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Background. Impaired delivery of antifungals to hyphae within necrotic lesions is thought to contribute to therapeutic failure in
invasive pulmonary aspergillosis (IPA). We hypothesized that transfusion of leukocytes loaded ex vivo with the lipophilic antifungal
posaconazole could improve delivery of antifungals to the sites of established infection and improve outcome in experimental IPA.

Methods. The HL-60 leukemia cell line was differentiated to a neutrophil-like phenotype (differentiated HL-60 [dHL-60] cells)
and then exposed to a range of posaconazole concentrations. The functional capacity and antifungal activity of these cells were as-
sessed in vitro and in a mouse model of IPA.

Results. Posaconazole levels in dHL-60 cells were 265-fold greater than the exposure concentration. Posaconazole-loaded cells
were viable and maintained their capacity to undergo active chemotaxis. Contact-dependent transfer of posaconazole from dHL-60
cells to hyphae was observed in vitro, resulting in decreased fungal viability. In a neutropenic mouse model of IPA, treatment with
posaconazole-loaded dHL-60 cells resulted in significantly reduced fungal burden in comparison to treatment with dHL-60 cells
alone.

Conclusions. Posaconazole accumulates at high concentrations in dHL-60 cells and increases their antifungal activity in vitro
and in vivo. These findings suggest that posaconazole-loading of leukocytes may hold promise for the therapy of IPA.
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The saprophytic mold Aspergillus fumigatus is a common
cause of pulmonary infection in immunocompromised pa-
tients. The incidence of invasive pulmonary aspergillosis
(IPA) has risen in recent decades, reflecting the increasing
number of immunosuppressive medical interventions, such
as chemotherapy, hematopoietic stem cell transplantation,
and solid organ transplantation [1–7]. Even with appropriate
antimicrobial therapy, the mortality rate of IPA remains as
high as 50% [8, 9].

One factor underlying the failure of antifungal agents is the
inability of these agents to penetrate foci of infection to reach
their intracellular targets within fungi. Infection with A. fumi-
gatus is characterized by the presence of filamentous hyphae,
which invade and damage tissues, leading to extensive necrosis
at foci of infection. Hyphae are also angiotropic and can invade
blood vessels, causing thrombosis and subsequent tissue infarc-
tion [10–14]. Infarcted and necrotic tissue surrounding

pulmonary fungal lesions provides a barrier to antifungal pen-
etration, significantly undermining the clinical efficacy of anti-
fungal drugs [15–18]. Enhancing antifungal penetration into
these necrotic lesions is therefore an attractive strategy to im-
prove outcomes in IPA.

Neutrophils exhibit potent anti-Aspergillus activity, and the
rapid resolution of IPA following recovery of chemotherapy-
induced neutropenia indicates that these cells can penetrate pul-
monary lesions to reach invading hyphae [19, 20]. Studies in
mouse models of IPA have confirmed that neutrophils efficient-
ly migrate to the site of pulmonary infection following transfu-
sion [21, 22]. Despite these findings, neutrophil transfusions
have not proven highly effective in patients with IPA, in part
because of the short half-life and poor fungicidal activity of
these transfused cells [23, 24].

Posaconazole is a broad-spectrum triazole that is highly ac-
tive against Aspergillus species [25, 26]. This lipophilic anti-
fungal drug concentrates within the membranes of human
cells, including neutrophils and other leukocytes [27–29].
We therefore hypothesized that the ex vivo loading of leuko-
cytes with posaconazole could be used to enhance their abil-
ity to kill A. fumigatus and that transfusion with these cells
will improve outcomes in a mouse model of IPA. In this
study, we used differentiated HL-60 leukemia cells as a
model system to investigate the effects of posaconazole load-
ing on the activity of leukocytes against A. fumigatus in vitro
and in vivo.
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MATERIALS AND METHODS

Fungal Strains
A. fumigatus strain Af293 (a kind gift from P. Magee, University
of Minnesota) was grown on YPD agar (Fisher) for 6 days at
37°C. Conidia were harvested by gently washing the plate
with phosphate-buffered saline (PBS) containing 0.1%
(weight/volume) Tween 80 (PBS-T). Conidia suspensions
were passed through a cell strainer (pore diameter, 40 μm), cen-
trifuged at 3000 ×g for 10 minutes, and resuspended in fresh
PBS-T. The red fluorescent protein (RFP)–expressing Af293
mutant was generated as described elsewhere [30].

HL-60 Cell Line
HL-60 cells obtained from ATCC were cultured at 37°C in 5%
CO2 in Iscove’s modified Dulbecco medium (IMDM; Life Tech-
nologies) supplemented with 10% fetal bovine serum (FBS; Wi-
sent), 1% penicillin-streptomycin (Life Technologies), and 0.3%
sodium bicarbonate (Sigma-Aldrich). Cells were differentiated
toward a neutrophil-like phenotype (differentiated HL-60
[dHL-60] cells) following incubation for 3 days with IMDM
supplemented with 1.3% (v/v) dimethyl sulfoxide (DMSO; Bio-
shop) and 2.5 μM all-trans retinoic acid (Sigma-Aldrich). Cell
viability was determined by trypan blue staining.

Antifungal Preparation, Minimum Inhibitory Concentration Testing, and
Antifungal Loading of Cells
Posaconazole powder (Merck Canada) was dissolved in DMSO
and stored at −80°C. For each experiment, final working con-
centrations were prepared in IMDM. Antifungal susceptibility
testing was performed according to the CLSI broth microdilu-
tion reference method [31]. The dHL-60 cells were loaded with
posaconazole by incubating cells at 37°C in 5% CO2 for 1 hour
in IMDM containing the indicated concentrations of posacona-
zole. Following incubation, cells were washed twice by centrifu-
gation and resuspended in fresh medium.

High-Performance Liquid Chromatography–Tandem Mass Spectrometry
of Cell-Associated Posaconazole
Following loading of dHL-60 cells with posaconazole, cell sam-
ples were frozen at −80°C for storage. Samples were thawed and
deproteinated with acetonitrile solution containing 1 mg/mL
ketoconazole as an internal standard. Following centrifugation,
300 μL of the organic phase of each sample was added to 300 μL
of LC/MS-grade H2O. An Agilent 6410 triple-quadrupole mass
spectrometer equipped with an electrospray ionization (ESI)
source (Agilent) was used. Chromatography was performed
using an Infinity 1290 (Agilent) system and a Zorbax Eclipse
Plus C18 column (internal diameter, 2.1 mm; height, 50 mm;
particle size, 1.8 µm; Agilent) under a gradient elution with
water containing 0.1% formic acid and acetonitrile. 3PLUS1
Multilevel Plasma Calibrator Set (ChromSystems) was used
for calibration. The method was linear in the range of 0.3–5.9
µg/mL. The lower limit of quantification was 0.3 µg/mL.
Mean cell-associated posaconazole concentration was

calculated as a function of the number of cells per sample and
using an estimated dHL-60 cell volume of 300 μm3 [32].

