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Abstract

The Wnt signaling pathway is critically involved in both the development and homeostasis of 

tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described 

as a key player in the initiation of and/or maintenance and development of many cancers, via 

affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be 

responsible for establishment of the tumor and also for disease relapse, as they possess inherent 

drug-resistance properties. The development of new therapeutic compounds targeting the Wnt 

signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, 

a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt 

pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population 

required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target 

the Wnt pathway and their clinical applications.
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1) Introduction

Despite significant progress in cancer treatment and remission rates, numerous hurdles in the 

management of cancer persist. Resistance to treatment associated with disease relapse and 

metastasis still represent major critical problems that need to be addressed. A subset of 

cancer cells: the cancer stem cell (CSC) or cancer-initiating cell (CIC)1 populations are the 
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key players associated with these problems. CSCs, by definition, share the same properties 

of self-renewal and pluripotency as normal somatic stem cells (SSCs). Self-renewal 

constitutes the ability to produce at least one daughter cell identical to the mother cell, 

thereby retaining its stem cell properties, while the pluripotency of stem cells allows them to 

differentiate into multiple divergent committed and specialized cell types. CSC may emerge 

from normal somatic stem cells in the affected tissue or organ system after genetic 

alterations acquired during DNA replication, via various insults and/or from 

microenvironmental factors and are believed to be responsible in cancer initiation1. Over the 

past few years, a major effort in cancer research has been to better characterize the CSC 

population and most importantly to efficiently and safely target these cells. One way to 

achieve this goal is the identification of major pathways involved in the stemness of CSCs 

and how to target them without affecting the normal somatic stem cells. As in SSC, CSC 

properties are governed by the evolutionarily conserved signaling pathways Notch2, 

Hedgehog3 and Wnt/β-catenin4,5. Here, we will review recent findings on Wnt signaling and 

its role in cancer initiation, maintenance and drug resistance and the promise of new 

compounds targeting this pathway.

2) Cancer Stem Cells and Their Role in Tumorigenesis

Over the past decades, the concept of cancer stem cells has re-emerged and led to impressive 

efforts in this field of research. Recent advances in the field have decreased doubt about CSC 

existence6-9 and their function in many cancers, however, the question of their origin 

remains highly controversial with two alternative theories. On the one hand, CSCs could 

result from a genetic alteration in a cancer cell from the tumor bulk, leading to the activation 

of one or more of the major signaling pathways previously cited, thereby acquiring self-

renewal properties10,11. On the other hand, CSC could originate from acquired mutations of 

normal somatic stem cells transforming them into CSCs1,12. Both of these hypotheses may 

potentially apply according to the type of cancer and tissue affected. CSCs, represent a rare 

population of cells amongst the tumor bulk that are able to maintain the tumor via 

proliferation and self-renewal13 capabilities and telomerase expression13. They are also 

known to be more resistant to conventional treatment (chemotherapy and radiotherapy) and 

responsible for cancer relapse and metastasis14,15. Their quiescent state and specific 

interactions with their microenvironment play a significant role in their drug resistance 

properties16. All these characteristics aid in the explanation of why CSC are thought to be 

responsible for cancer establishment, progression, drug resistance and relapse17,18 and are 

strongly correlated to poor outcome in clinical reports19,20. Evidence of CSC existence and 

tumor initiating properties was first provided by Dick and colleagues in leukemia showing 

that only a very small proportion of primary acute myeloid leukemia (AML) cells, defined 

by the CD34+ 38- markers, was able to initiate disease in immunodeficient mice21. These 

Leukemic Stem Cells (LSC) possessed the self-renewal property of CSC and the capability 

of pluripotency leading to leukemia22 but could also give rise to non-LSC populations. 

