt to make the category of the images
relevant to the participants, we instructed them to
retain the list of categories used in the experiment and
then, after each intact/scrambled discrimination re-
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sponse, rate the same image in relation to its category;
in particular, they were to indicate how well the
preceding image exemplified its category on a five-point
scale.

Method

Participants

Eighteen participants from the University of Illinois
took part in these experiments for course credit in an
introductory psychology course. All had normal or
corrected-to-normal vision and gave written informed
consent according to the procedures of the University
of Illinois Institutional Review Board.

Stimuli

Full-color natural images were drawn from a set of
4,025 images of beaches, city streets, forests, high-
ways, mountains, and offices. These six categories
were selected in an attempt to capture a representative
sample of natural and man-made environments. Each
image was rated to indicate how representative it was
of its category by workers via the Internet (Torralbo et
al., 2013). Briefly, workers using Amazon Mechanical
Turk rated each image on a scale from 1 (poor) to 5
(good) or indicated that it did not belong to the
specified category (see Torralbo et al., 2013, for more
details). If more than 25% of the workers indicated the
image was not from the category, it was removed from
the data set. For each of the six categories, we selected
40 ‘‘good,’’ 40 ‘‘medium,’’ and 40 ‘‘bad’’ images based
on their mean ratings (mean scores were 4.70, 3.99,
and 2.88, respectively). Scenes were phase scrambled
by combining in the Fourier domain the amplitude of
an intact scene with the phase from a random noise
image and taking the inverse fast Fourier transform of
this hybrid image. Examples of intact and scrambled
good and bad exemplars are shown in Figure 1.
Perceptual masks were colored images of white noise
at multiple spatial frequencies with naturalistic tex-
tures overlaid used in previous studies of rapid scene
categorization (Torralbo et al., 2013; Walther et al.,
2009). All images were presented at a resolution of 800
3 600 pixels and subtended approximately 308 of
visual angle.

Procedure

Before beginning the task, participants were pre-
sented with a list of the categories used in the
experiment and asked to use these categories when
rating how well the images exemplify their category.
After being instructed on the task, participants
performed 25 blocks of 30 trials each. The first nine

blocks were used for staircasing stimulus onset
asynchrony (SOA) and consisted of ‘‘medium’’ cate-
gory exemplars drawn randomly with replacement. The
SOA between target image and mask was staircased to
70% accuracy individually for each participant using
the QUEST algorithm (Watson & Pelli, 1983). The
SOA in the staircasing phase of the experiment began
at 500 ms and was adjusted over the course of 270 trials
to produce an average accuracy of approximately 70%.
There was no interstimulus interval between image and
mask; thus, adjusting the SOA amounted to adjusting
the duration of the target image. SOA for the
remaining 16 testing blocks was fixed at the mean of the
probability density function obtained during staircas-
ing (34–78 ms; mean across the experiments¼ 49 ms).
The testing blocks consisted of ‘‘good’’ and ‘‘bad’’
category exemplars drawn randomly without replace-
ment from each of the six categories. Each trial
proceeded as follows: A fixation cross was presented at
the center of the screen for 500 ms, followed by the
presentation of the target intact or phase-scrambled
image (with a fixation cross superimposed) at the SOA
determined during staircasing. Immediately following
the image, a perceptual mask was presented for 500 ms.
Participants then indicated whether the image was
intact or phase scrambled (each condition accounting
for 50% of the trials) by pressing one of two keys on a
computer keyboard. Trials timed out if participants
failed to respond within 1600 ms after the offset of the
mask; these trials were excluded from further analysis
(less than 1% of trials were removed from all
experiments, and no difference was observed between
conditions). No feedback was given.

During the testing phase of the experiment, partic-
ipants performed an additional task after making each
intact/scrambled response. Participants were asked to
rate how well each image exemplified its category by
pressing a number between 1 (poor example) and 5 (very
good example). Instructions given at the beginning of
the experiment described this task, and participants
were told to covertly categorize each image to make the
judgment.