Chemotaxis of dHL-60 Cells
Transwell permeable supports with 5.0-μm-diameter pores
(Corning) were coated with human plasma fibrinogen (hFb;
Sigma-Aldrich) by incubating wells with 2.5 μM hFb in PBS
for 1 hour at 37°C in 5% CO2. A total of 500 μL of IMDM con-
taining 10% FBS as a chemoattractant was added to the lower
wells of the 24-well plate, and 100 μL containing 3 × 105 HL-
60/dHL-60 cells prepared in serum-free IMDM was added to
the upper compartment of each well. The plate was then incu-
bated for 3 hours at 37°C in 5% CO2 to allow for migration. The
lower wells were then treated with 0.5 M ethylenediaminetetra-
acetic acid to promote detachment from the permeable support.
Permeable supports were then removed, and the contents of
each lower compartment were transferred to microfuge tubes.
Cells were collected by centrifugation and frozen at −80°C.
The concentration of DNA in the cell pellets was quantified
using the CyQuant (Molecular Probes) DNA binding fluores-
cence dye per the manufacturer’s instructions and was read
using a fluorometer (Infinite M1000, Tecan) with excitation at
480 nm and emission at 520 nm.

Imaging Studies of BDP-PCZ Transfer
BODIPY fluorophore–tagged posaconazole (BDP-PCZ) was
prepared as described previously [33]. A total of 3 × 104 RFP-
expressing Af293 conidia were inoculated in an 8-well imaging
chamber (Lab-Tek) in IMDM and grown for 7–9 hours at 37°C
in 5% CO2. Wells were then washed twice with PBS, and 1 × 106

dHL-60 cells that had been exposed to 4 μg/mL of BDP-PCZ
were added to the wells. At each experimental time point, me-
dium was aspirated and then wells were fixed with 4% parafor-
maldehyde for imaging with a Ziess LSM780 laser scanning
confocal microscope.

dHL-60–Mediated Inhibition of A. fumigatus Hyphal Growth
For coincubation, 3 × 104 A. fumigatus conidia in 300 μL of
IMDM were grown for 7–9 hours at 37°C in 5% CO2 in 24-
well tissue culture treated plates and washed with PBS, and
500 μL of IMDM containing the indicated number of dHL-60
cells was added. Plates were incubated for 12 hours at 37°C in
5% CO2, and then the medium was removed and the wells
washed twice with PBS. 500 μL of ice-cold sterile ddH2O was
added to each well and the plate was incubated for 30 minutes
at room temperature to promote lysis of dHL-60 cells. Wells
were then washed with PBS, and fungal metabolic activity was
measured via reduction of the tetrazolium reagent XTT (Bio-
shop) as described previously [34].

In Vivo Studies
Female Balb/c mice aged 6–8 weeks underwent immunosup-
pression via subcutaneous injection of 250 mg/kg cortisone
acetate (Sigma) and intraperitoneal injection of 230 mg/kg
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The saprophytic mold Aspergillus fumigatus is a common
cause of pulmonary infection in immunocompromised pa-
tients. The incidence of invasive pulmonary aspergillosis
(IPA) has risen in recent decades, reflecting the increasing
number of immunosuppressive medical interventions, such
as chemotherapy, hematopoietic stem cell transplantation,
and solid organ transplantation [1–7]. Even with appropriate
antimicrobial therapy, the mortality rate of IPA remains as
high as 50% [8, 9].

One factor underlying the failure of antifungal agents is the
inability of these agents to penetrate foci of infection to reach
their intracellular targets within fungi. Infection with A. fumi-
gatus is characterized by the presence of filamentous hyphae,
which invade and damage tissues, leading to extensive necrosis
at foci of infection. Hyphae are also angiotropic and can invade
blood vessels, causing thrombosis and subsequent tissue infarc-
tion [10–14]. Infarcted and necrotic tissue surrounding

pulmonary fungal lesions provides a barrier to antifungal pen-
etration, significantly undermining the clinical efficacy of anti-
fungal drugs [15–18]. Enhancing antifungal penetration into
these necrotic lesions is therefore an attractive strategy to im-
prove outcomes in IPA.

Neutrophils exhibit potent anti-Aspergillus activity, and the
rapid resolution of IPA following recovery of chemotherapy-
induced neutropenia indicates that these cells can penetrate pul-
monary lesions to reach invading hyphae [19, 20]. Studies in
mouse models of IPA have confirmed that neutrophils efficient-
ly migrate to the site of pulmonary infection following transfu-
sion [21, 22]. Despite these findings, neutrophil transfusions
have not proven highly effective in patients with IPA, in part
because of the short half-life and poor fungicidal activity of
these transfused cells [23, 24].

Posaconazole is a broad-spectrum triazole that is highly ac-
tive against Aspergillus species [25, 26]. This lipophilic anti-
fungal drug concentrates within the membranes of human
cells, including neutrophils and other leukocytes [27–29].
We therefore hypothesized that the ex vivo loading of leuko-
cytes with posaconazole could be used to enhance their abil-
ity to kill A. fumigatus and that transfusion with these cells
will improve outcomes in a mouse model of IPA. In this
study, we used differentiated HL-60 leukemia cells as a
model system to investigate the effects of posaconazole load-
ing on the activity of leukocytes against A. fumigatus in vitro
and in vivo.
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mutant was generated as described elsewhere [30].
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testing was performed according to the CLSI broth microdilu-
tion reference method [31]. The dHL-60 cells were loaded with
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zole. Following incubation, cells were washed twice by centrifu-
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High-Performance Liquid Chromatography–Tandem Mass Spectrometry
of Cell-Associated Posaconazole
Following loading of dHL-60 cells with posaconazole, cell sam-
ples were frozen at −80°C for storage. Samples were thawed and
deproteinated with acetonitrile solution containing 1 mg/mL
ketoconazole as an internal standard. Following centrifugation,
300 μL of the organic phase of each sample was added to 300 μL
of LC/MS-grade H2O. An Agilent 6410 triple-quadrupole mass
spectrometer equipped with an electrospray ionization (ESI)
source (Agilent) was used. Chromatography was performed
using an Infinity 1290 (Agilent) system and a Zorbax Eclipse
Plus C18 column (internal diameter, 2.1 mm; height, 50 mm;
particle size, 1.8 µm; Agilent) under a gradient elution with
water containing 0.1% formic acid and acetonitrile. 3PLUS1
Multilevel Plasma Calibrator Set (ChromSystems) was used
for calibration. The method was linear in the range of 0.3–5.9
µg/mL. The lower limit of quantification was 0.3 µg/mL.
Mean cell-associated posaconazole concentration was

calculated as a function of the number of cells per sample and
using an estimated dHL-60 cell volume of 300 μm3 [32].

