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The prevalence of multidrug-resistant organisms (MDROs), a
major public health threat, continues to increase on a global
level and is associated with significant morbidity and mortality.
Historically, MDROs have affected patients in hospital settings,
where exposure to antibiotics, frequent and/or long-term hospi-
talization, use of in-dwelling devices, and host factors provide
risks for acquisition [1, 2]. However, the distinction between
multidrug-resistant healthcare-acquired and community-onset
bacterial infections has become blurred over the last 2 decades,
with an explosion in antibiotic resistance genes located on mo-
bile genetic elements (MGEs) capable of efficient spread be-
tween bacteria and hosts in and out of hospitals [3].

These trends are highlighted in Enterobacteriaceae, a family
of gram-negative bacteria (GNB) responsible for a variety of com-
munity and healthcare-acquired infections. In GNB, the major
driving force of resistance is the presence of β-lactamases (encoded
by bla), a rapidly expanding list of β-lactam–hydrolyzing enzymes
for which the number of unique protein sequences as currently
cataloged has surpassed 2100 [4]. Many of these organisms
carry additional plasmid-borne genes active against other
classes of antibiotics, rendering bacteria resistant to multiple
drugs [5, 6].

There is a dearth of drugs capable of treating MDR GNB in-
fections [7]. As carbapenem-resistant Enterobacteriaceae (CRE)
have become increasingly prevalent worldwide, carbapenems,
long a last line of defense, more and more are challenged by
MGEs harboring carbapenemases and other drug resistance
genes [8]. As the molecular mechanisms of resistance continue
to evolve, the epidemiology of CRE is changing, and growing
numbers of people worldwide are being affected by these dan-
gerous organisms.

MOLECULAR MECHANISMS OF CARBAPENEM
RESISTANCE IN ENTEROBACTERIACEAE

Phenotypic resistance to carbapenems is typically caused by
2 main mechanisms: (1) β-lactamase activity combined with
structural mutations and (2) production of carbapenemases,
enzymes that hydrolyze carbapenem antibiotics (Table 1)
[6, 9]. The former mechanism includes extended-spectrum β-
lactamases (ESBLs), which are generally encoded by plasmids,
and AmpC cephalosporinases (AmpC), for which expression in
Enterobacteriaceae is most often associated with hyperproduc-
tion of enzymes from inducible or derepressed chromosomal
genes [6]. ESBLs and AmpC are capable of conferring carbape-
nem resistance when combined with the mutation of porins, a
family of proteins of the outer membrane of GNB that, when al-
tered or lost, can retard diffusion of antibiotics across the bacte-
rial membrane to a rate slow enough to facilitate the action of
ESBL and AmpC enzymes [9, 17, 18]. Other mechanisms associ-
ated with carbapenem-resistance in GNB include drug efflux
pumps and alterations in penicillin-binding proteins [8].
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Carbapenemases are classified by their molecular structures
and belong to 3 classes of β-lactamases: class A, B, and D of
the Ambler classification system [6, 10]. Class A and D carba-
penemases require serine at their active site, while class B,
the metallo-β-lactamases (MBLs) require zinc for β-lactam
hydrolysis [6]. Notable class A carbapenemase genes include
Klebsiella pneumoniae carbapenemases (KPCs), Guiana extended
spectrum (GES), imipenem resistant (IMI), non–metallo-
carbapenemase-A (NMC-A), Serratia marcescens enzyme
(SME), and Serratia fonticola carbapenemase (SFC), of which
the KPCs are the most common transmissible class A genes cir-
culating in Enterobacteriaceae worldwide [8]. KPCs are capable
of hydrolyzing all β-lactams, and strains harboring blaKPC often
have acquired resistance to fluoroquinolones, aminoglycosides,
and trimethoprim-sulfamethoxazole, creating MDROs [19].

The international spread of KPC-producing Enterobac-
teriaceae is primarily due to clonal expansion of strains of
K. pneumoniae belonging to clonal complex 258 (CC258)
and, more specifically, to multilocus sequence type (ST) 258
strains harboring a blaKPC-2 or blaKPC-3 gene located on a
Tn3-based transposon, Tn4401 [20, 21]. However, the propa-
gation of blaKPC is much more complex. Circulating ST258
K. pneumoniae strains comprise 2 distinct genetic clades

(I and II), and several additional sequence types have been
found to carry blaKPC, which is associated with a variety of plas-
mids [8, 11, 22]. Additionally, KPC-producing strains have low
to high level carbapenem resistance with corresponding mini-
mum inhibitory concentrations ranging from susceptible to
>16 µg/mL, related to increased blaKPC gene copy number, de-
letions directly upstream of the blaKPC gene, and/or outer mem-
brane porin losses (OmpK35 and/or OmpK36) [8, 23].

The class D OXA β-lactamases, named somewhat ironically
for their oxacillin-hydrolyzing capabilities, are a diverse and
heterogeneous group of enzymes found in Acinetobacter species
and, increasingly, especially the OXA-48 variants, in Enterobac-
teriaceae [24, 25]. The backbone most commonly associated
with the spread of OXA-48–producing Enterobacteriaceae is
an IncL/M-type plasmid with integration of the blaOXA-48

gene through the acquisition of a Tn1999 composite transposon
[12, 24–26]. OXA-48 enzymes hydrolyze penicillins at a high
level and carbapenems at a low level, while sparing extended-
spectrum cephalosporins; however, strains may express multiple
ESBLs, rendering them resistant to all β-lactams [12].

The class B MBLs are a complex group of enzymes that hy-
drolyze all β-lactams, save monobactams, and are not inhibited
by commercially available β-lactamase inhibitors [6, 8]. They

Table 1. Characteristics of Common Acquired Carbapenem-Hydrolyzing β-Lactamases in Enterobacteriaceae

Ambler
Structural
Class

Functional
Classa

Active
Siteb Inhibitor(s)

Notable
Genec

Mobile Genetic
Elementsd Multilocus STse Retained β-Lactam Susceptibilityf

A 2f Serine Commercially
available β-
lactamase
inhibitors

KPC IncFIIK2, IncF1A,
IncI2, multiple
types; Tn4401g

CC258 (ST258)
dominant,h

others

Carbapenems (low-to-high–level
hydrolysis)

GES Class I integronsi . . . Carbapenems (low-level hydrolysis)

B 3 Zinc Metal-chelating
agents (eg, EDTA)

VIM IncN, IncI1, multiple
types; class I
integrons

ST147, ST11,
others

Monobactams spared

IMP IncL/M, IncA/C,
multiple types;
class I integrons

. . .

NDM IncA/C, multiple;
ISAba125

ST101, ST11,
several others

D 2d Serine NaCl (in vitro) OXA-48 IncL/M, Tn1999,
IS1999

ST147, ST11,
ST101, ST405,
ST395, others

PCN (high-level hydrolysis),
carbapenems (low-level hydrolysis),
extended-spectrum cephalosporins
sparedOXA-181 ColE plasmids,

Tn2013, ISEcp1
. . .

Data are adapted from [8–16].