Results and discussion

Overall, participants were 85% accurate on the
intact/scrambled distinction and needed only an
average image duration of 47 ms to achieve that
accuracy. Results are summarized in Table 1. Sensi-
tivity for intact images was measured by calculating d0

for participants’ intact/scrambled responses, with
images correctly identified as intact classified as hits
and those scrambled images falsely labeled as intact
classified as false alarms. In keeping with our predic-
tions, we observed a significant difference between d0

Journal of Vision (2017) 17(1):21, 1–11 Caddigan, Choo, Fei-Fei, & Beck 3



Hit rate False alarm rate Sensitivity (d0) Bias Response time Ratings

Experiment 1 (with clarity rating)

Bad 0.84 6 0.02 0.14 6 0.02 2.26 6 0.19 0.04 6 0.06 1031 6 67 3.81 6 0.18

Good 0.87 6 0.02 0.15 6 0.02 2.45 6 0.21 �0.05 6 0.06 1017 6 76 4.16 6 0.15

Experiment 2 (with clarity rating)

Bad 0.86 6 0.02 0.18 6 0.04 2.26 6 0.17 �0.04 6 0.10 966 6 82 3.57 6 0.21

Good 0.90 6 0.02 0.17 6 0.03 2.51 6 0.20 �0.14 6 0.08 950 6 84 3.79 6 0.19

Experiment 3 (no rating task)

Bad 0.74 6 0.04 0.38 6 0.05 1.13 6 0.14 �0.18 6 0.14 591 6 43 N/A

Good 0.78 6 0.04 0.38 6 0.05 1.34 6 0.19 �0.27 6 0.14 587 6 43 N/A

Table 1. Participant performance on good and bad images for Experiments 1, 2, and 3.

Figure 1. Examples of the stimuli used in the experiments. Intact and phase-scrambled versions of good and bad exemplars from the

six image categories used in the experiment are shown, along with examples of the perceptual masks. Participants were asked to

indicate whether a briefly presented scene was intact or scrambled, irrespective of its category or representativeness.
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for good and bad images (2.45 vs. 2.26), t(17)¼ 2.94, p
¼ 9.2 3 10�03; Cohen’s d¼ 0.23, dz ¼ 0.69, such that
participants were better able to discriminate intact from
scrambled images if they were good category exemplars
than if they were bad (see Figure 2). The difference in
sensitivity was driven by higher hit rates (i.e., more
correct responses to intact trials) for good versus bad
images (87% vs. 84%), t(17) ¼ 2.64, p ¼ 0.02. False
alarm rates (i.e., correct responses to scrambled trials:
15% vs. 14%), t(17)¼ 0.60, p¼ 0.56, and response times
(1017 ms vs. 1031 ms), t(17)¼�0.55, p¼ 0.59, showed
no significant difference for good and bad images, nor
was there a statistically significant difference in
response bias (�0.05 vs. 0.04), t(17)¼�1.97, p¼ 0.07.

We stress that to make this distinction, participants
need detect only some coherent structure in the image

to be able to rule out that it was phase scrambled.
Mistakes occur because presentations are so brief that
observers often experience just a flash. Importantly,
however, they were less likely to experience this
incoherent flash if the image was a good exemplar of its
category.

The image ratings used to determine good and bad
category exemplars were obtained with different
participants and under different viewing conditions
than those used in the current study. It is therefore
possible that this distinction would be lost due to the
short presentation times and perceptual masking
present in this experiment. However, we again observed
a higher average good/bad rating for intact good
images than that for bad (4.16 vs. 3.81, t(17)¼ 5.33, p¼
5.6 3 10�5) in the rating task performed in the present
experiment. This effect was not driven by the fact that
participants failed to see more of the bad exemplars as
intact, as the difference remained significant when only
trials with correct ‘‘intact’’ responses were considered
(4.43 vs. 4.10, t(17) ¼ 5.00, p ¼ 1.1 3 10�5). No
difference was observed for ratings made to scrambled
images (2.34 vs. 2.37), t(17) ¼ 0.75, p ¼ 0.46. In other
words, the good/bad distinction in judgments of
representativeness was only apparent when participants
correctly detected coherent structure in the image.
Nonetheless, this distinction influenced the probability
that they would see an image as containing coherent
structure.