Chemotaxis of dHL-60 Cells
Transwell permeable supports with 5.0-μm-diameter pores
(Corning) were coated with human plasma fibrinogen (hFb;
Sigma-Aldrich) by incubating wells with 2.5 μM hFb in PBS
for 1 hour at 37°C in 5% CO2. A total of 500 μL of IMDM con-
taining 10% FBS as a chemoattractant was added to the lower
wells of the 24-well plate, and 100 μL containing 3 × 105 HL-
60/dHL-60 cells prepared in serum-free IMDM was added to
the upper compartment of each well. The plate was then incu-
bated for 3 hours at 37°C in 5% CO2 to allow for migration. The
lower wells were then treated with 0.5 M ethylenediaminetetra-
acetic acid to promote detachment from the permeable support.
Permeable supports were then removed, and the contents of
each lower compartment were transferred to microfuge tubes.
Cells were collected by centrifugation and frozen at −80°C.
The concentration of DNA in the cell pellets was quantified
using the CyQuant (Molecular Probes) DNA binding fluores-
cence dye per the manufacturer’s instructions and was read
using a fluorometer (Infinite M1000, Tecan) with excitation at
480 nm and emission at 520 nm.

Imaging Studies of BDP-PCZ Transfer
BODIPY fluorophore–tagged posaconazole (BDP-PCZ) was
prepared as described previously [33]. A total of 3 × 104 RFP-
expressing Af293 conidia were inoculated in an 8-well imaging
chamber (Lab-Tek) in IMDM and grown for 7–9 hours at 37°C
in 5% CO2. Wells were then washed twice with PBS, and 1 × 106

dHL-60 cells that had been exposed to 4 μg/mL of BDP-PCZ
were added to the wells. At each experimental time point, me-
dium was aspirated and then wells were fixed with 4% parafor-
maldehyde for imaging with a Ziess LSM780 laser scanning
confocal microscope.

dHL-60–Mediated Inhibition of A. fumigatus Hyphal Growth
For coincubation, 3 × 104 A. fumigatus conidia in 300 μL of
IMDM were grown for 7–9 hours at 37°C in 5% CO2 in 24-
well tissue culture treated plates and washed with PBS, and
500 μL of IMDM containing the indicated number of dHL-60
cells was added. Plates were incubated for 12 hours at 37°C in
5% CO2, and then the medium was removed and the wells
washed twice with PBS. 500 μL of ice-cold sterile ddH2O was
added to each well and the plate was incubated for 30 minutes
at room temperature to promote lysis of dHL-60 cells. Wells
were then washed with PBS, and fungal metabolic activity was
measured via reduction of the tetrazolium reagent XTT (Bio-
shop) as described previously [34].

In Vivo Studies
Female Balb/c mice aged 6–8 weeks underwent immunosup-
pression via subcutaneous injection of 250 mg/kg cortisone
acetate (Sigma) and intraperitoneal injection of 230 mg/kg
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cyclophosphamide (Baxter) 2 days prior to infection. For infec-
tion, mice were anesthetized with inhaled isoflurane and then
underwent oral cannulation and received 5 × 103 A. fumigatus
conidia in PBS-T via intratracheal instillation. Enrofloxacin
(Baytril) was added to drinking water to prevent bacterial
superinfection. For experimental treatment, 250 μL of PBS con-
taining 1.5 × 107 dHL-60 cells or posaconazole-loaded dHL-60
cells was administered intravenously via the tail vein 12 and 36
hours after infection. Control mice received injections of PBS
only. Mice were euthanized 72 hours after infection, by CO2

asphyxiation followed by cervical dislocation, and lungs were
removed for subsequent histopathological analysis. All proce-
dures involving mice were approved by the McGill University
Animal Care Committee and followed the guidelines estab-
lished by the Canadian Council on Animal Care.

Histopathological Analysis
Lungs were removed frommice, perfused, and immersed in PBS
with 10% formalin for 24 hours for fixation. Fixed samples were
then embedded in paraffin, and serial step sections of 5 μmwere
collected at 80-μm intervals and stained with periodic acid-
Schiff. Fungal lesions were then detected via blinded analysis
with an inverted light microscope. Five sections of each lung,
at minimum, were examined for all animals in each experiment,
to ensure that 100 lesions were detected in the group displaying
the highest level of infection.

Statistical Analysis
All statistical analysis and production of graphs was performed
using GraphPad Prism, version 5.0.

RESULTS

Intracellular Concentrations of Posaconazole in dHL-60 Cells
dHL-60 leukocytes have been used as a model system for the
study of neutrophil transfusions for treatment of fungal infec-
tions in a number of studies [35–37]. Although posaconazole
has been reported to accumulate within primary neutrophils
[29], the effects of posaconazole exposure on dHL-60 cells have
not been reported. Following in vitro exposure of dHL-60 cells to
posaconazole, high-performance liquid chromatography revealed
the posaconazole concentrations within dHL-60 cells to be >265-
fold greater than the exposure concentration (Figure 1A). There
was a linear relationship between exposure and intracellular levels
of posaconazole between exposure concentrations of 1 and 8 μg/
mL. Beyond an exposure concentration of 8 μg/mL, the intracel-
lular posaconazole levels increased only minimally, likely indicat-
ing that saturation of the membranes of dHL-60 cells had
occurred. Posaconazole-loaded dHL-60 cells showed near nor-
mal viability for up to 96 hours after azole exposure, compared
with untreated cells, as determined by trypan blue staining
(Figure 1B). Together, these results suggest that loading dHL-
60 cells with high concentrations of posaconazole does not signif-
icantly affect their viability.

