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Healthcare delivery has advanced due to the implementation of point-of-care testing, which is often performed within minutes to 
hours in minimally equipped laboratories or at home. Technologic advances are leading to point-of-care kits that incorporate nucleic 
acid–based assays, including polymerase chain reaction, isothermal amplification, ligation, and hybridization reactions. As a limited 
number of single-nucleotide polymorphisms are associated with clinically significant human immunodeficiency virus (HIV) drug 
resistance, assays to detect these mutations have been developed. Early versions of these assays have been used in research. This 
review summarizes the principles underlying each assay and discusses strategic needs for their incorporation into the management 
of HIV infection.
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Point-of-care tests (POCTs) are assays performed near the 
patient with rapid turnaround times that allow patient manage-
ment during the same clinical encounter [1–3]. POCTs generally 
bypass transport of specimens to central laboratories, reduce 
specimen processing, and require less-skilled laboratory techni-
cians. These simplifications can reduce the turnaround time for 
test results, and, in regions with limited laboratory infrastruc-
ture, can increase access to diagnostic tests (eg, human immu-
nodeficiency virus [HIV] antibody detection and plasma HIV 
RNA quantification) [4]. POCTs to detect single-nucleotide 
polymorphisms (SNPs) associated with HIV drug resistance 
(HIVDR) mutations are desirable because these assays would 
(1) allow for faster institution of appropriate antiretroviral ther-
apy (ART), permitting the associated improvements in patient’s 
health [5]; (2) likely cost less than Sanger sequencing, the most 
widely used method to detect HIVDR; and (3) be performed 
within the laboratory infrastructure in low-resource settings.

The new antiretroviral dolutegravir (DTG) rarely selected 
HIVDR in early clinical trials [6–8], leading to speculation that, 
with increased distribution and lower costs, pretreatment test-
ing for HIVDR would not be needed in low-resource settings. 
However, HIVDR mutations are selected in individuals taking 
DTG monotherapy [9–14], which suggests that (1) for maximal 

efficacy of DTG-based ART regimens, HIV must be suscepti-
ble to coadministered nucleosides, and (2) testing for HIVDR 
to these nucleosides may be needed to sustain effectiveness of 
first-line DTG-based regimens. Moreover, testing for HIVDR 
at virologic failure (VF) may inform the decisions of clinicians 
prescribing subsequent ART regimens. Assays that combine 
viral load and testing for HIVDR could minimize the time from 
recognizing VF to assessing HIVDR and to selecting the next 
ART regimens.

Several assays in development for the rapid detection of 
HIVDR mutations in decentralized laboratories are described 
here. The developers of these tests are simplifying the methods 
to facilitate assay performance by minimally trained personnel 
and minimize the cost of POCTs.

OLA_SIMPLE V.1 FOR PRETREATMENT HIV DRUG 
RESISTANCE

An oligonucleotide ligation-based assay (OLA) that detects 
HIVDR mutations K65R, K103N, Y181C, M184V, and G190A 
in HIV pol encoding reverse transcriptase was proven to detect 
pre-ART drug resistance (PDR) associated with virologic failure 
to nonnucleoside reverse transcriptase inhibitor (NNRTI)–based 
ART in Kenya [15–17]. The OLA can use patient-derived DNA or 
RNA from whole blood, plasma, or dried blood spot specimens. 
Nucleic acids are specifically amplified by polymerase chain reac-
tion (PCR), annealed to labeled probes that are ligated and then 
detected by an enzyme-linked immunoassay [18–21]. Recently, 
OLA_Simple v.1 was developed for laboratories in low-resource 
settings. The kit shortens and simplifies workflow by combining 
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lyophilized reagents and lateral flow paper detection (Figure 1A) 
using inexpensive instruments (ie, thermocycler, microfuge). 
OLA_Simple v.1 uses negatively immunoselected CD4 cells from 
whole blood, followed by cell lysis and PCR amplification of a 
region of HIV pol DNA (120 minutes). The mutant codons above, 
plus V106M, are detected after ligation of labeled probes (60 
minutes). The dried reagent mixtures are stable at approximately 

24°C and allow quick single-tube preparation (10 seconds). The 
paper detection (similar to pregnancy tests), read both visually 
and by a camera, has been benchmarked against the plate-based 
enzyme-linked immunoassay [22]. To detect resistance at VF, 
the next generation of OLA_Simple will isolate virion RNA from 
whole blood, reverse-transcribe the viral RNA, and employ iso-
thermal or more rapid PCR amplification, all contained within 
plasticware to preclude amplicon cross-contamination.

ALLELE-SPECIFIC PCR

Allele-specific PCR (ASPCR) uses laboratory-based quantita-
tive PCR (qPCR) to detect HIVDR mutations [23–27]. These 
assays rely on the 3ʹ-terminal nucleotide of primers for specific-
ity that is enhanced by a mismatch at the adjacent base to dis-
criminate between a HIVDR vs wild-type base. One such assay 
was recently developed for K65R, K103N, Y181C, and M184V 
in HIV type 1 (HIV-1) subtype C at YRG-CARE, Chennai, 
India. In preliminary analyses of 46 patients failing tenofovir, 
lamivudine, and NNRTI ART, ASPCR identified K65R not 
detected by Sanger sequencing in 4% of RNA and 13% of DNA 
samples in >5% of the HIV quasispecies [28].