Subsequently, over the past decade, a large number of studies have identified CSCs in 

multiple tumor types, including brain tumors23, melanoma24, breast25, liver26, pancreatic27 

and colon cancer 28.
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3) Wnt signaling in Embryonic Development and Homeostasis

Wnt signaling is involved in numerous fundamental processes essential for embryonic 

development and normal adult homeostasis. The first member of the Wnt family, initially 

discovered as the proto-oncogene “Int-1” in mice29, was found five years later to be the 

homolog of the “wingless” gene, one of the main regulators of Drosophila melanogaster 
segment polarity30. The term “wnt” was created by the fusion of these two gene names. The 

Wnt family is a highly evolutionarily conserved family of proteins as shown by ectopic 

expression of Wnt1 from Drosophila in other organisms, causing serious developmental 

issues31,32. The human Wnt family is composed of nineteen different cysteine-rich 

glycoproteins acting as ligands for more than 15 receptors or co-receptors33. This signaling 

pathway has already been shown to be involved in many cellular functions essential for 

normal organ development including cell proliferation, survival, self-renewal/differentiation 

etc34,35. Very rapidly after discovery of the pathway, multiple dysfunctions and mutation of 

these pathways were shown to be related to several diseases, including metabolic (e.g. type 

II diabetes36, degenerative (e.g. Parkinson’s37, Alzheimer’s38) and particularly cancers 

(hepatocarcinoma39,40, colon cancer41, leukemias42.

The Wnt signaling pathway has been extensively studied and reviewed4,43-44. The pathway 

is generally dissected into three sub-pathways: canonical, non-canonical planar cell polarity 

(PCP) pathway and non-canonical Wnt/calcium pathway. The canonical pathway requires 

Wnt ligand binding to Frizzled receptors as well as LRP5/6 co-receptors (low density 

lipoprotein receptor-related protein 5/6) to initiate intracellular signaling via β-catenin 

nuclear translocation. β-catenin is a highly unstable protein with a tightly controlled 

cytoplasmic presence. In the absence of Wnt ligands, cytoplasmic β-catenin is targeted by a 

so-termed degradation complex. This complex is composed of the tumor suppressor 

Adenomatous Polyposis Coli (APC), the scaffolding protein AXIN and two kinases CK1α 
(casein kinase 1α) and GSK-3β (glycogen synthase kinase 3 β)45 (Figure 1A). These last 

two components are able to phosphorylate β-catenin on several serine and threonine residues 

in its N-terminus. Phosphorylated β-catenin is then recognized by β-Transducin, which is 

part of an ubiquitin ligase complex, leading to poly-ubiquitination and proteasomal 

degradation of β-catenin46. Wnt ligand binding to Frizzled receptors in association with 

LRP5/6 induces Dishevelled (DVL) phosphorylation, which subsequently recruits Axin 

thereby deconstructing the degradation complex and achieving β-catenin stabilization and 

subsequent nuclear translocation. In the nucleus, β-catenin can bind members of the 

TCF/LEF (T-cell Factor/Lymphoid Enhancer Factor) family of transcription factors and 

recruit the transcriptional Kat3 co-activators p300 and/or CBP (CREB-binding protein) to 

transcribe Wnt target genes and engender chromatin modifications 47-50 (Figure 1B).

Two different Wnt pathways, qualified as “β-catenin-independent pathways” also co-exist 

with the canonical Wnt pathway and are more generally associated with differentiation, cell 

polarity and migration. In the non-canonical Planar Cell Polarity pathway (PCP), Wnt 

ligands can bind Frizzled receptors and activate small GTPases such as RhoA (Ras homolog 

gene family member A), RAC (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell 

division control protein 42), via recruitment and activation of Dishvelled51 (Figure 2A). The 

PCP pathway affects the cytoskeleton and triggers the transcriptional activation of target 
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genes responsible for cell adhesion and migration52. In the Calcium-dependent pathway, 

Wnt ligands utilize Frizzled receptors and RYK or ROR (alternative receptors) enhancing 

cell migration and Wnt canonical pathway inhibition through the management of 

intracellular calcium flux and activation of calmodulin kinase II (CaMK2), Jun kinase (JNK) 

and PKC53 (Figure 2B).

Although dissection into 3 different pathways facilitates our understanding of this highly 

complex signaling system, it has already been shown that in reality Wnt signaling involves 

the integration of these three pathways and they all need to be considered to derive a 

complete vision of the effects of Wnt signaling modulation54,55,56. These Wnt pathways are 

critical in major functions at the embryonic stage of development, including stem cell pool 

regulation, cell migration and specialization as well as at the adult stage in wound healing, 

and tissue homeostasis via SSC maintenance (including hair, skin57 and intestine58).