Experiment 2: Clarity

In Experiment 1, we explicitly evoked the scene
categories with our instructions and secondary rating
task. In Experiment 2, we asked whether such
instructions and secondary category task were neces-
sary for the good/bad effect. Specifically, we asked
whether this advantage would persist when a different
rating task was used that did not evoke the image
category. To further lessen the likelihood of partici-
pants relying on category information, they received no
indication that the images would be drawn from a
specific set of categories. Instead of a secondary
category judgment, participants were asked to rate the
clarity of each image. Such a task will tell us if
participants subjectively experience the good exemplars
as clearer than the bad.

Method

The design of Experiment 2 was the same as
Experiment 1, with two exceptions. Instead of being
prompted to rate how well the image exemplified its

Figure 2. Intact/scrambled discriminations for Experiments 1–3.

(Left) Sensitivity for intact versus scrambled image discrimina-

tion for ‘‘good’’ images (rated as high in representativeness)

and ‘‘bad’’ images (those rated as low in representativeness) for

all participants. (Right) The difference between sensitivity for

good and bad images for each participant.
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category, participants were prompted to provide a
rating of how ‘‘clearly’’ they felt they saw the image on
the preceding trial by pressing a number between 1 (not
clearly) and 5 (very clearly) immediately after each
intact/scrambled response. Moreover, participants were
never given a list of the categories used in the
experiment; they were simply told that they would be
looking at pictures of scenes.

Results and discussion

Participants’ overall accuracy on the intact/scram-
bled distinction was 85%, and they achieved this
accuracy with an average image durations of 43 ms. We
again observed a significantly greater d0 for good
exemplars than bad exemplars (2.51 vs. 2.26), t(17) ¼
3.50, p¼ 2.73 10�03, Cohen’s d¼ 0.32, dz¼ 0.83, which
was again driven by a higher hit rate (90% vs. 86%),
t(17) ¼ 5.62, p ¼ 3.06 3 10�5, with no observed
difference in false alarm rate (17% vs. 18%), t(17) ¼
�1.35, p ¼ 0.20, or response time (950 ms vs. 966 ms),
t(17)¼�1.23, p¼ 0.23, for good versus bad exemplars
(see Figure 2). In this experiment, the higher hit rate
accompanied by no difference in false alarm rate
translated to a significant difference in bias (�0.14 vs.
�0.04), t(17) ¼�2.75, p¼ 0.01.

These results indicate that the category rating
judgment required in Experiment 1 was not neces-
sary for the good exemplar advantage. Indeed, a
mixed-design analysis of variance (ANOVA) with
one within-subject factor (good vs. bad category
exemplars) and one between-subject factor (Experi-
ment 1 vs. Experiment 2) found a significant effect of
good versus bad, F(1, 34) ¼ 20.88, p ¼ 6.18 3 10�5,
but no main effect of experiment, F(1, 34)¼ 0.01, p¼
0.922, and no interaction between experiment and
exemplar quality, F(1, 34) ¼ 0.37, p ¼ 0.55, on
participants’ d 0.

Moreover, a good/bad effect was also seen in
participants’ clarity ratings. Intact good images were
rated as more ‘‘clear’’ than intact bad images (3.79 vs.
3.57), t(17)¼ 5.74, p¼ 2.4310�5, whereas no difference
was observed in the clarity ratings of scrambled good
and bad exemplars (2.50 vs. 2.48), t(17)¼0.82, p¼0.43.
In other words, not only did good images result in
higher sensitivity to the intact versus scrambled
distinction, but participants experienced them as being
more clear, in keeping with our hypothesis that good
exemplars are actually perceived more readily than bad
exemplars. Taken together, these results imply that
participants tend to see images that are good examples
of a basic-level scene category more clearly than bad,
regardless of whether they are asked to perform a
covert categorization task.