Chemotaxis of Posaconazole-Loaded dHL-60 Cells
For posaconazole-loaded dHL-60 cells to act upon fungi within
pulmonary lesions, dHL-60 cells must undergo chemotaxis to
the site of infection. We used a Transwell system to evaluate
the effects of posaconazole loading on chemotaxis of dHL-60
cells. Because chemotaxis of dHL-60 cells declined dramatically
after 3 days of differentiation (Supplementary Figure S1), 3 days
of differentiation was used for all studies. Exposure of dHL-60
cells to posaconazole concentrations of 16 μg/mL, placed in the
upper wells, had no significant effect on the ability of these cells
to migrate across Transwell membranes to the bottom wells in
response to a chemoattractant (Figure 2). Migration of dHL-60
cells to the lower chamber was not observed in the absence of a
chemoattractant or with undifferentiated HL-60 cells. These re-
sults indicate that posaconazole loading of dHL-60 cells does
not impair their ability to undergo chemotaxis.

Transfer of Posaconazole From dHL-60 Cells to A. fumigatus Hyphae
For cell-associated posaconazole to mediate an antifungal effect,
it must be transferred from dHL-60 cells to fungal hyphae. To

Figure 1. Cell-associated posaconazole concentrations within differentiated HL-
60 (dHL-60) cells. Cells were exposed to varying concentrations of posaconazole for
1 hour and then washed to remove extracellular drug. A, High-performance liquid
chromatography of cell-associated posaconazole levels as compared to exposure
concentrations. B, Viability of dHL-60 cells following loading with posaconazole
for up to 96 hours. Results of 3 independent experiments are shown. Error bars in-
dicate standard errors of the mean.
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test whether posaconazole can transfer from dHL-60 cells to
fungal hyphae, we used our previously described BODIPY-
tagged posaconazole molecule (BDP-PCZ) to monitor intercel-
lular trafficking of this drug. BDP-PCZ-–loaded dHL-60 cells
were coincubated with RFP-expressing A. fumigatus hyphae
and imaged by confocal microscopy. As has been described
with pulmonary epithelial cells, BDP-PCZ localized predomi-
nantly to cell membranes within dHL-60 cells. Upon contact
of dHL-60 cells with A. fumigatus, transfer of BDP-PCZ from
leukocytes to hyphae was observed (Figure 3). Fungal accumu-
lation of BDP-PCZ was time dependent, with increasing hyphal
fluorescence observed over time. These results demonstrate that
dHL-60 cells are able to deliver posaconazole to A. fumigatus
hyphae and suggest the possibility that loading these cells
with posaconazole may enhance their antifungal activity.

Posaconazole-Loaded dHL-60–Mediated Inhibition of A. fumigatus
Hyphal Growth
To test the effects of posaconazole loading on the ability of
dHL-60 to kill pregrown A. fumigatus hyphae, we used the
XTT-metabolic assay to quantify fungal metabolic activity fol-
lowing exposure of hyphae to posaconazole-loaded dHL-60
cells. Non–drug-exposed dHL-60 cells exhibited minimal activ-
ity against mature hyphae and required a multiplicity of infec-
tion (MOI) of >1:100 to mediate any reduction in fungal
metabolic activity (Supplementary Figure S2). Posaconazole ex-
posure greatly enhanced the antifungal activity of dHL-60 cells.
The antifungal activity of posaconazole-loaded dHL-60 cells
was dependent both on the posaconazole exposure concentra-
tion, as well as the MOI. Exposure of dHL-60 cells to 4 μg/
mL of posaconazole prior to coincubation with hyphae resulted
in a reduction of hyphal metabolic activity to 76%, 22%, and 5%
of untreated controls at MOIs of 1:4, 1:8, and 1:16, respectively.
Coculture of hyphae to dHL-60 cells exposed to 16 μg/mL of
posaconazole before infection resulted in reductions of hyphal
metabolic activity to 18%, 3%, and 0% of untreated controls
at MOIs of 1:4, 1:8, and 1:16, respectively (Figure 4). These
findings strongly suggest that cell-associated posaconazole can
augment the antifungal activity of dHL-60 cells in a dose-
dependent manner.

Treatment of Invasive Aspergillosis With Posaconazole-Loaded
dHL-60 Cells
In light of the activity of posaconazole-loaded dHL-60 cells
against A. fumigatus in vitro, we hypothesized that transfusion
of posaconazole-loaded dHL-60 cells may improve outcomes in
experimental IPA. To test this hypothesis, we performed a
proof-of-concept study to evaluate the antifungal activity of
non–drug-exposed and posaconazole-loaded dHL-60 cells in
a neutropenic mouse model of invasive aspergillosis. Neutrope-
nic mice were infected with A. fumigatus by intratracheal inoc-
ulation and, 12 and 36 hours after infection, were administered

Figure 2. Chemotaxis of posaconazole (PCZ)–loaded differentiated HL-60 (dHL-
60) cells. dHL-60 and HL-60 cells loaded at the indicated PCZ concentrations
were subjected to a Transwell migration assay. Bars indicate the mean migration
levels following incubation for 3 hours. Error bars indicate standard errors of the
mean from at least 3 independent experiments. Numerical values indicate PCZ ex-
posure concentration in micrograms/milliliter. Abbreviation: FBS, fetal bovine serum.

Figure 3. Transfer of BODIPY fluorophore-tagged posaconazole (BDP-PCZ) from differentiated HL-60 (dHL-60) cells to Aspergillus fumigatus hyphae. Hyphae of red fluores-
cent protein (RFP)–expressing A. fumigatus were cocultured with BDP-PCZ–exposed dHL-60 cells for the indicated times and imaged by confocal microscopy. Arrows indicate
the presence of BDP-PCZ within hyphae at the point of contact with dHL-60 cells.
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cyclophosphamide (Baxter) 2 days prior to infection. For infec-
tion, mice were anesthetized with inhaled isoflurane and then
underwent oral cannulation and received 5 × 103 A. fumigatus
conidia in PBS-T via intratracheal instillation. Enrofloxacin
(Baytril) was added to drinking water to prevent bacterial
superinfection. For experimental treatment, 250 μL of PBS con-
taining 1.5 × 107 dHL-60 cells or posaconazole-loaded dHL-60
cells was administered intravenously via the tail vein 12 and 36
hours after infection. Control mice received injections of PBS
only. Mice were euthanized 72 hours after infection, by CO2

asphyxiation followed by cervical dislocation, and lungs were
removed for subsequent histopathological analysis. All proce-
dures involving mice were approved by the McGill University
Animal Care Committee and followed the guidelines estab-
lished by the Canadian Council on Animal Care.

Histopathological Analysis
Lungs were removed frommice, perfused, and immersed in PBS
with 10% formalin for 24 hours for fixation. Fixed samples were
then embedded in paraffin, and serial step sections of 5 μmwere
collected at 80-μm intervals and stained with periodic acid-
Schiff. Fungal lesions were then detected via blinded analysis
with an inverted light microscope. Five sections of each lung,
at minimum, were examined for all animals in each experiment,
to ensure that 100 lesions were detected in the group displaying
the highest level of infection.