4) The Role of Wnt Signaling in Cancer Stem Cells

Dysfunctional Wnt signaling has been related to the evolution of and maintenance of 

leukemic stem cells as well as many other different cancers. This is not surprising given the 

importance of the Wnt pathway in stem cell homeostasis59. Examples of aberrant Wnt 

signaling in cancer stem cell development include the progression of chronic phase CML 

toward blastic crisis phase due to GSK3β mutations and β-catenin stabilization in GMP cells 

(granulocyte-macrophage progenitor cells)60. A recent study showed that despite the 

inhibitory effect of tyrosine kinase inhibitor (TKI) on Wnt signaling pathway in CML stem 

cells, relapses occur in patients at least in part by reactivation of the Wnt pathway61. TKI 

treatment induces a down-regulation of miR29 involved in CD70 promoter methylation. The 

overexpression of CD70 enhances the transcription of CD27 which is a known activator of 

the Wnt signaling pathway62. Wang et al. also showed also that constitutive activation of the 

canonical Wnt pathway, via expression of a stabilized β-catenin is necessary to generate 

AML leukemic stem cells from MLL-AF9-transduced progenitors cells11. This study 

suggests that aberrant Wnt pathway activation could give rise to leukemic stem cells (LSC) 

not only from hematopoietic stem cells (HSC) but additionally from more committed 

progenitors. Recently, Giambra and colleagues showed, using a Wnt reporter construct 

expressing GFP under the TCF promoter, that minor subpopulations of bulk T-cell acute 

lymphoblastic leukemia (T-ALL) had highly activated Wnt/β-catenin pathway signaling and 

that these cells were able to transplant the disease in a limiting dilution assay63. Leukemic 

stem cells were highly enriched in the GFP+ Wnt expressing population compared to the 

GFP- (ratio of over 200 fold) suggesting that Wnt signaling is also required for T-ALL stem 

cell self-renewal. In this model, the transcription of the β-catenin seems to be triggered by 

the transcription factor HIF1-alpha (Hypoxia-Induced Factor 1-alpha) and deletion of HIF1-

alpha leads to LSC targeting63. Our group recently demonstrated the implication of the Wnt 

pathway in the self-renewal of B-cell acute lymphoblastic leukemia (B-ALL). The treatment 

of B-ALL cells with a small molecule that specifically binds to the N-terminal of CBP, 

ICG-001, inhibits the interaction between β-catenin and CBP leading to differentiation and 

loss of self-renewal64. iCRT14, a novel β-catenin-TCF interaction inhibitor, leads to a 

decrease in Wnt target gene expression, decreases viability of ALL cell lines in combination 
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with chemotherapy and sensitizes chemoresistant patient samples-derived ALL cells 

responsible of relapse65.

In order to efficiently target CSCs, researchers initially focused on ways to identify them. 

Even if the normal SSCs and CSCs usually express the same cell surface markers66, some 

reports have successfully characterized cancer stem-like cells in breast cancer based upon 

specific marker sets (expression of CD44highCD24low)25. Both CD44 and CD24 are direct 

Wnt target genes67-70. CD44 acts like a positive regulator of the Wnt pathway by playing on 

LRP6 localization and activity 68,70,71. The Wnt signaling pathway also appears to play an 

important role in another hallmark of cancer stem cells and metastasis, i.e. the epithelial-to-

mesenchymal transition (EMT)72,73,74. The down-regulation of E-Cadherin (usually tightly 

associated with β-catenin in normal epithelium) triggers the nuclear translocation of β-

catenin and activation of canonical Wnt signaling75. The gene slug, a marker gene of EMT, 

also induces nuclear translocation of β-catenin76,76. Moreover, twist and slug, strong 

activators of EMT are both putative β-catenin targets77. Furthermore, a number of Wnt/β-

catenin targets genes have been associated with invasion, migration and metastasis 

(including S100A4, fibronectin, L1CAM, CD44, MMP7, uPAR, etc.)78. Wnt signaling may 

also play an important role in the resistance of cancer stem cells to chemotherapy. The 

promoter sequence of the multidrug resistance gene ABCB1/MDR-1 contains several TCF 

binding elements triggering its transcription in colorectal cancer79. Inhibition of the β-

catenin/CBP interaction using the small molecule ICG-001 decreases the expression of 

Survivin/BIRC5, which is an inhibitor of apoptosis and a target of CBP, leading to 

eradication of drug resistant ALL cells in vitro and prolonged survival of ALL engrafted 

mice64. Similar results have been obtained using ICG-001 with CML LSC (Zhao et al., 2015 

Oncogene in the press). Wnt signaling has also been linked to hematopoietic CSC which 

seem to be dependent on this pathway11,80. In CML, Wnt pathway deregulation favors the 

progression of disease to more advanced phases81. The deregulation of Wnt signaling can 

also occur at the epigenetic level. For example, the promoters of several Wnt pathway 

inhibitors (i.e. SFRP, DKK and WIF-1) were found to be hypermethylated in ALL and 

AML, correlating negatively with the survival of these patients82,83.