Experiment 3: Intact/scrambled
task only

To ensure that the effects found in Experiments 1
and 2 were not due to influences from the secondary
rating tasks, in a final experiment we replicated the
good exemplar advantage in an experiment with no
intervening task. Participants made only intact/scram-
bled judgments. In addition, we performed a power
analysis using the smaller of the effect sizes (Cohen’s dz
¼ 0.69) from Experiments 1 and 2 to determine sample
size; a sample size of 19 participants will give us 80%
power to detect an effect of this size.

Method

The design and procedures for Experiment 3 were
identical to that of Experiments 1 and 2, except that no
intervening rating task was used. A total of 19
participants were run in this experiment and were paid
$8 for their participation.

Results and discussion

Participants’ overall accuracy on the intact/scram-
bled task was 68%, and they achieved this accuracy
with an average image durations of 45 ms. We once
again observed a significantly greater d0 for good
exemplars than bad exemplars (1.34 vs. 1.13), t(18) ¼
2.78, p ¼ 0.012, Cohen’s d ¼ 0.28, dz¼ 0.64. As in the
previous experiments, the sensitivity difference was due
to higher hit rates (78% vs. 74%), t(18)¼ 4.70, p¼ 1.80
3 10�4, and not a difference in false alarm rates (38%
vs. 38%), t(18) ¼ 0.05, p ¼ 0.96 (see Figure 2). The
difference in hit but not false alarm rates again resulted
in a difference in bias (�0.27 vs.�0.18), t(18)¼�2.47, p
¼ 0.02.

These results provide further evidence that the
ratings tasks were not necessary to produce the effect.
A mixed-design ANOVA on d0 with one within-subject
factor (good vs. bad category exemplars) and one
between-subject factor (Experiment 1, 2, or 3) con-
firmed this conclusion; we observed a significant effect
of good versus bad, F(1, 52)¼28.20, p¼2.3310�6, and
a main effect of experiment, F(2, 52)¼ 13.51, p¼ 1.9 3
10�5, but importantly no interaction with experiment,
F(2, 52) ¼ 0.21, p ¼ 0.81. Although participants’
responses were faster and less accurate in this
experiment than in Experiments 1 and 2, we still did not
observe a difference in response times (587 ms vs. 591
ms), t(18) ¼�0.81, p ¼ 0.43. The faster responses in
Experiment 3 suggest that the increased error rates for
this experiment compared with the first two are due to a
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speed/accuracy tradeoff. It would seem that the
presence of a secondary interleaved task not only
slowed performance on the primary task, presumably
because of task switching, but also allowed participants
more time to consider their responses and thus increase
their accuracy.

We note that the good/bad effect size (dz¼ 0.64 to
0.89) was comparable across all three experiments. To
place this is some context, these effects are considerably
smaller than the effect of good versus bad exemplars on
accuracy in an overt scene categorization task (dz¼ 3.86;
Torralbo et al., 2013). Instead, our good/bad effect is
comparable to the priming effect of words on a picture
detection task (dz¼ 0.61; Lupyan & Ward, 2013).

Scene similarity

The previous experiments showed that the ‘‘repre-
sentativeness’’ of an image predicts how well it will be
detected in an intact versus scrambled judgment task.
We considered two possible explanations of this effect.
One, the human visual system may be tuned to ‘‘typical’’
environments so that they can be processed with greater
efficiency. Such a mechanism would presumably be
tuned over a long timescale, as observers gain more
experience with the visual world. On the other hand, it is
also possible that the mechanism responsible for this
effect operates over shorter timescales; for example,
good scenes may be more effectively primed by the
targets from preceding trials, resulting in better perfor-
mance for good than bad exemplars. Such a priming
effect may result from something as simple as similarity
priming, as we have previously shown that good
exemplars are more similar to each other than are bad
exemplars (Torralbo et al., 2013).