Abbreviations: CG, clonal group; EDTA, ethylenediaminetetraacetic acid; GES, Guiana extended spectrum; IMP, active on imipenem; Inc, plasmid incompatibility type; IS, insertion sequence;
KPC, Klebsiella pneumoniae carbapenemase; NDM, New Delhi metallo-β-lactamase; OXA, oxacillinase-type carbapenem-hydrolyzing β-lactamase; PCN, penicillin; ST, sequence type; VIM,
Verona integron-encoded metallo-β-lactamase.
a Bush-Jacoby-Medeiros functional classification scheme.
b Hydrolytic mechanism. Class B carbapenem-hydrolyzing β-lactamases represent metallo-β-lactamases, and class D represent oxacillinases.
c The most common acquired genes are included and may vary by region. Only certain variants harbor carbapenemase genes (ie, GES-5). Several other genes exist in each class.
d The most common mobile genetic elements are included and may vary by region.
e Only Klebsiella pneumoniae– and Escherichia coli–associated STs are listed.
f The phenotypic profile may vary depending on the genetic variant type and/or if multiple β-lactamase genes are present in an isolate.
g Tn4401 is a Tn3-based transposon and is associated with multiple plasmid types. Tn1999 is associated with IncL/M plasmids.
h CC258 contains 43 STs, including the ST258 pandemic strains (2 major clades exist). Several non-CC258 strains (eg, ST147, ST442, and ST14) harbor blaKPC.
i These are often embedded in conjugative plasmids and/or transposons, facilitating horizontal transfer.
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The prevalence of multidrug-resistant organisms (MDROs), a
major public health threat, continues to increase on a global
level and is associated with significant morbidity and mortality.
Historically, MDROs have affected patients in hospital settings,
where exposure to antibiotics, frequent and/or long-term hospi-
talization, use of in-dwelling devices, and host factors provide
risks for acquisition [1, 2]. However, the distinction between
multidrug-resistant healthcare-acquired and community-onset
bacterial infections has become blurred over the last 2 decades,
with an explosion in antibiotic resistance genes located on mo-
bile genetic elements (MGEs) capable of efficient spread be-
tween bacteria and hosts in and out of hospitals [3].

These trends are highlighted in Enterobacteriaceae, a family
of gram-negative bacteria (GNB) responsible for a variety of com-
munity and healthcare-acquired infections. In GNB, the major
driving force of resistance is the presence of β-lactamases (encoded
by bla), a rapidly expanding list of β-lactam–hydrolyzing enzymes
for which the number of unique protein sequences as currently
cataloged has surpassed 2100 [4]. Many of these organisms
carry additional plasmid-borne genes active against other
classes of antibiotics, rendering bacteria resistant to multiple
drugs [5, 6].

There is a dearth of drugs capable of treating MDR GNB in-
fections [7]. As carbapenem-resistant Enterobacteriaceae (CRE)
have become increasingly prevalent worldwide, carbapenems,
long a last line of defense, more and more are challenged by
MGEs harboring carbapenemases and other drug resistance
genes [8]. As the molecular mechanisms of resistance continue
to evolve, the epidemiology of CRE is changing, and growing
numbers of people worldwide are being affected by these dan-
gerous organisms.

MOLECULAR MECHANISMS OF CARBAPENEM
RESISTANCE IN ENTEROBACTERIACEAE

Phenotypic resistance to carbapenems is typically caused by
2 main mechanisms: (1) β-lactamase activity combined with
structural mutations and (2) production of carbapenemases,
enzymes that hydrolyze carbapenem antibiotics (Table 1)
[6, 9]. The former mechanism includes extended-spectrum β-
lactamases (ESBLs), which are generally encoded by plasmids,
and AmpC cephalosporinases (AmpC), for which expression in
Enterobacteriaceae is most often associated with hyperproduc-
tion of enzymes from inducible or derepressed chromosomal
genes [6]. ESBLs and AmpC are capable of conferring carbape-
nem resistance when combined with the mutation of porins, a
family of proteins of the outer membrane of GNB that, when al-
tered or lost, can retard diffusion of antibiotics across the bacte-
rial membrane to a rate slow enough to facilitate the action of
ESBL and AmpC enzymes [9, 17, 18]. Other mechanisms associ-
ated with carbapenem-resistance in GNB include drug efflux
pumps and alterations in penicillin-binding proteins [8].
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Carbapenemases are classified by their molecular structures
and belong to 3 classes of β-lactamases: class A, B, and D of
the Ambler classification system [6, 10]. Class A and D carba-
penemases require serine at their active site, while class B,
the metallo-β-lactamases (MBLs) require zinc for β-lactam
hydrolysis [6]. Notable class A carbapenemase genes include
Klebsiella pneumoniae carbapenemases (KPCs), Guiana extended
spectrum (GES), imipenem resistant (IMI), non–metallo-
carbapenemase-A (NMC-A), Serratia marcescens enzyme
(SME), and Serratia fonticola carbapenemase (SFC), of which
the KPCs are the most common transmissible class A genes cir-
culating in Enterobacteriaceae worldwide [8]. KPCs are capable
of hydrolyzing all β-lactams, and strains harboring blaKPC often
have acquired resistance to fluoroquinolones, aminoglycosides,
and trimethoprim-sulfamethoxazole, creating MDROs [19].

The international spread of KPC-producing Enterobac-
teriaceae is primarily due to clonal expansion of strains of
K. pneumoniae belonging to clonal complex 258 (CC258)
and, more specifically, to multilocus sequence type (ST) 258
strains harboring a blaKPC-2 or blaKPC-3 gene located on a
Tn3-based transposon, Tn4401 [20, 21]. However, the propa-
gation of blaKPC is much more complex. Circulating ST258
K. pneumoniae strains comprise 2 distinct genetic clades

(I and II), and several additional sequence types have been
found to carry blaKPC, which is associated with a variety of plas-
mids [8, 11, 22]. Additionally, KPC-producing strains have low
to high level carbapenem resistance with corresponding mini-
mum inhibitory concentrations ranging from susceptible to
>16 µg/mL, related to increased blaKPC gene copy number, de-
letions directly upstream of the blaKPC gene, and/or outer mem-
brane porin losses (OmpK35 and/or OmpK36) [8, 23].

The class D OXA β-lactamases, named somewhat ironically
for their oxacillin-hydrolyzing capabilities, are a diverse and
heterogeneous group of enzymes found in Acinetobacter species
and, increasingly, especially the OXA-48 variants, in Enterobac-
teriaceae [24, 25]. The backbone most commonly associated
with the spread of OXA-48–producing Enterobacteriaceae is
an IncL/M-type plasmid with integration of the blaOXA-48

gene through the acquisition of a Tn1999 composite transposon
[12, 24–26]. OXA-48 enzymes hydrolyze penicillins at a high
level and carbapenems at a low level, while sparing extended-
spectrum cephalosporins; however, strains may express multiple
ESBLs, rendering them resistant to all β-lactams [12].

The class B MBLs are a complex group of enzymes that hy-
drolyze all β-lactams, save monobactams, and are not inhibited
by commercially available β-lactamase inhibitors [6, 8]. They

Table 1. Characteristics of Common Acquired Carbapenem-Hydrolyzing β-Lactamases in Enterobacteriaceae

Ambler
Structural
Class

Functional
Classa

Active
Siteb Inhibitor(s)

Notable
Genec

Mobile Genetic
Elementsd Multilocus STse Retained β-Lactam Susceptibilityf

A 2f Serine Commercially
available β-
lactamase
inhibitors

KPC IncFIIK2, IncF1A,
IncI2, multiple
types; Tn4401g

CC258 (ST258)
dominant,h

others

Carbapenems (low-to-high–level
hydrolysis)

GES Class I integronsi . . . Carbapenems (low-level hydrolysis)

B 3 Zinc Metal-chelating
agents (eg, EDTA)

VIM IncN, IncI1, multiple
types; class I
integrons

ST147, ST11,
others

Monobactams spared

IMP IncL/M, IncA/C,
multiple types;
class I integrons

. . .