Statistical Analysis
All statistical analysis and production of graphs was performed
using GraphPad Prism, version 5.0.

RESULTS

Intracellular Concentrations of Posaconazole in dHL-60 Cells
dHL-60 leukocytes have been used as a model system for the
study of neutrophil transfusions for treatment of fungal infec-
tions in a number of studies [35–37]. Although posaconazole
has been reported to accumulate within primary neutrophils
[29], the effects of posaconazole exposure on dHL-60 cells have
not been reported. Following in vitro exposure of dHL-60 cells to
posaconazole, high-performance liquid chromatography revealed
the posaconazole concentrations within dHL-60 cells to be >265-
fold greater than the exposure concentration (Figure 1A). There
was a linear relationship between exposure and intracellular levels
of posaconazole between exposure concentrations of 1 and 8 μg/
mL. Beyond an exposure concentration of 8 μg/mL, the intracel-
lular posaconazole levels increased only minimally, likely indicat-
ing that saturation of the membranes of dHL-60 cells had
occurred. Posaconazole-loaded dHL-60 cells showed near nor-
mal viability for up to 96 hours after azole exposure, compared
with untreated cells, as determined by trypan blue staining
(Figure 1B). Together, these results suggest that loading dHL-
60 cells with high concentrations of posaconazole does not signif-
icantly affect their viability.

Chemotaxis of Posaconazole-Loaded dHL-60 Cells
For posaconazole-loaded dHL-60 cells to act upon fungi within
pulmonary lesions, dHL-60 cells must undergo chemotaxis to
the site of infection. We used a Transwell system to evaluate
the effects of posaconazole loading on chemotaxis of dHL-60
cells. Because chemotaxis of dHL-60 cells declined dramatically
after 3 days of differentiation (Supplementary Figure S1), 3 days
of differentiation was used for all studies. Exposure of dHL-60
cells to posaconazole concentrations of 16 μg/mL, placed in the
upper wells, had no significant effect on the ability of these cells
to migrate across Transwell membranes to the bottom wells in
response to a chemoattractant (Figure 2). Migration of dHL-60
cells to the lower chamber was not observed in the absence of a
chemoattractant or with undifferentiated HL-60 cells. These re-
sults indicate that posaconazole loading of dHL-60 cells does
not impair their ability to undergo chemotaxis.

Transfer of Posaconazole From dHL-60 Cells to A. fumigatus Hyphae
For cell-associated posaconazole to mediate an antifungal effect,
it must be transferred from dHL-60 cells to fungal hyphae. To

Figure 1. Cell-associated posaconazole concentrations within differentiated HL-
60 (dHL-60) cells. Cells were exposed to varying concentrations of posaconazole for
1 hour and then washed to remove extracellular drug. A, High-performance liquid
chromatography of cell-associated posaconazole levels as compared to exposure
concentrations. B, Viability of dHL-60 cells following loading with posaconazole
for up to 96 hours. Results of 3 independent experiments are shown. Error bars in-
dicate standard errors of the mean.
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test whether posaconazole can transfer from dHL-60 cells to
fungal hyphae, we used our previously described BODIPY-
tagged posaconazole molecule (BDP-PCZ) to monitor intercel-
lular trafficking of this drug. BDP-PCZ-–loaded dHL-60 cells
were coincubated with RFP-expressing A. fumigatus hyphae
and imaged by confocal microscopy. As has been described
with pulmonary epithelial cells, BDP-PCZ localized predomi-
nantly to cell membranes within dHL-60 cells. Upon contact
of dHL-60 cells with A. fumigatus, transfer of BDP-PCZ from
leukocytes to hyphae was observed (Figure 3). Fungal accumu-
lation of BDP-PCZ was time dependent, with increasing hyphal
fluorescence observed over time. These results demonstrate that
dHL-60 cells are able to deliver posaconazole to A. fumigatus
hyphae and suggest the possibility that loading these cells
with posaconazole may enhance their antifungal activity.

Posaconazole-Loaded dHL-60–Mediated Inhibition of A. fumigatus
Hyphal Growth
To test the effects of posaconazole loading on the ability of
dHL-60 to kill pregrown A. fumigatus hyphae, we used the
XTT-metabolic assay to quantify fungal metabolic activity fol-
lowing exposure of hyphae to posaconazole-loaded dHL-60
cells. Non–drug-exposed dHL-60 cells exhibited minimal activ-
ity against mature hyphae and required a multiplicity of infec-
tion (MOI) of >1:100 to mediate any reduction in fungal
metabolic activity (Supplementary Figure S2). Posaconazole ex-
posure greatly enhanced the antifungal activity of dHL-60 cells.
The antifungal activity of posaconazole-loaded dHL-60 cells
was dependent both on the posaconazole exposure concentra-
tion, as well as the MOI. Exposure of dHL-60 cells to 4 μg/
mL of posaconazole prior to coincubation with hyphae resulted
in a reduction of hyphal metabolic activity to 76%, 22%, and 5%
of untreated controls at MOIs of 1:4, 1:8, and 1:16, respectively.
Coculture of hyphae to dHL-60 cells exposed to 16 μg/mL of
posaconazole before infection resulted in reductions of hyphal
metabolic activity to 18%, 3%, and 0% of untreated controls
at MOIs of 1:4, 1:8, and 1:16, respectively (Figure 4). These
findings strongly suggest that cell-associated posaconazole can
augment the antifungal activity of dHL-60 cells in a dose-
dependent manner.

Treatment of Invasive Aspergillosis With Posaconazole-Loaded
dHL-60 Cells
In light of the activity of posaconazole-loaded dHL-60 cells
against A. fumigatus in vitro, we hypothesized that transfusion
of posaconazole-loaded dHL-60 cells may improve outcomes in
experimental IPA. To test this hypothesis, we performed a
proof-of-concept study to evaluate the antifungal activity of
non–drug-exposed and posaconazole-loaded dHL-60 cells in
a neutropenic mouse model of invasive aspergillosis. Neutrope-
nic mice were infected with A. fumigatus by intratracheal inoc-
ulation and, 12 and 36 hours after infection, were administered

Figure 2. Chemotaxis of posaconazole (PCZ)–loaded differentiated HL-60 (dHL-
60) cells. dHL-60 and HL-60 cells loaded at the indicated PCZ concentrations
were subjected to a Transwell migration assay. Bars indicate the mean migration
levels following incubation for 3 hours. Error bars indicate standard errors of the
mean from at least 3 independent experiments. Numerical values indicate PCZ ex-
posure concentration in micrograms/milliliter. Abbreviation: FBS, fetal bovine serum.