We considered both of these possibilities by exam-
ining the effects of typicality and priming on scene
detection accuracy. Although these two factors suggest
different mechanisms underlying the good-bad effect
reported in Experiments 1–3, the evaluation of both
will rely on a measurement of the similarity between
pairs of scene images. We estimated similarity using the
‘‘spatial envelope’’ model of scene perception (Oliva &
Torralba, 2001). Work on this model has shown that
spectral information can be used both to describe
spatial properties of scenes, such as ‘‘openness’’ and
‘‘naturalness,’’ and also to categorize scenes at the basic
level (Greene & Oliva, 2009). Images were first rescaled
to 400 3 300 pixels, and spectral information was
extracted by calculating the response to Gabor filters at
three spatial frequencies and eight orientations over a
fixed window size of 100 3 75 pixels, preserving local
information in each subregion, which has been shown
to be necessary for predicting human image similarity

judgments (Schwaninger et al., 2006). The filter
responses for each window were concatenated to obtain
a feature vector for each image, and the Euclidean
distance between pairs of vectors provided a measure of
similarity. Using this measure, the typicality of each
image was estimated by computing its average simi-
larity to the remaining images in its category. Priming
effects were tested by examining the similarity between
the target image of each trial and its predecessor,
irrespective of category. We also considered similarity
and typicality values that were derived using the first 28
principle components of the spatial envelope features,
which captured 90% of the variance in intact scene
images; the sign and magnitude of the results described
below were unchanged when restricting the analyses to
these 28 components.

Typicality

We estimated the typicality of each image in the
experiment by first extracting a feature vector using the
spatial envelope model (Oliva & Torralba, 2001). The
similarity between that image and each remaining image
in its category was then calculated, and the mean value of
these distances served as an objectivemeasure of a scene’s
typicality. Typicality values were z-scored prior to
subsequent analyses. Observers’ accuracy on intact trials
from all three experiments (n¼ 55) was modeled using a
hierarchical logistic regression with a fixed effect of
typicality and a random intercept for each participant.
Results show that typicality is a reliable predictor of
accuracy (b¼ 1.60, Z¼ 9.49, p¼ 2.263 10�21);
participants were better at detecting more typical intact
images. The model was then extended to include an
additional fixed effect of representativeness (‘‘good’’ vs.
‘‘bad’’). Both factors were significant predictors of
accuracy, (representativeness: b¼0.25, Z¼5.89, p¼3.84
3 10�9; typicality: b¼ 1.37, Z¼ 7.88, p¼ 3.183 10�15).
These data suggest that although typicality influenced
detection, there may be another separate effect of the
good images. To verify this, we used a log-likelihood
ratio test to compare these models to determine whether
the inclusion of this representativeness factor resulted in
a model that better explained the data. The model
including both typicality and representativeness was
found to provide a significantly better fit to the data,
v2(1)¼ 34.63, p¼ 3.983 10�9. In other words, the
inclusion of representativeness allows for a better
prediction of observers’ accuracy, suggesting that typi-
cality alone does not account for the good/bad effect.

Priming

Prototype models of scene perception (Rosch, 1975)
predict that pairs of ‘‘good’’ exemplars from the same
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category should be more similar to each other than
same-category pairs of ‘‘bad’’ images. In keeping with
this prediction, we have previously shown this to be
true of the images used here (Torralbo et al., 2013). If
an intertrial priming effect is influencing participants’
perception of scenes, such that a scene is easier to detect
when it follows a trial with a similar scene, then the
tendency for good image pairs to have high similarity
could contribute to the good/bad effect observed in
these experiments. That is, the apparent advantage for
good scenes in Experiments 1 through 3 may reflect the
fact that they have been more effectively primed by
recent images. To test this potential explanation for the
good/bad effect, the relationship between participants’
accuracy and the similarity of successive trials was
assessed.