NDM IncA/C, multiple;
ISAba125

ST101, ST11,
several others

D 2d Serine NaCl (in vitro) OXA-48 IncL/M, Tn1999,
IS1999

ST147, ST11,
ST101, ST405,
ST395, others

PCN (high-level hydrolysis),
carbapenems (low-level hydrolysis),
extended-spectrum cephalosporins
sparedOXA-181 ColE plasmids,

Tn2013, ISEcp1
. . .

Data are adapted from [8–16].

Abbreviations: CG, clonal group; EDTA, ethylenediaminetetraacetic acid; GES, Guiana extended spectrum; IMP, active on imipenem; Inc, plasmid incompatibility type; IS, insertion sequence;
KPC, Klebsiella pneumoniae carbapenemase; NDM, New Delhi metallo-β-lactamase; OXA, oxacillinase-type carbapenem-hydrolyzing β-lactamase; PCN, penicillin; ST, sequence type; VIM,
Verona integron-encoded metallo-β-lactamase.
a Bush-Jacoby-Medeiros functional classification scheme.
b Hydrolytic mechanism. Class B carbapenem-hydrolyzing β-lactamases represent metallo-β-lactamases, and class D represent oxacillinases.
c The most common acquired genes are included and may vary by region. Only certain variants harbor carbapenemase genes (ie, GES-5). Several other genes exist in each class.
d The most common mobile genetic elements are included and may vary by region.
e Only Klebsiella pneumoniae– and Escherichia coli–associated STs are listed.
f The phenotypic profile may vary depending on the genetic variant type and/or if multiple β-lactamase genes are present in an isolate.
g Tn4401 is a Tn3-based transposon and is associated with multiple plasmid types. Tn1999 is associated with IncL/M plasmids.
h CC258 contains 43 STs, including the ST258 pandemic strains (2 major clades exist). Several non-CC258 strains (eg, ST147, ST442, and ST14) harbor blaKPC.
i These are often embedded in conjugative plasmids and/or transposons, facilitating horizontal transfer.
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differ from the serine carbapenemases in the requirement of
zinc for β-lactam hydrolysis; thus, their activity is inhibited by
metal-chelating agents such as ethylenediaminetetraacetic acid
(EDTA) [6, 8]. Notable transmissible MBL genes in Enterobac-
teriaceae include IMP (active on imipenem), VIM (Verona in-
tegron-encoded MBL), and NDM (New Delhi MBL) [6, 8, 27].
There are 3 MBL subclasses (B1–B3), which differ by amino
acid sequence homology; almost all clinically important, ac-
quired MBLs belong to subclass B1 [8, 28]. VIM-type and
IMP-type MBLs are most commonly embedded in class I inte-
grons and are associated with transposons or plasmids, which
facilitate spread.

Although the rapid dissemination of NDM-producing Enter-
obacteriaceae resembles that of KPC-producing Enterobacteria-
ceae, the spread of NDM-type MBLs does not appear to be
associated with dominate clonal strains and is mediated by sev-
eral different plasmid incompatibility (Inc) types. The current
theory is that the most common circulating NDM MBL gene
in Enterobacteriaceae (blaNDM-1) evolved from Acinetobacter
baumannii. This view is based on the complete or variant inser-
tion sequence ISAba125 upstream of the blaNDM-1 gene in both
blaNDM-harboring A. baumannii and Enterobacteriaceae and
the similar coexpression in both genera of blaNDM with bleMBL,
a gene responsible for resistance to the cancer drug bleomycin
[29, 30]. NDM-type MBL genes have been found in several ep-
idemic clones, including K. pneumoniae ST11 and ST147 and
Escherichia coli ST131 and ST101, which are known to harbor
other β-lactamase genes and antibiotic resistance determinants
[8, 27, 30]. It is thought that the rapid and dramatic spread of
NDM MBLs is facilitated by the genetic elements’ bacterial
promiscuity.

The differentiation between carbapenemase-producing (CP)
CRE and non-CP CRE is important epidemiologically and clin-
ically; however, providers need mainly susceptibility patterns
and treatment recommendations for patient care. The Centers
for Disease Control and Prevention (CDC) has provided updat-
ed definitions that can help direct definitions and testing con-
siderations in the diagnosis and management of CRE [31].

THE GLOBAL DISTRIBUTION AND PREVALENCE OF
THE MOST COMMON TRANSMISSIBLE
CARBAPENEMASE GENES IN
ENTEROBACTERIACEAE, BY REGION

Figure 1 represents a global map that highlights the dramatic
worldwide dissemination of carbapenemase genes in Enterobac-
teriaceae, by country and region. While the first identification of
chromosomally based carbapenemase genes was in gram-positive
bacilli, by the mid-to-late 1980s, “metalloenzymes,” now referred
to as MBLs, were recognized in gram-negative non–lactose-
fermenting bacteria [13]. This was followed shortly by de-
scription of another set of carbapenem-hydrolyzing enzymes
(using serine at their active site) in Enterobacteriaceae [13].

This landscape radically changed in the early 1990s, when plas-
mid carriage of these originally chromosomally based, species-
specific enzymes was recognized in multiple species found in
clinical isolates [8, 13]. To date, the most common species of
Enterobacteriaceae harboring transmissible carbapenemase
genes are K. pneumoniae.

The MBLs
The first major description of a transmissible carbapenemase
gene in a clinical Enterobacteriaceae isolate occurred >2 decades
ago when a gene, subsequently named IMP-1 MBL, was discov-
ered on an integron in Serratia marcescens in Okazaki, Japan,
associated with a plasmid-mediated outbreak in 7 Japanese hos-
pitals. Widespread dissemination of blaIMP-1-harboring Entero-
bacteriaceae throughout Japan followed [41]. At present, there
have been at least 52 variants of IMP genes identified in multi-
ple species with worldwide distribution; however, to date, IMP-
type MBL-containing Enterobacteriaceae are endemic only in
Japan and Taiwan [32]. For example, a Taiwanese study from
a 900-bed hospital in Southern Taiwan in 2002 assessed 9082
clinical Enterobacteriaceae isolates (other than Klebsiella spe-
cies) for MBL genes and found that 29 of 1261 Enterobacter clo-
acae isolates (2.9%) harbored blaIMP-8, a variant of blaIMP-2 [42].
Descriptions of IMP MBLs in other countries are mostly of
sporadic outbreaks or single reports [8, 9, 32].

The VIM-type MBLs were described in 1996 and 1997 in
P. aeruginosa from Verona, Italy (VIM-1), and Marseilles,
France (VIM-2) [43, 44]. By the late 1990s to early 2000s,
there were several reports of VIM-type MBLs in Enterobacter-
iaceae [13]. Currently, VIM-2 is the most common VIM-type
MBL worldwide, with at least 46 blaVIM variants now cataloged
[45]. The epicenter of VIM-type Enterobacteriaceae is Greece,
where K. pneumoniae and E. coli containing blaVIM-1 predom-
inate [46]. A study in the intensive care units (ICUs) of 3 teach-
ing hospitals in Athens, Greece, in 2002 recovered 17 K.
pneumoniae isolates harboring blaVIM-1 over a 3-month period;
at least 12 isolates were clinically relevant [47]. Since that
time, several other VIM types have been recovered from
gram-negative bacilli in Greece; globally, the majority of regions
have reported outbreaks with VIM-producing Enterobacteria-
ceae [32, 33, 46, 47].