Figure 3. Transfer of BODIPY fluorophore-tagged posaconazole (BDP-PCZ) from differentiated HL-60 (dHL-60) cells to Aspergillus fumigatus hyphae. Hyphae of red fluores-
cent protein (RFP)–expressing A. fumigatus were cocultured with BDP-PCZ–exposed dHL-60 cells for the indicated times and imaged by confocal microscopy. Arrows indicate
the presence of BDP-PCZ within hyphae at the point of contact with dHL-60 cells.
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1.5 × 107 untreated dHL-60 cells or dHL-60 cells exposed to 16
μg/mL. At 72 hours after infection, mice were euthanized and
then the degree of pulmonary infection was quantified via
blinded histopathological examination. Mice treated with PBS
alone exhibited large fungal lesions characterized by extensive
hyphal growth and tissue damage (Figure 5A). In contrast,
only small lesions with minimal fungal growth were observed
in mice treated with posaconazole-loaded dHL-60 cells. Mice
treated with non–drug-exposed dHL-60 cells displayed a phe-
notype intermediate to those observed in mice treated with
PBS and those treated with posaconazole-loaded dHL-60
cells. Mice treated with posaconazole-loaded dHL-60 cells had
significantly fewer fungal lesions as compared to untreated mice
or mice receiving dHL-60 cells alone (Figure 5B). The median
number of fungal lesions detected per mouse was 16, 10, and 1.5
for mice treated with PBS, with dHL-60 cells, and with posaco-
nazole-loaded dHL-60 cells, respectively. While fungal lesions
were observed in all mice treated with PBS, 33% of the mice
treated with posaconazole-loaded leukocytes were found to
have no detectable fungal infection on histopathological exam-
ination (Figure 5C). Overall, these findings suggest that posaco-
nazole loading enhances the antifungal activity of dHL-60 cells
in vivo, as well as in vitro.

DISCUSSION

Invasive pulmonary aspergillosis remains a leading cause of
death among immunocompromised individuals. In the current
study, we investigated the effects of posaconazole exposure on
the ability of neutrophil-like dHL-60 cells to kill A. fumigatus.
Our findings demonstrate that posaconazole concentrates to
high levels within dHL-60 cells, with minimal effects on their

viability or ability to undergo chemotaxis. These cells are able
to transfer posaconazole to A. fumigatus hyphae upon contact
and exhibit potent antifungal activity against A. fumigatus in
vitro. Treatment with posaconazole-loaded dHL-60 cells in a
neutropenic mouse model of IPA resulted in a reduced pulmo-
nary fungal burden and even an absence of infection in several
mice. These results suggest that neutrophils may be an effective
posaconazole delivery system for the treatment of IPA.

Posaconazole loading had minimal effects on the function
and viability of dHL-60 cells. Similar effects of posaconazole ex-
posure on primary neutrophils have been reported [38]. In this
study, the viability and chemotaxis of primary human neutro-
phils in vitro was preserved following exposure to posaconazole
concentrations as high as 1.2 μg/mL [38]. In contrast to our
findings, however, posaconazole-loaded primary human neu-
trophils did not exhibit enhanced killing of A. fumigatus conid-
ia, as determined by quantitative culture [38]. It is likely that this
observation reflects the fact that posaconazole is fungistatic
rather than fungicidal. Thus, exposure of conidia to posacona-
zole-loaded neutrophils would be expected to prevent germina-
tion of conidia but would not reduce viable conidia counts as
determined by quantitative culture, as was reported in the
prior study [28]. In contrast, exposure of actively growing hy-
phae to posaconazole-loaded leukocytes results in a reduction
of their metabolic activity, which is detectable using the XTT
assay. This explanation is also consistent with our previous find-
ing that, while conidial viability was not affected by 48 hours of
coculture with posaconazole-loaded A549 pulmonary epithelial
cells, fungal germination and hyphal growth was inhibited, sug-
gesting that cell-associated posaconazole is primarily fungistatic
against conidia [28].

The total amount of posaconazole that was administered by
dHL-60 transfusions was extremely small. Extrapolation from
the cell-associated posaconazole concentrations measured with-
in dHL-60 cells revealed that the total dose of posaconazole ad-
ministered to mice was 0.56 mg/kg/day. This concentration of
posaconazole is almost 20-fold less than the dose of 10 mg/
kg/day that has been reported to be required to reduce the fun-
gal burden in a neutropenic mouse model of IPA [39, 40]. Thus,
the antifungal effect of posaconazole-loaded cells observed in
mice is highly likely due to delivery of posaconazole to fungal
lesions and the development of high local concentrations of
this antifungal at the site of infection, rather than a reflection
of systemic antifungal therapy.

The ability of posaconazole to concentrate in leukocytes and
be transferred to hyphae suggests the intriguing possibility that
endogenous loading of neutrophils and delivery of posacona-
zole to fungal lesions may also occur during treatment of non-
neutropenic patients with posaconazole. If endogenous
neutrophil loading does occur, it is possible that posaconazole
may be most active for the treatment of established IPA in non-
neutropenic hosts, in whom cell-associated posaconazole would

Figure 4. Posaconazole-loaded dHL-60 cell mediated inhibition of Aspergillus fu-
migatus. Differentiated HL-60 (dHL-60) cells exposed to the indicated posaconazole
concentrations were cocultured with pregrown A. fumigatus hyphae for 12 hours.
Bars represent mean fungal metabolic activity normalized to that of untreated
fungi, as measured by the XTT assay. Error bars indicate standard errors of the
mean (SEM) from at least 4 independent experiments. *P < .02 and **P < .005 com-
pared to the same multiplicity of infection (MOI) at different posaconazole concen-
trations, using a paired t test.
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augment the impaired antifungal activity of neutrophils. Com-
parison of the efficacy of posaconazole in neutropenic and non-
neutropenic patients in the ongoing randomized clinical trial of
posaconazole for primary therapy of invasive aspergillosis may
shed light on this question.