5) Wnt signaling and the hematopoietic stem cell niche

Hematopoietic Stem Cell fate is tightly controlled by both internal and external signals, the 

latter coming mostly from the very specific HSC microenvironment, termed, the 

hematopoietic niche84-86. This niche is composed of various cell types (osteoblasts, 

osteoclasts, endothelial cells, mesenchymal stem cells, etc.) and communicates actively with 

HSC via direct contacts (integrins, N-Cadherin, etc.) and soluble factors including Wnt 

ligands87-89,90,91. Even after an extensive research, the role of the microenvironment and 

Wnt ligands on both HSC and LSC is highly controversial92,93. Under physiologic 

conditions, some studies show the critical role of the canonical Wnt signaling pathway for 

HSC quiescence and self-renewal maintenance: the expression of the Wnt pathway inhibitor 

Dickkopf1 (Dkk1), specifically in osteoblasts, leads to a decrease of Wnt signaling in HSC 

and loss of their stem cells properties, via uncontrolled proliferation and division94 while 

activation of Wnt signaling in the stroma induces Notch ligand secretion which activates 

self-renewal programs in HSC95,96. However, other researchers demonstrated that the 
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canonical Wnt pathway was dispensable for the adult hematopoiesis in mouse models97-99. 

On the contrary, the overexpression of β-catenin in the hematopoietic system leads to failure 

in the maintenance of the HSC pool and to a leukemic-like differentiation block in both the 

myeloid and lymphoid compartments100. Under pathologic conditions, Wnt signaling seems 

to have different effects according to the leukemia studied. In the chronic myeloid leukemia 

(CML), Zhang et al showed that the microenvironment (mimicked by mesenchymal stem 

cells (MSC)) reduces apoptosis and improves the engraftment of CML LSC/progenitors 

treated with imatinib. This protective effect is mediated by direct interaction between 

leukemic cells and MSC through N-Cadherin and induces activation of the Wnt signaling 

pathway via stabilization of β-catenin101. To corroborate these findings, Heidel et al. showed 

that inhibition of β-catenin allows the targeting of CML LSC that are resistant to imatinib80. 

However, inhibition of extrinsic-Wnt signaling by Dkk1 does not impair homing and/or 

leukemogenesis of AML LSC or pre-LSC in vivo as the translocation t(9;11) induces 

sufficient cell-intrinsic Wnt signaling to promote leukemia development93. The 

microenvironment may be implicated in many ways as well, either in the initiation of the 

disease or by favoring LSC proliferation and drug resistance102,103, thus making it a 

potentially attractive new target for treatment. However, the role of the niche is still not 

completely understood. Kode et al showed the essential role of osteoblasts in acute myeloid 

leukemia initiation via Wnt and FoxO1 expression104. Recently, Bowers et al demonstrated 

the importance of the bone marrow microenvironment in HSC homeostasis and in leukemia 

development showing that osteoblast depletion impairs the quiescence and self-renewal of 

normal HSC and also leads to accelerated leukemia development in a mouse model of 

CML105. Taken together, these data suggest that the microenvironment may represent an 

attractive alternative to target LSC, notably via modulation of the Wnt signaling pathway. 

However, further studies are required to fully understand its fundamental role in leukemia 

establishment and maintenance.