Attention to the epidemic of MBL-producing Enterobacteria-
ceae increased dramatically in 2008 with the discovery of an
ST14 K. pneumoniae with a new MBL gene, blaNDM-1, from a
Swedish patient who received healthcare in New Delhi, India
[48]. Since then, there has been global dissemination of NDM
MBLs with rapid gene transfer between species. In regions of
endemicity, such as the Indian subcontinent, NDM-type MBLs
predominate over other carbapenemases. In most other regions
(except the Middle East and Balkan countries), NDM-type
MBLs are described mostly as sporadic occurrences [30].
There are currently 16 cataloged variants of NDM-type MBLs,
blaNDM-1 to blaNDM-16 [49].
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Increasing colonization rates with blaNDM-producing bacte-
ria have been noted in patients in several Indian and Pakistani
hospitals, where reported prevalence rates of carriage of
blaNDM-producing bacteria in ICUs range from 2% to 13.5%
[50–53]. Additionally, data from the SENTRY Antimicrobial
Surveillance Program (SENTRY) suggest that blaNDM may
have been circulating in bacteria in India as early as 2006
[54]. In the Study for Monitoring Antimicrobial Resistance
Trends 2009 program, of the 235 isolates tested from India,
66 (28%) carried ≥1 carbapenemase gene; the most common
gene carried—in 50% of these isolates—was blaNDM-1 [55].
An additional concern particular to the NDM-type MBLs is
spread via environmental sources in community settings in
lower-income countries. A point-prevalence survey of public

tap water and seepage water in India in 2011 found that a strik-
ing 4% of drinking water samples and 30% of seepage samples
contained blaNDM-1-positive bacteria [56].

The Class D OXA Carbapenem-Hydrolyzing β-Lactamases
The worldwide spread of OXA-type carbapenemases is mainly
attributed to the success of OXA-48–producing clones and, to
a lesser extent, OXA-181 in certain regions (eg, the Indian
subcontinent) [24, 26, 32]. The blaOXA-48 element was dis-
covered in Turkey in 2001 in K. pneumoniae, and since
then OXA-producing bacteria have become endemic in that
country [57]. Several countries have reported outbreaks with
OXA-producing Enterobacteriaceae, but few countries report
endemicity. Because of the variable susceptibility profiles of

Figure 1. Global distribution of carbapenemases in Enterobacteriaceae, by country and region. Data are adapted from [8, 12, 13, 15, 25, 32–40]. aKPCs are endemic in some
US states; bOXA mainly refers to OXA-48, except in India, where it refers to OXA-181. Abbreviations: IMP, active on imipenem metallo-β-lactamase; KPC, Klebsiella pneumoniae
carbapenemase; NDM, New Delhi metallo-β-lactamase; OXA, oxacillinase-type carbapenem-hydrolyzing β-lactamase; VIM, Verona integron-encoded metallo-β-lactamase.
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differ from the serine carbapenemases in the requirement of
zinc for β-lactam hydrolysis; thus, their activity is inhibited by
metal-chelating agents such as ethylenediaminetetraacetic acid
(EDTA) [6, 8]. Notable transmissible MBL genes in Enterobac-
teriaceae include IMP (active on imipenem), VIM (Verona in-
tegron-encoded MBL), and NDM (New Delhi MBL) [6, 8, 27].
There are 3 MBL subclasses (B1–B3), which differ by amino
acid sequence homology; almost all clinically important, ac-
quired MBLs belong to subclass B1 [8, 28]. VIM-type and
IMP-type MBLs are most commonly embedded in class I inte-
grons and are associated with transposons or plasmids, which
facilitate spread.

Although the rapid dissemination of NDM-producing Enter-
obacteriaceae resembles that of KPC-producing Enterobacteria-
ceae, the spread of NDM-type MBLs does not appear to be
associated with dominate clonal strains and is mediated by sev-
eral different plasmid incompatibility (Inc) types. The current
theory is that the most common circulating NDM MBL gene
in Enterobacteriaceae (blaNDM-1) evolved from Acinetobacter
baumannii. This view is based on the complete or variant inser-
tion sequence ISAba125 upstream of the blaNDM-1 gene in both
blaNDM-harboring A. baumannii and Enterobacteriaceae and
the similar coexpression in both genera of blaNDM with bleMBL,
a gene responsible for resistance to the cancer drug bleomycin
[29, 30]. NDM-type MBL genes have been found in several ep-
idemic clones, including K. pneumoniae ST11 and ST147 and
Escherichia coli ST131 and ST101, which are known to harbor
other β-lactamase genes and antibiotic resistance determinants
[8, 27, 30]. It is thought that the rapid and dramatic spread of
NDM MBLs is facilitated by the genetic elements’ bacterial
promiscuity.

The differentiation between carbapenemase-producing (CP)
CRE and non-CP CRE is important epidemiologically and clin-
ically; however, providers need mainly susceptibility patterns
and treatment recommendations for patient care. The Centers
for Disease Control and Prevention (CDC) has provided updat-
ed definitions that can help direct definitions and testing con-
siderations in the diagnosis and management of CRE [31].

THE GLOBAL DISTRIBUTION AND PREVALENCE OF
THE MOST COMMON TRANSMISSIBLE
CARBAPENEMASE GENES IN
ENTEROBACTERIACEAE, BY REGION

Figure 1 represents a global map that highlights the dramatic
worldwide dissemination of carbapenemase genes in Enterobac-
teriaceae, by country and region. While the first identification of
chromosomally based carbapenemase genes was in gram-positive
bacilli, by the mid-to-late 1980s, “metalloenzymes,” now referred
to as MBLs, were recognized in gram-negative non–lactose-
fermenting bacteria [13]. This was followed shortly by de-
scription of another set of carbapenem-hydrolyzing enzymes
(using serine at their active site) in Enterobacteriaceae [13].

This landscape radically changed in the early 1990s, when plas-
mid carriage of these originally chromosomally based, species-
specific enzymes was recognized in multiple species found in
clinical isolates [8, 13]. To date, the most common species of
Enterobacteriaceae harboring transmissible carbapenemase
genes are K. pneumoniae.

The MBLs
The first major description of a transmissible carbapenemase
gene in a clinical Enterobacteriaceae isolate occurred >2 decades
ago when a gene, subsequently named IMP-1 MBL, was discov-
ered on an integron in Serratia marcescens in Okazaki, Japan,
associated with a plasmid-mediated outbreak in 7 Japanese hos-
pitals. Widespread dissemination of blaIMP-1-harboring Entero-
bacteriaceae throughout Japan followed [41]. At present, there
have been at least 52 variants of IMP genes identified in multi-
ple species with worldwide distribution; however, to date, IMP-
type MBL-containing Enterobacteriaceae are endemic only in
Japan and Taiwan [32]. For example, a Taiwanese study from
a 900-bed hospital in Southern Taiwan in 2002 assessed 9082
clinical Enterobacteriaceae isolates (other than Klebsiella spe-
cies) for MBL genes and found that 29 of 1261 Enterobacter clo-
acae isolates (2.9%) harbored blaIMP-8, a variant of blaIMP-2 [42].
Descriptions of IMP MBLs in other countries are mostly of
sporadic outbreaks or single reports [8, 9, 32].