The results of our study provide proof of concept that posa-
conazole-loaded dHL-60 cells can improve outcome in fungal
infection. However, further studies are required to optimize
and translate this approach to clinical practice. Adapting this
approach to leukocytes that are safe in humans will be a critical

Figure 5. Treatment of experimental invasive aspergillosis with posaconazole-loaded differentiated HL-60 cells (PCZ dHL-60). A, Histopathological staining of lung sections
from neutropenic mice infected with Aspergillus fumigatus and administered the indicated treatments. Images are representative sections of periodic acid Schiff–stained lung
tissue. Arrows indicate the perimeters of fungal lesions. B,Morphometric analysis of fungal burden in mice administered the indicated treatments. The median and interquartile
range of the number of fungal lesions per mouse from 2 independent experiments, each consisting of at least 4 mice per treatment group, are shown. C, Proportions of infected
mice following the indicated treatments. *P = .0398 and **P = .0079 (B) and *P = .0293 (C), by the Mann–Whitney test. Abbreviations: NS, not significant; PBS, sham treatment
with phosphate buffered saline only.
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1.5 × 107 untreated dHL-60 cells or dHL-60 cells exposed to 16
μg/mL. At 72 hours after infection, mice were euthanized and
then the degree of pulmonary infection was quantified via
blinded histopathological examination. Mice treated with PBS
alone exhibited large fungal lesions characterized by extensive
hyphal growth and tissue damage (Figure 5A). In contrast,
only small lesions with minimal fungal growth were observed
in mice treated with posaconazole-loaded dHL-60 cells. Mice
treated with non–drug-exposed dHL-60 cells displayed a phe-
notype intermediate to those observed in mice treated with
PBS and those treated with posaconazole-loaded dHL-60
cells. Mice treated with posaconazole-loaded dHL-60 cells had
significantly fewer fungal lesions as compared to untreated mice
or mice receiving dHL-60 cells alone (Figure 5B). The median
number of fungal lesions detected per mouse was 16, 10, and 1.5
for mice treated with PBS, with dHL-60 cells, and with posaco-
nazole-loaded dHL-60 cells, respectively. While fungal lesions
were observed in all mice treated with PBS, 33% of the mice
treated with posaconazole-loaded leukocytes were found to
have no detectable fungal infection on histopathological exam-
ination (Figure 5C). Overall, these findings suggest that posaco-
nazole loading enhances the antifungal activity of dHL-60 cells
in vivo, as well as in vitro.

DISCUSSION

Invasive pulmonary aspergillosis remains a leading cause of
death among immunocompromised individuals. In the current
study, we investigated the effects of posaconazole exposure on
the ability of neutrophil-like dHL-60 cells to kill A. fumigatus.
Our findings demonstrate that posaconazole concentrates to
high levels within dHL-60 cells, with minimal effects on their

viability or ability to undergo chemotaxis. These cells are able
to transfer posaconazole to A. fumigatus hyphae upon contact
and exhibit potent antifungal activity against A. fumigatus in
vitro. Treatment with posaconazole-loaded dHL-60 cells in a
neutropenic mouse model of IPA resulted in a reduced pulmo-
nary fungal burden and even an absence of infection in several
mice. These results suggest that neutrophils may be an effective
posaconazole delivery system for the treatment of IPA.

Posaconazole loading had minimal effects on the function
and viability of dHL-60 cells. Similar effects of posaconazole ex-
posure on primary neutrophils have been reported [38]. In this
study, the viability and chemotaxis of primary human neutro-
phils in vitro was preserved following exposure to posaconazole
concentrations as high as 1.2 μg/mL [38]. In contrast to our
findings, however, posaconazole-loaded primary human neu-
trophils did not exhibit enhanced killing of A. fumigatus conid-
ia, as determined by quantitative culture [38]. It is likely that this
observation reflects the fact that posaconazole is fungistatic
rather than fungicidal. Thus, exposure of conidia to posacona-
zole-loaded neutrophils would be expected to prevent germina-
tion of conidia but would not reduce viable conidia counts as
determined by quantitative culture, as was reported in the
prior study [28]. In contrast, exposure of actively growing hy-
phae to posaconazole-loaded leukocytes results in a reduction
of their metabolic activity, which is detectable using the XTT
assay. This explanation is also consistent with our previous find-
ing that, while conidial viability was not affected by 48 hours of
coculture with posaconazole-loaded A549 pulmonary epithelial
cells, fungal germination and hyphal growth was inhibited, sug-
gesting that cell-associated posaconazole is primarily fungistatic
against conidia [28].

The total amount of posaconazole that was administered by
dHL-60 transfusions was extremely small. Extrapolation from
the cell-associated posaconazole concentrations measured with-
in dHL-60 cells revealed that the total dose of posaconazole ad-
ministered to mice was 0.56 mg/kg/day. This concentration of
posaconazole is almost 20-fold less than the dose of 10 mg/
kg/day that has been reported to be required to reduce the fun-
gal burden in a neutropenic mouse model of IPA [39, 40]. Thus,
the antifungal effect of posaconazole-loaded cells observed in
mice is highly likely due to delivery of posaconazole to fungal
lesions and the development of high local concentrations of
this antifungal at the site of infection, rather than a reflection
of systemic antifungal therapy.

The ability of posaconazole to concentrate in leukocytes and
be transferred to hyphae suggests the intriguing possibility that
endogenous loading of neutrophils and delivery of posacona-
zole to fungal lesions may also occur during treatment of non-
neutropenic patients with posaconazole. If endogenous
neutrophil loading does occur, it is possible that posaconazole
may be most active for the treatment of established IPA in non-
neutropenic hosts, in whom cell-associated posaconazole would

Figure 4. Posaconazole-loaded dHL-60 cell mediated inhibition of Aspergillus fu-
migatus. Differentiated HL-60 (dHL-60) cells exposed to the indicated posaconazole
concentrations were cocultured with pregrown A. fumigatus hyphae for 12 hours.
Bars represent mean fungal metabolic activity normalized to that of untreated
fungi, as measured by the XTT assay. Error bars indicate standard errors of the
mean (SEM) from at least 4 independent experiments. *P < .02 and **P < .005 com-
pared to the same multiplicity of infection (MOI) at different posaconazole concen-
trations, using a paired t test.
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augment the impaired antifungal activity of neutrophils. Com-
parison of the efficacy of posaconazole in neutropenic and non-
neutropenic patients in the ongoing randomized clinical trial of
posaconazole for primary therapy of invasive aspergillosis may
shed light on this question.