6) Wnt Inhibiting Molecules: Biologics and clinics

After decades of research and discovery on the Wnt signaling pathway, few molecules are 

now considered to be relatively specific for targeting the Wnt pathway, and to date none has 

been approved by the US Food and Drug Administration (FDA). Some other FDA-approved 

molecules, like Non-Steroidal Anti-Inflammatory Drugs (NSAIDS, used for treatment of 

pain, fever) or vitamin derivatives, demonstrated interesting anti-cancer effects106,107 and 

particularly in Wnt-dependent cancers e.g colorectal cancer108,109. Cyclooxygenases (COX1 

and 2) metabolize arachidonic acid into prostaglandins (PG) that via their G-protein Coupled 

Receptors can lead to β-catenin stabilization and activation of canonical Wnt 

signaling110,110-112. The inhibition of COX by NSAIDS (aspirin, sulindac or specific COX2 

inhibitors like celecoxib) suppresses the synthesis of prostaglandins and thereby inhibits 

Wnt signaling. These compounds, especially celecoxib, also showed COX-independent 

anticancer effects notably in a xenograft model of COX-2-deficient tumors113-117. NSAIDS 

have the capacity to decrease the number of polyps in a mouse model of Familial 

Adenomatous Polyposis (FAP) mouse, where the APC gene is truncated and Wnt/β-catenin 

signaling constitutively actived118,119. FAP patients treated for 6 months with the NSAID 

sulindac showed a reduction in nuclear β-catenin in polyps and a reduction in polyp 
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formation120-123. The aspirin derivative NO-ASA (NO-releasing aspirin) showed even better 

efficacy in reduction of polyp formation in vitro and in vivo possibly via disruption of the β-

catenin/TCF complex without any observable toxicity to the normal intestine124-126.

Retinoids, produced from vitamin A metabolism, demonstrated anti-cancer effects at least in 

part via Wnt signaling pathway inhibition127. 1α,25-dihydroxy-vitamin D3, the active form 

of vitamin D, demonstrated tumor suppressor activity, notably by formation of a 

transcriptional complex able to bind β-catenin and thereby enhancing the expression of E-

cadherin. These effects lead to retention of β-catenin in the cytoplasm, resulting in inhibition 

of the Wnt pathway in breast and colon cancers128. A novel humanized antibody (UC-961, 

cirmtuzumab) targeting the Receptor tyrosine kinase-like Orphan Receptor 1 (ROR1), 

expressed by the chronic lymphocytic leukemia cells (CLL) but not on normal tissues, 

showed anticancer effects in a CLL animal model129. This antibody recently entered a Phase 

I clinical trial to determine the safety and the effects of this antibody and is currently 

recruiting (NCT02222688).

Besides these FDA-approved non-specific Wnt inhibitors, several molecularly targeted 

agents have been developed and have entered pre-clinical or clinical trials. Dvl, being one of 

the key regulators of the Wnt canonical pathway, is a focus of numerous studies and has 

engendered the development of several inhibitors. The PDZ domain of Dvl plays an essential 

role in Dvl-Frizzled receptor interactions and the intracellular transduction of the Wnt 

signal. Some inhibitors of this PDZ domain (NSC 668036, FJ9, 3289-8625 – Figure 3), 

discovered by in silico screening, showed the ability to inhibit the Wnt pathway in 
vivo130-132. Other compounds, designed to inhibit key steps in the Wnt pathway have also 

been designed. LGK974 is a porcupine (PORCN) inhibitor, which entered into a phase I 

clinical trial in 2011 (Novartis, NCT01351103, recruitment phase). Porcupine is a member 

of the membrane-bound O-acetyltransferase (MBOAT) family and is responsible for lipid 

modification of Wnt and secretion133,134. The trial will investigate the effects of LGK974 on 

the Wnt signaling pathway in patients affected with Wnt-dependent cancers (pancreatic 

adenocarcinoma, BRAF mutant colorectal cancer) (clinicaltrials.gov). Recently, another 

PORCN inhibitor, ETC-1922159 (ETC-159), developed in a collaboration between the 

Agency for Science, Technology and Research (A*STAR) and Duke-National University of 

Singapore Graduate Medical School (Duke-NUS) entered into a phase I clinical trial in 

Singapore. The first patient was dosed on Jun 18, 2015. ETC-159 inhibits Wnt secretion and 

activity and is highly efficient preclinically in different cancers driven by Wnt signaling and 

notably in R-spondin translocation colorectal cancers135. The tankyrase inhibitors (XAV-939 

and IWR-1) stabilize axin and induce the degradation of the β-catenin136 and may act as 

anti-tumor drugs also by participating in telomere shortening137.