First, using the same similarity analysis described
above, the similarity values of same-category image
pairs were analyzed to determine whether good pairs
were actually more similar than bad pairs. Similarity
values were selected from all pairs of images that have
the same category and representativeness value. Across
all such pairs, good image pairs were more similar than
bad image pairs; Welch’s two-sample t test revealed
that this difference was significant, t(18,247)¼ 47.54, p
¼ 2.2 3 10�16. If similarity-based priming is observed,
this result suggests that this priming could be related to
the effect of representativeness on accuracy, because
good images would be more likely to follow a similar
scene than bad exemplars.

A hierarchical logistic regression with a fixed effect
of similarity and random intercept for each participant
was fit to observers’ accuracy on intact trials. The first
trial from each block was excluded from this analysis,
as we did not expect priming effects to endure through
the short break participants were allowed to take
between blocks. We found that similarity between a
given image and the previous trial’s image was a
reliable predictor of accuracy (b ¼ 0.50, Z ¼ 6.78, p¼
1.2 3 10�11). To determine the relationship between
similarity and the good/bad effect, representativeness
was next included in the model. Both factors were
statistically significant predictors of accuracy (good/
bad: b¼ 0.33, Z¼ 7.98, p¼ 1.583 10�15; similarity: b¼
0.52, Z ¼ 7.02, p¼ 2.3 3 10�12). The addition of the
representativeness factor resulted in a model with
higher explanatory power than the model fit to
similarity alone, as shown by a likelihood ratio test,
v2(1)¼ 34.63, p¼ 4.0 3 10�9. In other words, although
priming from similar images results in greater accuracy
on the intact versus scrambled image discrimination
task, the fact that additional variance in accuracy can
be explained by representativeness suggests that prim-
ing cannot completely account for the good/bad effect
on accuracy.

Finally, to compare the priming and typicality
effects, we fit a mixed-effects logistic regression to
accuracy on intact trials that modeled representative-
ness, similarity, and typicality as fixed effects and
allowed for a random intercept for participants. This
model revealed significant effects of representativeness
(b¼ 0.27, Z¼6.28, p¼3.5310�10), similarity (b¼0.43,
Z¼ 5.70, p¼ 1.2 3 10�8), and typicality (b¼ 1.19, Z¼
6.72, p ¼ 1.8 3 10�11). This finding suggests that all of
the factors considered here exert an influence on scene
detection. We also considered the effects of priming,
typicality, and representativeness on the clarity ranking
observed in Experiment 2. This was evaluated by fitting
a hierarchical linear regression on the rankings
participants gave to intact images, which had reliable
effects of representativeness (b¼0.17, t¼4.66, p¼1.43
10�4), similarity (b¼ 0.06, t¼ 3.41, p¼ 2.73 10�3), and
typicality (b¼ 0.10, t¼ 5.08, p¼ 5.3 3 10�5).

General discussion

Using a two-alternative forced-choice discrimination
task, we found that intact photographs of bad
exemplars of natural scene categories were more likely
than good category exemplars to be mistaken for
phase-scrambled images; that is, good exemplars were
actually easier to see as coherent images than bad ones.
The similar pattern of results observed across all three
experiments shows that the good exemplar advantage is
not dependent on being explicitly instructed to consider
the category of an image (Experiment 1). Importantly,
these data suggest not only that detection and
categorization co-occur (Grill-Spector & Kanwisher,
2005) but also that categorization actually influences
detection; whether the image is a good exemplar or not
actually influences how readily participants detect the
presence of a coherent image. Such a result is consistent
with recent predictive coding and ‘‘frame-and-fill’’
models that posit that hypotheses generated in higher
areas help to shape activity in earlier areas (Bullier,
2001; Chen et al., 2007; Hochstein & Ahissar, 2002;
Panichello, Cheung, & Bar, 2012; Rao & Ballard,
1999); such hypotheses (or templates) are more likely to
be in line with good exemplars and thus result in
smaller prediction errors when the image is represen-
tative of its category.