The VIM-type MBLs were described in 1996 and 1997 in
P. aeruginosa from Verona, Italy (VIM-1), and Marseilles,
France (VIM-2) [43, 44]. By the late 1990s to early 2000s,
there were several reports of VIM-type MBLs in Enterobacter-
iaceae [13]. Currently, VIM-2 is the most common VIM-type
MBL worldwide, with at least 46 blaVIM variants now cataloged
[45]. The epicenter of VIM-type Enterobacteriaceae is Greece,
where K. pneumoniae and E. coli containing blaVIM-1 predom-
inate [46]. A study in the intensive care units (ICUs) of 3 teach-
ing hospitals in Athens, Greece, in 2002 recovered 17 K.
pneumoniae isolates harboring blaVIM-1 over a 3-month period;
at least 12 isolates were clinically relevant [47]. Since that
time, several other VIM types have been recovered from
gram-negative bacilli in Greece; globally, the majority of regions
have reported outbreaks with VIM-producing Enterobacteria-
ceae [32, 33, 46, 47].

Attention to the epidemic of MBL-producing Enterobacteria-
ceae increased dramatically in 2008 with the discovery of an
ST14 K. pneumoniae with a new MBL gene, blaNDM-1, from a
Swedish patient who received healthcare in New Delhi, India
[48]. Since then, there has been global dissemination of NDM
MBLs with rapid gene transfer between species. In regions of
endemicity, such as the Indian subcontinent, NDM-type MBLs
predominate over other carbapenemases. In most other regions
(except the Middle East and Balkan countries), NDM-type
MBLs are described mostly as sporadic occurrences [30].
There are currently 16 cataloged variants of NDM-type MBLs,
blaNDM-1 to blaNDM-16 [49].
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Increasing colonization rates with blaNDM-producing bacte-
ria have been noted in patients in several Indian and Pakistani
hospitals, where reported prevalence rates of carriage of
blaNDM-producing bacteria in ICUs range from 2% to 13.5%
[50–53]. Additionally, data from the SENTRY Antimicrobial
Surveillance Program (SENTRY) suggest that blaNDM may
have been circulating in bacteria in India as early as 2006
[54]. In the Study for Monitoring Antimicrobial Resistance
Trends 2009 program, of the 235 isolates tested from India,
66 (28%) carried ≥1 carbapenemase gene; the most common
gene carried—in 50% of these isolates—was blaNDM-1 [55].
An additional concern particular to the NDM-type MBLs is
spread via environmental sources in community settings in
lower-income countries. A point-prevalence survey of public

tap water and seepage water in India in 2011 found that a strik-
ing 4% of drinking water samples and 30% of seepage samples
contained blaNDM-1-positive bacteria [56].

The Class D OXA Carbapenem-Hydrolyzing β-Lactamases
The worldwide spread of OXA-type carbapenemases is mainly
attributed to the success of OXA-48–producing clones and, to
a lesser extent, OXA-181 in certain regions (eg, the Indian
subcontinent) [24, 26, 32]. The blaOXA-48 element was dis-
covered in Turkey in 2001 in K. pneumoniae, and since
then OXA-producing bacteria have become endemic in that
country [57]. Several countries have reported outbreaks with
OXA-producing Enterobacteriaceae, but few countries report
endemicity. Because of the variable susceptibility profiles of

Figure 1. Global distribution of carbapenemases in Enterobacteriaceae, by country and region. Data are adapted from [8, 12, 13, 15, 25, 32–40]. aKPCs are endemic in some
US states; bOXA mainly refers to OXA-48, except in India, where it refers to OXA-181. Abbreviations: IMP, active on imipenem metallo-β-lactamase; KPC, Klebsiella pneumoniae
carbapenemase; NDM, New Delhi metallo-β-lactamase; OXA, oxacillinase-type carbapenem-hydrolyzing β-lactamase; VIM, Verona integron-encoded metallo-β-lactamase.
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OXA—heterogeneity of hydrolysis of carbapenems, broad-
spectrum cephalosporins, and aztreonam and lack of inhibition
by EDTA or clavulanic acid—the prevalence of these enzymes
may be underestimated [24, 32].

The Class A KPCs
The global rise of KPC-producing Enterobacteriaceae remains
one of the most successful MDRO pandemics in the history
of GNB. A major focus of the propagation and persistence
of KPC-harboring Enterobacteriaceae is the successful ST258
lineage, MDR strains of K. pneumoniae that are endemic in
an increasing number of countries and are responsible for
many major outbreaks worldwide [8, 34].

KPC-ENDEMIC REGIONS

Greece
Greece has experienced some of the highest carbapenem resis-
tance rates among GNB globally. Prior to 2001, the Greek Sys-
tem for the Surveillance of Antimicrobial Resistance reported
carbapenem resistance prevalence of <1%; this increased to
30% in hospital wards and to 60% in ICUs by 2008 [58]. Data
from the European Centre for Disease Prevention and Control
EARS-Net revealed that, in 2014, of 1088 Greek K. pneumoniae
isolates, 678 (62.3%) were resistant to carbapenems [35]. Before
2006, the predominant carbapenemase genes in Enterobacteria-
ceae recovered in Greece were VIM-1–type MBLs. This changed
after the introduction and rapid dissemination of blaKPC-2-
producing K. pneumoniae isolates throughout the country in
2007; by the end of 2008, a surveillance study of 21 hospitals
found blaKPC-2-producing K. pneumoniae in 18 hospitals across
Crete, Thessaloniki, and Athens, with 96% of isolates a single
pulsotype and the ST258 lineage [59].More-recent surveys con-
firm the ongoing dominance of ST258 K. pneumoniae strains;
however, several other ST types harboring blaKPC are circulating
among the almost 40% of K. pneumoniae currently harboring
blaKPC in Greece [34, 36].

Israel
Israel was the second country (after the United States) to report
outbreaks of infection due to KPC-producing K. pneumoniae.
A study of carbapenem-resistant K. pneumoniae in Tel-Aviv
during 2004–2006 disclosed epidemic blaKPC-2- or blaKPC-3-
carrying strains. The peak of the outbreak occurred in 2007,
with 55.5 incident nosocomial cases of carbapenem-resistant
K. pneumoniae infection per month per 100 000 patient-days
[60, 61]. A nationally implemented intervention, employed in
2007–2008, resulted in a decrease in the monthly incidence to
11.7 cases per 100 000 patient-days [61].

Two cross-sectional, point-prevalence national surveys of CP
Enterobacteriaceae (CPE) in post-acute-care Israeli hospitals in
2008 and 2013 (before and after the intervention) showed a sig-
nificant decrease in the overall prevalence of carbapenem resis-
tance among Enterobacteriaceae isolates (184 of 1147 isolates

[16%] and 127 of 1287 isolates [9.9%], respectively). Notably,
in 2008, all CPE surveyed were KPC-containing K. pneumoniae,
while during the 2013 survey, additional carbapenemase genes
were found (including blaNDM and blaOXA). However, KPC-
carrying K. pneumoniae persisted as the predominant CPE,
with an increasing proportion of ST258 K. pneumoniae strains
(120 of 184 [65%] in 2008 vs 91 of 113 [80%] in 2013) [37].