Among the few agents already in clinical trials, two were developed by Oncomed 

Pharmaceuticals Inc. OMP-18R5 (Vantictumab) is a fully humanized antibody directed 

against minimally five different Frizzled receptors. In pre-clinical studies, OMP-18R5 

demonstrated anti-proliferative effects in various human tumors model (lung, pancreas, 

breast and colon) and had synergistic effects with conventional chemotherapy138. The results 

of the first Phase Ia showed a decrease in Wnt pathway gene expression and increased 

expression of differentiation genes associated with some adverse events including fatigue, 
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vomiting, diarrhea, constipation, nausea and abdominal pain (ASCO, 2013). This compound 

is now in Phase Ib trials in combination with standard chemotherapy for solid tumors 

(breast, lung and pancreas cancers). OMP-54F28, another agent developed by Oncomed 

Pharmaceuticals, is a recombinant fusion protein containing the extracellular ligand binding 

domain of human Frizzled 8 receptor fused to a human IgG1 Fc fragment139. OMP-54F28 

can bind native Fzd8 receptor’s ligands and thereby inhibit Wnt signaling. Preclinical 

studies demonstrated the anti-tumor efficacy of OMP-54F28: reduction of tumor growth and 

decrease of CSC frequency as a single agent and in combination with other 

chemotherapeutic agents. A phase I trial (NCT01608867) is currently ongoing. It is a dose 

escalation study in patients with advanced solid tumors. Subjects will be assessed for safety, 

immunogenicity, pharmacokinetics, biomarkers, and efficacy (NCT01608867). It appears 

that the most common adverse events are fatigue, muscle spasms, alopecia, nausea, 

decreased appetite and dysgeusia (http://www.eurekalert.org/pub_releases/2014-05/uocd-

rip053014.php). Additionally, patients are followed for bone density evolution, as bone 

fracture was observed in one patient at the highest tested dose (20mg/kg every three weeks 

after 6 cycles). Three Phase 1b studies have been started to check the dose escalation of 

OMP-54F28 in ovarian (NCT02092363), pancreatic (NCT02050178) and hepatocellular 

(NCT02069145) cancers in combination with respective conventional chemotherapy.

Wnt signaling can also be modulated very late in the pathway. Our group used a secondary 

structure-templated chemical library to identify ICG-001 which can efficiently modulate the 

Wnt pathway140. Despite the huge homology between the two Kat3 co-activator proteins 

CBP and p300, ICG-001 was shown to bind specifically to the cyclic AMP response 

element-binding protein (CBP) and not to the related transcriptional coactivator p300140,141. 

This molecule disrupts the ß-catenin/CBP complex and increases the proportion of ß-

catenin/p300 leading to down-regulation of survivin/BIRC5 mRNA and specific apoptosis in 

colon cancer cells in vitro and in vivo. Recently, Prism Pharmaceuticals developed a second 

generation ß-catenin/CBP inhibitor PRI-724. In a Phase Ia safety study in colon cancer, this 

compound was able to decrease in a dose-dependent manner the expression of survivin/

BIRC5 in circulating tumor cells, with an acceptable toxicity profile (ASCO, June 2013 and 

NCT01302405142). Three patients had stable disease for 8, 10 and 12 weeks. Three Phase 

I/II trials are ongoing in patients with AML/CML (NCT01606579, alone or in combination 

with AraC or dasatinib), with advanced or metastatic pancreatic adenorcarcinoma 

(NCT01764477, in combination with Gemcitabine) and in patients with newly diagnosed 

metastatic colorectal cancer (NCT02413853, in combination with bevacizumab, leucovorin 

calcium, oxaliplatin, and fluorouracil). A Phase I dose escalation trial in patients with HCV-

induced cirrhosis is also on going (NCT02195440).

7) Concluding remarks

After more than 30 years of discovery and investigation, the complexity of the Wnt signaling 

pathway is clear. Many of its components have been revealed and its implications in a broad 

range of diseases have been described. However, to date no therapeutic agent is available on 

the market that specifically and efficiently targets this pathway. In the past 5 years, some 

Wnt signaling modulating agents, targeting different key steps in the pathway (Wnt 

secretion, signal transduction or ß-catenin transcriptional activity) entered the clinic to 
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determine inhibitory efficacy and also critically safety. Indeed, Wnt signaling is a highly 

evolutionarily conserved pathway involved in multiple crucial homeostatic functions, 

suggesting that targeting this pathway may induce serious adverse events (e.g. OMP-54F28 

trials, where all patients were monitored for bone mineral density modification (BMD) and 

turnover and received zoledronic acid when their BMD declines (NCT01608867)). 