MULTIPLEX ALLELE-SPECIFIC ASSAY

Multiplex allele–specific (MAS) assays use reverse-transcription 
PCR products spanning the protease and reverse transcriptase 
regions of HIV pol to perform allele-specific primer extension 
(ASPE) in a single well. Forty-five primers simultaneously detect 
the varied genotypes that encode 20 HIVDR amino acids to 
NNRTIs, nucleoside reverse transcriptase inhibitors (NRTIs), and 
protease inhibitors. Primers matching the 3ʹ-terminal nucleotide 
initiate primer extension with biotinylated deoxycytidine tri-
phosphates. The ASPE products are uniquely annealed to micro-
spheres through the specificity of “TAG”/”anti-TAG” recognition 
and are detected within a suspension array system (US$24 000) 
linked to each microsphere by its internal dye, recording the dye 
intensity as mean fluorescence intensity (Figure 1B). The prim-
ers can detect all major HIVDR mutations associated with World 
Health Organization–recommended first- and second-line ART 
regimens (except integrase strand transfer inhibitors) in HIV 
subtype B or C viruses using plasma or dried blood spot speci-
mens [29, 30]. The subtype C assay was implemented for a survey 
of transmitted HIVDR in Swaziland in 2011 and detected PDR at 
a sensitivity to comparable to Sanger sequencing [31]. An HIV-1 
group M multisubtype MAS assay was also developed to identify 
DRM against tenofovir and emtricitabine used for preexposure 
HIV prophylaxis in high-risk populations [32].

PAN-DEGENERATE AMPLIFICATION AND 
ADAPTATION

Pan-degenerate amplification and adaptation (PANDAA) 
is an HIV subtype-independent assay that overcomes the 
HIV genomic heterogeneity that has previously precluded 
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Figure 1.  Point-of-care test to detect human immunodeficiency virus drug resis-
tance. A, Simplified kit with single-use reagents to test one specimen for drug 
resistance mutations prior to nonnucleoside reverse transcriptase inhibitor–based 
antiretroviral therapy. Kit detects mutant codons predictive of virologic failure 
[17]. The kit amplifies DNA using premade dried polymerase chain reaction (PCR) 
mixture. The product is added to a dried ligation mix and subsequently detected 
in a paper-strip test cartridge. B, Targets are PCR amplified, then the multiplex 
allele-specific (MAS) assay uses allele-specific primer extension (ASPE) with spe-
cific primers mixed together in one reaction tube containing reaction reagent mix-
ture and a template. When the primer complementary to the 3ʹ-terminal nucleotide 
of the target, primer extension occurs and biotinylated deoxycytodine triphosphates 
(dCTPs) are incorporated into the extended products. ASPE products are hybridized 
to microspheres through the specificity of “TAG”/”Anti-TAG” recognition and read 
with the suspension array system. C, Premixed pan-degenerate amplification and 
adaptation (PANDAA) with quantitative PCR (qPCR) enzymes, buffer, primers, and 
probes labeled with 3 distinct fluorophores to detect 2 drug resistance mutations 
and quantify total viral nucleic acid. Viral RNA from plasma, DNA from whole 
blood, or PCR amplicon previously generated for Sanger sequencing can be used 
as the input template. PANDAA is a one-step reaction that does not require a first-
round cDNA synthesis or PCR step prior to qPCR. PANDAA can be run on any qPCR 
machine that can distinguish the FAM, VIC, and NED fluorophores (or equivalent 
fluorophores with a similar emission spectra). Automated data analysis allows the 
relative abundance of each drug resistance mutation to be quantified with addi-
tional data handling by the user.
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implementing probe-based qPCR to discriminate SNPs asso-
ciated with drug resistance [33] (Figure 1C). With traditional 
qPCR, secondary polymorphisms within a probe-binding site, 