Latin America
KPC-producing bacteria disseminated throughout Colombia in
the late 2000s after the discovery of K. pneumoniae harboring
blaKPC-2 in 2005 in patients with no travel history, followed
by an outbreak of infection due to K. pneumoniae carrying
blaKPC-3, which was traced to an index patient who had travelled
recently to Israel [62–64]. In 2006, Colombia was the first coun-
try to report a KPC-producing Pseudomonas aeruginosa [65].
Since that time, other countries, including Argentina, Chile,
and Mexico, have reported the introduction of KPC-producing
Enterobacteriaceae; the highest prevalence of blaKPC-positive
bacteria outside of Colombia is in Brazil, with dissemination
throughout the country and reports of KPC-producing isolates
in all states [64].The spread in Brazil has been associated mostly
with CC258 K. pneumoniae, including ST258, ST11, and ST437;
these strains harbor a blaKPC-2 gene associated with Tn4401b
and multiple plasmid (IncFII, IncL/M, and IncN) types [66–
68]. Of 70 CRE submitted to SENTRY from Latin hospitals
in 2010, 56 strains contained blaKPC-2; 44 (78.6%) were from
Brazil, and among 19 Brazilian K. pneumoniae strains tested,
17 (89.5%) were grouped within CC258 [38].

United States
The first KPC-producing K. pneumoniae was discovered in a pa-
tient in a North Carolina hospital in 1996 [69].By 2001, there was
an explosion of reports in northeastern United States (with a
focus in New York) of KPC-producing bacteria in hospitalized
patients [34, 70]. In 2006, the Meropenem Yearly Susceptibility
Test Information Collection surveillance program described 57
isolates, with 9.5% of the collection characterized as clonal
blaKPC-producing Klebsiella strains, representing a 2-fold in-
crease from the prior year; most isolates were from states in the
Mid-Atlantic US Census division, and hospital prevalence rates
ranged from 2.4% in Ohio to 50.8% in New York [71, 72].

A nationwide survey by SENTRY in 2007–2009 studied 42
medical centers for CP K. pneumoniae and found an overall
blaKPC-positive bacteria prevalence of 5.5%, with significant re-
gional increases in KPC genes detected in K. pneumoniae over
the period in the Mid-Atlantic (28.6% overall and 33% in 2009)
and East North Central (2.4% overall, 3.8% in 2009) US Census
divisions [73]. The expansion of KPC-producing bacteria across
the United States is clearly evident; the same surveillance pro-
gram reported that, by 2010, 28 of 195 Enterobacteriaceae iso-
lates (14.4%) surveyed from 26 US medical centers harbored
blaKPC-2 or blaKPC-3; 9 of the 28 were found in Texas [74].

Epidemiology of Carbapenem-Resistant Enterobacteriaceae • JID • S5

Most recently, a population- and laboratory-based active sur-
veillance study of 7 US metropolitan areas during 2012–2013
found an overall annual CRE incidence of 2.93 cases per
100 000 population; of 188 CRE isolates tested, 90 (47.3%)
were identified as CPE, all of which were found to contain
blaKPC [75]. As of April 2016, the CDC reported that KPC-
producing bacteria have been identified in 48 states, the District
of Columbia, and Puerto Rico; however, the endemicity of KPC-
producing bacteria within the United States is still focused in
regional hot spots [34, 76].

In children, there have been notable increases in CRE preva-
lence, although few genotypic data are available [14]. A recent
study of CRE prevalence in US children, using antimicrobial
susceptibility data for Enterobacteriaceae reported to 300 labo-
ratories participating in the Surveillance Network–USA data-
base during January 1999–July 2012, found an overall low
pediatric prevalence of CRE (266 of 316 253 isolates [0.08%]);
however, there was a significant increase in CRE detected in
children over the study period (from 0% in 1999–2000 to
0.47% in 2011–2012) [77]. The highest increases were seen in
Enterobacter species, blood culture isolates, and isolates from
patients in the ICU (0.0% in 1999–2000 and 5.2%, 4.5%, and
3.2%, respectively, in 2011–2012). While the increases in Enter-
obacter species may be related to nosocomial ecology and not
reflect true carbapenemase production, there were also signifi-
cant increases in CR E. coli and K. pneumoniae (both 0% in
1999–2000 and 0.14% and 1.7%, respectively, in 2011–2012),
which more likely represent CPE [77]. Colonization and infec-
tion with KPC and MBL-producing Enterobacteriaceae are
being reported increasingly across the United States in pediatric
settings [14, 78–82].

CLINICAL EPIDEMIOLOGY OF KPC-PRODUCING
ENTEROBACTERIACEAE IN THE UNITED STATES

KPC-producing bacteria in the United States, unlike NDM-
type and CTX-M–producing Enterobacteriaceae, generally
have not emerged as community pathogens. The majority of
CRE infections are mainly a problem for inpatient facilities.
CRE infections are associated with mortality rates as high as
40%–50%, and these organisms continue to increase in preva-
lence in national reports [83, 84]. Because most KPCs (and
other carbapenemases) are found in K. pneumoniae, the major-
ity of studies assessing factors associated with CRE have been
specific to CR K. pneumoniae or KPC-producing K. pneumo-
niae. These associations have varied, likely because of differenc-
es in study venues and design; risk factors for colonization and/
or infection in adults that have been identified in multiple stud-
ies include critical illness, comorbid conditions, prolonged hos-
pitalization, multiple invasive medical devices, poor functional
status, mechanical ventilation, and receipt of certain antibiotic
classes [34, 85–87]. Less is known about the epidemiology of
KPC-producing Enterobacteriaceae infections in children;

however, similar factors have generally been implicated
[14, 82, 88–90].

One important risk for CRE colonization appears to be resi-
dence in long-term acute care hospitals (LTACHs), mediated in
part by interfacility spread at the time of patient transfers [91]. A
point-prevalence study performed in Chicago, Illinois, found that
30.4% of patients (119 of 391) in 7 LTACHs were colonized with
KPC-producing Enterobacteriaceae, compared with 3.3% of ICU
patients (30 of 910) in 24 short-stay hospitals (prevalence ratio,
9.2; 95% confidence interval, 6.3–13.5) [92].A recently published
case-control study of LTACH patients found that independent
factors associated with CRE colonization and infection in this set-
ting included solid organ and stem cell transplantation, mechan-
ical ventilation, fecal incontinence, and exposure in the prior 30
days to carbapenems, vancomycin, and metronidazole [93].

CONTROLLING THE SPREAD OF CRE IN
HEALTHCARE SETTINGS

Interventions to curtail the spread of CRE in healthcare facilities
most often have involved bundled infection control measures; so,
the success of one individual measure cannot simply be com-
pared directly to another. However, successful solutions based
on multiple studies include using patient cohorts, contact isola-
tion, and dedicated staffs; daily bathing of all patients with chlor-
hexidine; educating and training staff; limiting use of invasive
devices; shortening the duration of mechanical ventilation; im-
proving hand hygiene rates and antimicrobial stewardship; and,
in some studies, enhancing environmental cleaning [84, 85, 94].

In high-prevalence areas, regional surveillance can be ex-
tremely useful when paired with the sharing of patient informa-
tion among facilities; a strategy recommended by the CDC is to
“detect and protect” through early identification of patients
infected with CRE, followed by prevention of transmission
through implementation of infection control precautions [95].
An example of this is the statewide registry of extensively drug-
resistant organisms in Illinois, an interactive public health
informatics tool that provides a mechanism for standardized re-
porting of CRE-carrier patients from all healthcare facilities
throughout the state. This unique partnership of public health,
academia, and non-profit organizations aids in decreasing
spread of CRE through communication, which allows for
early detection and intervention by receiving facilities [96].