Moreover, many of the potential targets like ß-catenin are also implicated in others critical 

functions (cell-cell adhesion, development, self-renewal…)143,144. Clearly, precise 

modulation of the Wnt pathway will be necessary to balance anti-tumor efficacy with 

adverse events and will be a challenge for ongoing and future clinical trials. Despite these 

concerns, new regulators of the Wnt signaling cascade offer the opportunity for us to 

increase our comprehension of this exceedingly complex pathway and potentially for the 

treatment of Wnt-related diseases including cancer.
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Figure 1. 
A: “Wnt Off”. In the absence of Wnt ligands, a destruction complex composed of Axin-1 

and its tumor suppressor partners Adenomtous Polyposis Coli (APC), Glycogen synthase 

kinase 3 beta (GSK3B) and Casein kinase 1 (CK1α) is formed. The destruction complex 

phosphorylates ß-catenin and targets it for proteasomal degradation regulating the 

cytoplasmic level of ß-catenin.

B: “Wnt On”. Wnt ligands bind to the Frizzled/ Lrp5/6 (Low density lipoprotein receptor-

related proteins 5 or 6) receptors leading to the phosphorylation of a negative regulator of 

the destruction complex, Dishevelled (Dvl). Dvl recruits Axin, inhibiting its interaction with 

other components of the destruction complex. ß-catenin is then free to accumulate in the 

cytoplasm and translocates to the nucleus, where it activates the trancscription of Wnt target 

genes after association with transcription factors of the TCF/Lef family and co-activators 

such as CBP (cyclic AMP response element-binding protein) and p300. Arrows indicate 

activation/induction, blunt ended lines indicate inhibition/blockade.
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Figure 2. 
A: Non-Canonical Wnt-signaling: Non-canonical Wnt/PCP (planar cell polarity) 
pathway. Wnt ligand binding to frizzled receptors leads to activation of Dishevelled (Dvl) 

which recruits DAAM1 (Dishevelled associated activator of morphogenesis 1) enhancing the 

stimulation of GTPases Rac (Ras-related C3 botulinum toxin substrate) and RHOA (Ras 

homolog gene family member A) leading to actin cytoskeleton rearrangement. In addition, 

Dvl activates Rac and finally JNK (c-Jun-N-terminal-kinase) thereby modulating cell 

migration.

B: Non-canonical Wnt/calcium pathway. Wnt ligands bind to frizzled receptors and 

Ror/Ryk co-receptors, activating Dvl and trimeric G-proteins (Gα,β,γ). This leads to the 

generation of IP3 (inositol 1,4,5-triphosphate) and DAG2 (diacylglycerol) through PLC 

(Phospholipase C) activation. IP3 triggers the release of calcium ions (Ca2+) from the 

endoplasmic reticulum activating calmodulin and subsequently CAMKII (calcium/

calmodulin- dependent kinase II), TAK-1 (TGF-β activated kinase 1) and NLK (Nemo-like 

kinase) thereby inhibiting the canonical Wnt pathway. Moreover, calmodulin activation 

stimulates calcineurin and NFAT (Nuclear Factor of Activated T-cells) involved in adhesion 

and migration processes. This pathway activates also PKC (Protein Kinase C) and Cdc42 

(cell division control protein 42) rearranging the actin cytoskeleton. Arrows indicate 

activation, blunt ended lines indicate inhibition/blockade.
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Figure 3. Schematic of Wnt inhibitors currently in clinical trials
This figure summarizes the different Wnt pathway modulators with variable specificities and 

at different stages of development (fully described in the main text). The current agents in 

clinical trials are the porcupine inhibitor LGK974, which inhibits Wnt posttranslational 

palmitoylation and secretion. OMP18R5, is a fully humanized monoclonal antibody 

specifically binding to multiple Frizzled (Fzd) receptors and OMP-54F28 is a Fc fusion 

protein with Fzd8, which binds all Wnt ligands. Both inhibit the intracellular transduction of 

the Wnt signal. PRI-724 specifically targets the β-catenin transcriptional co-activator CBP 

thereby blocking their interaction. UC-961 (cirmtuzumab) is a humanized antibody targeting 

the targeting specifically the Wnt receptor ROR1. Arrows indicate activation/induction, 

blunt ended lines indicate inhibition/blockade.
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