which are proximal to a DRM, prevent probe hybridization and 
generate false-negative results. Using highly degenerate prim-
ers that overlap with the probe-binding site, PANDAA adapts 
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Figure 2.  Overview of the simple method to amplify RNA targets (SMART). A, The RNA sequences, isolated from a clinical sample, are put in a solution containing 2 probes 
that bind to specific sequences within the target RNA, allowing testing of RNA mutations. The first probe (capture probe) is attached to a magnetic bead, which hybridizes RNA 
via a general consensus sequence. The 5ʹ end of the biotinylated capture probe readily binds to a streptavidin-coated magnetic bead. Simultaneously a mutation-specific probe 
molecule (~25 nucleotides, SMART or amplification probe) that hybridizes with the RNA. The center sequence of the SMART probe molecule is the reverse complement (RC) of 
the target strain sequence. The sequence of the 2 flanking ends (called “hybrid seq RC” and “primer 2”) of the SMART probe can be adjusted by the user to optimize amplification 
reaction kinetics. At the conclusion of (A), a chain-linked molecule complex of streptavidin-coated magnetic beads—biotinylated oligo–RNA—SMART probe is centered about 
the target region of the RNA. B, The magnetic bead bound complex is microfluidically separated from the unbound SMART probes and/or other molecules in reservoir W1 to 
reservoir W2. C, Amplification of the SMART probe is performed via an isothermal scheme that utilizes the designed primer sequences for optimal reaction kinetics. Here, vari-
ous enzymes (AMV-RT, RNase, and T7 polymerase) are used for transcription and amplification. Subsequently, molecular beacons or other fluorescent molecules can be used for 
detection of amplified SMART probes. The SMART scheme employs an isothermal and exponential amplification of SMART probes, which is suitable for point-of-care testing.
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the targeted genomic region through site-directed mutagenesis 
during the initial qPCR cycles. This generates a homogeneous 
amplicon population whereby the only point of nucleotide vari-
ation within the probe-binding site is at the HIVDR mutation. 
PANDAA is under commercialization for both NNRTI/NRTI 
[34] and protease inhibitor–based ART failure management, 
and for ultrasensitive detection of low frequency (≥1%) muta-
tions in all antiretroviral drug classes. PANDAA uses either 
RNA or DNA to detect 2 distinct mutations, as well as total viral 
copy number, in a multiplex one-step qPCR. The automated 
data analysis returns a percentage abundance of each mutation 
in the virus population within 2 hours of sample purification.

LIGATION ON RNA AMPLIFICATION

This assay-in-development uses one-step ligation to detect SNPs 
from RNA templates. In a single-tube assay, ligase, DNA polymerase 
and oligonucleotide probes are combined and subjected to qPCR of 
specific probes [35]. The RNA sample is initially denatured to open 
any secondary structures. Subsequently, ligation occurs during 
cycling between 25°C and 48°C, whereas the DNA polymerase 
remains in its chemically inactivated state. This is followed by heat 
activation of the polymerase and inactivation of the T4 DNA ligase, 
allowing DNA polymerase extension and endonuclease activity. 
Linear amplification of ligated K103N plasmid sensitively detected 
1% mutant, with essentially 100% specificity conferred by the ligase. 
The theoretical advantage of ligation on RNA amplification over 
ASPCR assays is that the lower annealing temperature allows testing 
of more polymorphic clinical specimens.

SIMPLE METHOD TO AMPLIFY RNA TARGETS

The simple method to amplify RNA targets (SMART), another ear-
ly-stage method (Figure 2), combines HIV RNA in a solution with 
streptavidin-coated beads conjugated with biotinylated capture oli-
gonucleotides and SMART probes. The solution is introduced into a 
microchip well followed by magnetic separation of the bead-bound 
complex. SMART probes are amplified isothermally [36]. In a pre-
liminary experiment using synthetic DNA sequences with K103N, 
6000 copies/mL were detected within 180 minutes [37], which is a 
relatively short duration for reactions designed to detect SNPs.

IMPLEMENTATION OF POINT-OF-CARE TESTING

Given the technical complexity and equipment needed for 
Sanger (or next-generation) sequencing, some experts have 
advocated for performing large-scale HIVDR testing in cen-
tralized laboratories [38]. However, off-site testing leads 
to delays in clinical decisions compared to on-site POCTs. 
Implementing POCTs on a large-scale with rapid turnaround 
times in resource-limited settings would require hiring suffi-
cient staff to perform the diagnostic tests in the clinics, training 
healthcare workers to properly interpret these tests, and ensur-
ing clinics have adequate infrastructure, including necessary 

equipment and reliable electricity [3, 39]. Operational research 
would be needed to incorporate POCTs into daily workflows 
[40]. Reliable supply chains would be needed to ensure that 
health centers do not experience POCT stockouts, which has 
been a challenge for ART medications and laboratory supplies 
in some settings [41]. POCTs should be regulated for reli-
able manufacturing, technicians’ skill in conducting the assay 
should be monitored by a proficiency testing program, and the 
POCTs should be proven to offer clinically meaningful data. In 
short, there is a need for efficient and reliable POCT programs, 
not simply innovative POCT technology [3]. The large-scale 
implementation of GeneXpert MTB/RIF in South Africa for 
the diagnosis of tuberculosis provides several years of expe-
rience in strengthening health systems, and relevant lessons 
learned can be applied to HIVDR POCTs [42].

CONCLUSIONS

Given that HIVDR mutations have historically developed to 
all ART regimens, resistance will likely continue to diminish 
the long-term success of ART programs. Accessible testing for 
HIVDR can enable an evidence-based approach to medical care. 
With further development, the assays described here could offer 
POCTs that may improve clinical outcomes. However, as addi-
tional ART regimens become available, ongoing surveillance 
will be needed to monitor HIVDR mutations, and relevant 
mutations will need to be added to POCTs. Implementation sci-
ence, outcomes research, and mathematical modeling can help 
evaluate the use of POCTs to optimize use of limited resources 
to address HIVDR and improve health outcomes.
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