Potential interventions in US facilities where CRE rates are
still low include screening high-risk patients for CRE carriage
on admission, such as patients transferred from long-term
care facilities; while awaiting screening results, hospitals may
use preemptive contact precautions for such admissions, espe-
cially if rates are high in referring facilities.

LOOMING THREATS

In November 2015, Liu et al reported a new public health
threat, transmissible polymyxin resistance in Enterobacteriaceae
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OXA—heterogeneity of hydrolysis of carbapenems, broad-
spectrum cephalosporins, and aztreonam and lack of inhibition
by EDTA or clavulanic acid—the prevalence of these enzymes
may be underestimated [24, 32].

The Class A KPCs
The global rise of KPC-producing Enterobacteriaceae remains
one of the most successful MDRO pandemics in the history
of GNB. A major focus of the propagation and persistence
of KPC-harboring Enterobacteriaceae is the successful ST258
lineage, MDR strains of K. pneumoniae that are endemic in
an increasing number of countries and are responsible for
many major outbreaks worldwide [8, 34].

KPC-ENDEMIC REGIONS

Greece
Greece has experienced some of the highest carbapenem resis-
tance rates among GNB globally. Prior to 2001, the Greek Sys-
tem for the Surveillance of Antimicrobial Resistance reported
carbapenem resistance prevalence of <1%; this increased to
30% in hospital wards and to 60% in ICUs by 2008 [58]. Data
from the European Centre for Disease Prevention and Control
EARS-Net revealed that, in 2014, of 1088 Greek K. pneumoniae
isolates, 678 (62.3%) were resistant to carbapenems [35]. Before
2006, the predominant carbapenemase genes in Enterobacteria-
ceae recovered in Greece were VIM-1–type MBLs. This changed
after the introduction and rapid dissemination of blaKPC-2-
producing K. pneumoniae isolates throughout the country in
2007; by the end of 2008, a surveillance study of 21 hospitals
found blaKPC-2-producing K. pneumoniae in 18 hospitals across
Crete, Thessaloniki, and Athens, with 96% of isolates a single
pulsotype and the ST258 lineage [59].More-recent surveys con-
firm the ongoing dominance of ST258 K. pneumoniae strains;
however, several other ST types harboring blaKPC are circulating
among the almost 40% of K. pneumoniae currently harboring
blaKPC in Greece [34, 36].

Israel
Israel was the second country (after the United States) to report
outbreaks of infection due to KPC-producing K. pneumoniae.
A study of carbapenem-resistant K. pneumoniae in Tel-Aviv
during 2004–2006 disclosed epidemic blaKPC-2- or blaKPC-3-
carrying strains. The peak of the outbreak occurred in 2007,
with 55.5 incident nosocomial cases of carbapenem-resistant
K. pneumoniae infection per month per 100 000 patient-days
[60, 61]. A nationally implemented intervention, employed in
2007–2008, resulted in a decrease in the monthly incidence to
11.7 cases per 100 000 patient-days [61].

Two cross-sectional, point-prevalence national surveys of CP
Enterobacteriaceae (CPE) in post-acute-care Israeli hospitals in
2008 and 2013 (before and after the intervention) showed a sig-
nificant decrease in the overall prevalence of carbapenem resis-
tance among Enterobacteriaceae isolates (184 of 1147 isolates

[16%] and 127 of 1287 isolates [9.9%], respectively). Notably,
in 2008, all CPE surveyed were KPC-containing K. pneumoniae,
while during the 2013 survey, additional carbapenemase genes
were found (including blaNDM and blaOXA). However, KPC-
carrying K. pneumoniae persisted as the predominant CPE,
with an increasing proportion of ST258 K. pneumoniae strains
(120 of 184 [65%] in 2008 vs 91 of 113 [80%] in 2013) [37].

Latin America
KPC-producing bacteria disseminated throughout Colombia in
the late 2000s after the discovery of K. pneumoniae harboring
blaKPC-2 in 2005 in patients with no travel history, followed
by an outbreak of infection due to K. pneumoniae carrying
blaKPC-3, which was traced to an index patient who had travelled
recently to Israel [62–64]. In 2006, Colombia was the first coun-
try to report a KPC-producing Pseudomonas aeruginosa [65].
Since that time, other countries, including Argentina, Chile,
and Mexico, have reported the introduction of KPC-producing
Enterobacteriaceae; the highest prevalence of blaKPC-positive
bacteria outside of Colombia is in Brazil, with dissemination
throughout the country and reports of KPC-producing isolates
in all states [64].The spread in Brazil has been associated mostly
with CC258 K. pneumoniae, including ST258, ST11, and ST437;
these strains harbor a blaKPC-2 gene associated with Tn4401b
and multiple plasmid (IncFII, IncL/M, and IncN) types [66–
68]. Of 70 CRE submitted to SENTRY from Latin hospitals
in 2010, 56 strains contained blaKPC-2; 44 (78.6%) were from
Brazil, and among 19 Brazilian K. pneumoniae strains tested,
17 (89.5%) were grouped within CC258 [38].

United States
The first KPC-producing K. pneumoniae was discovered in a pa-
tient in a North Carolina hospital in 1996 [69].By 2001, there was
an explosion of reports in northeastern United States (with a
focus in New York) of KPC-producing bacteria in hospitalized
patients [34, 70]. In 2006, the Meropenem Yearly Susceptibility
Test Information Collection surveillance program described 57
isolates, with 9.5% of the collection characterized as clonal
blaKPC-producing Klebsiella strains, representing a 2-fold in-
crease from the prior year; most isolates were from states in the
Mid-Atlantic US Census division, and hospital prevalence rates
ranged from 2.4% in Ohio to 50.8% in New York [71, 72].

A nationwide survey by SENTRY in 2007–2009 studied 42
medical centers for CP K. pneumoniae and found an overall
blaKPC-positive bacteria prevalence of 5.5%, with significant re-
gional increases in KPC genes detected in K. pneumoniae over
the period in the Mid-Atlantic (28.6% overall and 33% in 2009)
and East North Central (2.4% overall, 3.8% in 2009) US Census
divisions [73]. The expansion of KPC-producing bacteria across
the United States is clearly evident; the same surveillance pro-
gram reported that, by 2010, 28 of 195 Enterobacteriaceae iso-
lates (14.4%) surveyed from 26 US medical centers harbored
blaKPC-2 or blaKPC-3; 9 of the 28 were found in Texas [74].
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Most recently, a population- and laboratory-based active sur-
veillance study of 7 US metropolitan areas during 2012–2013
found an overall annual CRE incidence of 2.93 cases per
100 000 population; of 188 CRE isolates tested, 90 (47.3%)
were identified as CPE, all of which were found to contain
blaKPC [75]. As of April 2016, the CDC reported that KPC-
producing bacteria have been identified in 48 states, the District
of Columbia, and Puerto Rico; however, the endemicity of KPC-
producing bacteria within the United States is still focused in
regional hot spots [34, 76].