The results of our study provide proof of concept that posa-
conazole-loaded dHL-60 cells can improve outcome in fungal
infection. However, further studies are required to optimize
and translate this approach to clinical practice. Adapting this
approach to leukocytes that are safe in humans will be a critical

Figure 5. Treatment of experimental invasive aspergillosis with posaconazole-loaded differentiated HL-60 cells (PCZ dHL-60). A, Histopathological staining of lung sections
from neutropenic mice infected with Aspergillus fumigatus and administered the indicated treatments. Images are representative sections of periodic acid Schiff–stained lung
tissue. Arrows indicate the perimeters of fungal lesions. B,Morphometric analysis of fungal burden in mice administered the indicated treatments. The median and interquartile
range of the number of fungal lesions per mouse from 2 independent experiments, each consisting of at least 4 mice per treatment group, are shown. C, Proportions of infected
mice following the indicated treatments. *P = .0398 and **P = .0079 (B) and *P = .0293 (C), by the Mann–Whitney test. Abbreviations: NS, not significant; PBS, sham treatment
with phosphate buffered saline only.
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first step in this process, as the infusion of viable leukemia-
derived dHL-60 cells is potentially dangerous. While primary
neutrophils are an attractive approach, challenges in obtaining
sufficient numbers and their susceptibility to undergo early ap-
optosis will need to be addressed. The use of modified cell lines,
such as HL-60 cells that have been irradiated or engineered with
a suicide trap [21, 41],may be a useful strategy to avoid the lim-
itations of primary neutrophils. One interesting approach may
be the combination of posaconazole loading with genetically
engineered T cells, such as dectin-1 chimera-expressing D-
CAR cells, which have been reported to exhibit anti-Aspergillus
activity in vivo [42]. Further optimization of the use of posaco-
nazole loading of cells in a clinically relevant leukocyte will also
need to be performed, including dose optimization, validation
of the effects on overall survival, and the efficacy of these cells
at later stages of infection and against nonneutropenic, and ex-
trapulmonary invasive aspergillosis. Although posaconazole
loading is technically simple and simply requires coincubation
of cells with the drug for <30 minutes, standard-operating pro-
cedures for clinical laboratories to perform posaconazole load-
ing of leukocytes will need to be established and validated.

Drugs that display pharmacokinetics characterized by rela-
tively low serum concentrations as a consequence of partition-
ing to intracellular compartments have traditionally been
viewed as undesirable [43]. However, this study suggests that
concentration of antimicrobials within leukocytes may facilitate
drug delivery to infectious lesions or other compartments. This
observation extends the results of previous studies of posacona-
zole in prophylaxis that suggest that concentration of this anti-
fungal within pulmonary epithelial cells can enhance their
resistance to primary infection [28]. The accumulation of anti-
microbial agents within leukocytes has also been reported with
macrolide antibiotics. These agents exhibit extensively high ac-
cumulation in a variety of cell types, particularly polymorpho-
nuclear leukocytes. Intracellular to extracellular ratios of >500,
300, and 250 have been reported for the antibiotics cethromy-
cin, telithromycin, and azithromycin, respectively, in human
polymorphonuclear leukocytes following ex vivo exposure
[44]. Intracellular levels of these antibiotics were up to 50-fold
lower in macrophage and epithelial cell lines and also much
lower in undifferentiated HL-60 cells as compared to differen-
tiated HL-60 cells [44, 45], suggesting that neutrophils are par-
ticularly suited for antimicrobial loading. Moreover, these high
levels of cell-associated antimicrobials suggest enhanced activity
against intracellular pathogens. Collectively these studies sug-
gest a need to reevaluate the utility of cell-associated antimicro-
bials for the treatment of other infections.

The results of the current study demonstrate that the accu-
mulation of posaconazole within leukocytes enhances their an-
tifungal ability both in vitro and in vivo. Future studies will be
required to translate and optimize this approach to primary
neutrophils or other leukocytes safe for human use. These

proof-of-concept studies suggest that treatment with posacona-
zole-loaded leukocytes is a promising area for study as a novel
therapeutic strategy and may have implications for the utility of
posaconazole in the treatment of invasive aspergillosis in non-
neutropenic hosts.
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first step in this process, as the infusion of viable leukemia-
derived dHL-60 cells is potentially dangerous. While primary
neutrophils are an attractive approach, challenges in obtaining
sufficient numbers and their susceptibility to undergo early ap-
optosis will need to be addressed. The use of modified cell lines,
such as HL-60 cells that have been irradiated or engineered with
a suicide trap [21, 41],may be a useful strategy to avoid the lim-
itations of primary neutrophils. One interesting approach may
be the combination of posaconazole loading with genetically
engineered T cells, such as dectin-1 chimera-expressing D-
CAR cells, which have been reported to exhibit anti-Aspergillus
activity in vivo [42]. Further optimization of the use of posaco-
nazole loading of cells in a clinically relevant leukocyte will also
need to be performed, including dose optimization, validation
of the effects on overall survival, and the efficacy of these cells
at later stages of infection and against nonneutropenic, and ex-
trapulmonary invasive aspergillosis. Although posaconazole
loading is technically simple and simply requires coincubation
of cells with the drug for <30 minutes, standard-operating pro-
cedures for clinical laboratories to perform posaconazole load-
ing of leukocytes will need to be established and validated.

Drugs that display pharmacokinetics characterized by rela-
tively low serum concentrations as a consequence of partition-
ing to intracellular compartments have traditionally been
viewed as undesirable [43]. However, this study suggests that
concentration of antimicrobials within leukocytes may facilitate
drug delivery to infectious lesions or other compartments. This
observation extends the results of previous studies of posacona-
zole in prophylaxis that suggest that concentration of this anti-
fungal within pulmonary epithelial cells can enhance their
resistance to primary infection [28]. The accumulation of anti-
microbial agents within leukocytes has also been reported with
macrolide antibiotics. These agents exhibit extensively high ac-
cumulation in a variety of cell types, particularly polymorpho-
nuclear leukocytes. Intracellular to extracellular ratios of >500,
300, and 250 have been reported for the antibiotics cethromy-
cin, telithromycin, and azithromycin, respectively, in human
polymorphonuclear leukocytes following ex vivo exposure
[44]. Intracellular levels of these antibiotics were up to 50-fold
lower in macrophage and epithelial cell lines and also much
lower in undifferentiated HL-60 cells as compared to differen-
tiated HL-60 cells [44, 45], suggesting that neutrophils are par-
ticularly suited for antimicrobial loading. Moreover, these high
levels of cell-associated antimicrobials suggest enhanced activity
against intracellular pathogens. Collectively these studies sug-
gest a need to reevaluate the utility of cell-associated antimicro-
bials for the treatment of other infections.

The results of the current study demonstrate that the accu-
mulation of posaconazole within leukocytes enhances their an-
tifungal ability both in vitro and in vivo. Future studies will be
required to translate and optimize this approach to primary
neutrophils or other leukocytes safe for human use. These

proof-of-concept studies suggest that treatment with posacona-
zole-loaded leukocytes is a promising area for study as a novel
therapeutic strategy and may have implications for the utility of
posaconazole in the treatment of invasive aspergillosis in non-
neutropenic hosts.
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