These data raise the interesting question of how the
good versus bad exemplars are having their effect on
perception. Does the good exemplar advantage reflect
better templates, built up over the observer’s lifetime,
or might the good versus bad effect reflect a perceptual
advantage accrued within the context of the experi-
ment? We used a measure of scene similarity to examine
these two possibilities. We demonstrated that accuracy
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in the intact/scrambled detection task was higher for
more typical scenes (i.e., those that were most similar to
other same-category images). This effect may be driven
by neuronal tuning or learned statistical regularities
present within visual cortex, which enable the system to
more efficiently represent good scenes compared with
bad scenes. Previous work has investigated the patterns
of neural activation associated with scene categoriza-
tion, evaluating in several regions of interest both the
ability to decode the category from their activity and
the similarity of the decoded information to human
categorization performance (Walther et al., 2009).
Above-chance decoding was observed in a number of
areas, including the primary visual cortex and the
parahippocampal place area (Epstein & Kanwisher,
1998), with the latter having both the highest decoding
accuracies and the best match with observers’ behavior
in a scene categorization task. More recently, it has
been shown that in these same areas, the patterns of
activity evoked by good category exemplars is decoded
more accurately than that elicited by bad exemplars
(Torralbo et al., 2013), implying that good exemplars
result in a more robust neural representation of scene
category. In the parahippocampal place area, good
scenes not only were decoded more accurately but also
elicited a lower blood-oxygen-level dependent (BOLD)
response than bad exemplars, which is consistent with a
more efficient representation.

Although such changes in neuronal tuning may
develop over long timescales, we also used scene
similarity to investigate a possible role of priming in a
scene detection task. Repetition priming is known to
enhance perception (Tulving & Schacter, 1990), and
consistent with these effects, we showed that intact
images were more likely to be detected when they were
preceded by similar images. Although we have docu-
mented both typicality and priming effects on scene
perception, models including these effects failed to
explain participants’ behavior as well as models that
included representativeness; thus, although these fac-
tors may contribute to our effect, neither can fully
account for it. We note also that using the same intact/
scrambled paradigm, we have shown that improbable
images (e.g., people in pink rabbit suits pulling
suitcases in an airport) are also detected less readily
than probable images (e.g., people in typical clothing
pulling suitcases in an airport; Greene, Botros, Beck, &
Fei-Fei, 2015). Because these images were not drawn
with respect to any category, priming between images is
highly unlikely and certainly no more likely between
probable than improbable images. Indeed, using a
support vector machine classifier, we were unable to
distinguish between improbable and probable images
on the basis of color histograms, scene gist features,
edge density, and multiscale Gabor filters. Thus,
consistent with the data shown here, it would seem that

there is a role for expectedness in detection, in the
learned statistical regularity sense (i.e., it need not be a
conscious or top-down expectation).

Regardless of the mechanism, we have shown that
good exemplars of natural scene categories are ‘‘seen’’
better than bad category exemplars, implying that
categorization actually influences detection. Impor-
tantly, participants were not asked to categorize or
even recognize the scenes and were instead just asked
whether the images were intact or not. This finding
implies that the simple apprehension of coherent visual
information is more strongly influenced by category
membership than previously believed. Moreover, be-
cause category representativeness is presumably
learned, these data suggest that experience and
expectation affect simple detection, a prediction made
by bidirectional models of vision (Bar et al., 2006;
Bullier, 2001; Chen et al., 2007; Hochstein & Ahissar,
2002; Panichello et al., 2012; Rao & Ballard, 1999).

Keywords: scene perception, categorization, detection,
similarity
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