In children, there have been notable increases in CRE preva-
lence, although few genotypic data are available [14]. A recent
study of CRE prevalence in US children, using antimicrobial
susceptibility data for Enterobacteriaceae reported to 300 labo-
ratories participating in the Surveillance Network–USA data-
base during January 1999–July 2012, found an overall low
pediatric prevalence of CRE (266 of 316 253 isolates [0.08%]);
however, there was a significant increase in CRE detected in
children over the study period (from 0% in 1999–2000 to
0.47% in 2011–2012) [77]. The highest increases were seen in
Enterobacter species, blood culture isolates, and isolates from
patients in the ICU (0.0% in 1999–2000 and 5.2%, 4.5%, and
3.2%, respectively, in 2011–2012). While the increases in Enter-
obacter species may be related to nosocomial ecology and not
reflect true carbapenemase production, there were also signifi-
cant increases in CR E. coli and K. pneumoniae (both 0% in
1999–2000 and 0.14% and 1.7%, respectively, in 2011–2012),
which more likely represent CPE [77]. Colonization and infec-
tion with KPC and MBL-producing Enterobacteriaceae are
being reported increasingly across the United States in pediatric
settings [14, 78–82].

CLINICAL EPIDEMIOLOGY OF KPC-PRODUCING
ENTEROBACTERIACEAE IN THE UNITED STATES

KPC-producing bacteria in the United States, unlike NDM-
type and CTX-M–producing Enterobacteriaceae, generally
have not emerged as community pathogens. The majority of
CRE infections are mainly a problem for inpatient facilities.
CRE infections are associated with mortality rates as high as
40%–50%, and these organisms continue to increase in preva-
lence in national reports [83, 84]. Because most KPCs (and
other carbapenemases) are found in K. pneumoniae, the major-
ity of studies assessing factors associated with CRE have been
specific to CR K. pneumoniae or KPC-producing K. pneumo-
niae. These associations have varied, likely because of differenc-
es in study venues and design; risk factors for colonization and/
or infection in adults that have been identified in multiple stud-
ies include critical illness, comorbid conditions, prolonged hos-
pitalization, multiple invasive medical devices, poor functional
status, mechanical ventilation, and receipt of certain antibiotic
classes [34, 85–87]. Less is known about the epidemiology of
KPC-producing Enterobacteriaceae infections in children;

however, similar factors have generally been implicated
[14, 82, 88–90].

One important risk for CRE colonization appears to be resi-
dence in long-term acute care hospitals (LTACHs), mediated in
part by interfacility spread at the time of patient transfers [91]. A
point-prevalence study performed in Chicago, Illinois, found that
30.4% of patients (119 of 391) in 7 LTACHs were colonized with
KPC-producing Enterobacteriaceae, compared with 3.3% of ICU
patients (30 of 910) in 24 short-stay hospitals (prevalence ratio,
9.2; 95% confidence interval, 6.3–13.5) [92].A recently published
case-control study of LTACH patients found that independent
factors associated with CRE colonization and infection in this set-
ting included solid organ and stem cell transplantation, mechan-
ical ventilation, fecal incontinence, and exposure in the prior 30
days to carbapenems, vancomycin, and metronidazole [93].

CONTROLLING THE SPREAD OF CRE IN
HEALTHCARE SETTINGS

Interventions to curtail the spread of CRE in healthcare facilities
most often have involved bundled infection control measures; so,
the success of one individual measure cannot simply be com-
pared directly to another. However, successful solutions based
on multiple studies include using patient cohorts, contact isola-
tion, and dedicated staffs; daily bathing of all patients with chlor-
hexidine; educating and training staff; limiting use of invasive
devices; shortening the duration of mechanical ventilation; im-
proving hand hygiene rates and antimicrobial stewardship; and,
in some studies, enhancing environmental cleaning [84, 85, 94].

In high-prevalence areas, regional surveillance can be ex-
tremely useful when paired with the sharing of patient informa-
tion among facilities; a strategy recommended by the CDC is to
“detect and protect” through early identification of patients
infected with CRE, followed by prevention of transmission
through implementation of infection control precautions [95].
An example of this is the statewide registry of extensively drug-
resistant organisms in Illinois, an interactive public health
informatics tool that provides a mechanism for standardized re-
porting of CRE-carrier patients from all healthcare facilities
throughout the state. This unique partnership of public health,
academia, and non-profit organizations aids in decreasing
spread of CRE through communication, which allows for
early detection and intervention by receiving facilities [96].

Potential interventions in US facilities where CRE rates are
still low include screening high-risk patients for CRE carriage
on admission, such as patients transferred from long-term
care facilities; while awaiting screening results, hospitals may
use preemptive contact precautions for such admissions, espe-
cially if rates are high in referring facilities.

LOOMING THREATS

In November 2015, Liu et al reported a new public health
threat, transmissible polymyxin resistance in Enterobacteriaceae
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associated with the plasmid-mediated colistin resistance gene,
mcr-1, a member of the phosphoethanolamine transferase en-
zyme family [97]. E. coli and K. pneumoniae that harbored
mcr-1 were found in contaminated retail meat and in colonized
food animals and inpatients in 5 Chinese provinces [97]. Shortly
after recognition of the threat of plasmid-mediated polymixin
resistance, a clinical isolate from a Swiss patient, with no travel
history, was discovered to coharbor plasmid-mediated blaMCR-1

and MBL (blaVIM-1) genes [98]. As of March 2016, at least 17
countries had identified mcr-1 in gram-negative organisms in
food, animals, and/or humans; several reports have documented
isolates coharboring carbapenemase and/or ESBL genes with
mcr-1; and studies have suggested a link between this unwel-
come emergence and the broad agricultural and veterinary
use of polymyxins [98–100].

CONCLUSIONS

CRE continue to evolve, posing an increasing threat to
patients of all ages. Mechanisms of carbapenem resistance are
variable, and the breadth of MGEs in Enterobacteriaceae—
carbapenemase genes and other antibiotic resistance mecha-
nisms and virulence determinants—continues to expand.
Early recognition of this global public health threat through
molecular characterization, epidemiologic studies, and surveil-
lance may allow for timely approaches in prevention. Bundled
infection control measures, education and training, and inter-
ventions aimed at healthcare-associated risk factors for coloni-
zation and/or infection, as well as proactive assessment of
emerging community reservoirs, may help thwart the rapid dis-
semination of these truly menacing pathogens.
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associated with the plasmid-mediated colistin resistance gene,
mcr-1, a member of the phosphoethanolamine transferase en-
zyme family [97]. E. coli and K. pneumoniae that harbored
mcr-1 were found in contaminated retail meat and in colonized
food animals and inpatients in 5 Chinese provinces [97]. Shortly
after recognition of the threat of plasmid-mediated polymixin
resistance, a clinical isolate from a Swiss patient, with no travel
history, was discovered to coharbor plasmid-mediated blaMCR-1

and MBL (blaVIM-1) genes [98]. As of March 2016, at least 17
countries had identified mcr-1 in gram-negative organisms in
food, animals, and/or humans; several reports have documented
isolates coharboring carbapenemase and/or ESBL genes with
mcr-1; and studies have suggested a link between this unwel-
come emergence and the broad agricultural and veterinary
use of polymyxins [98–100].

CONCLUSIONS

CRE continue to evolve, posing an increasing threat to
patients of all ages. Mechanisms of carbapenem resistance are
variable, and the breadth of MGEs in Enterobacteriaceae—
carbapenemase genes and other antibiotic resistance mecha-
nisms and virulence determinants—continues to expand.
Early recognition of this global public health threat through
molecular characterization, epidemiologic studies, and surveil-
lance may allow for timely approaches in prevention. Bundled
infection control measures, education and training, and inter-
ventions aimed at healthcare-associated risk factors for coloni-
zation and/or infection, as well as proactive assessment of
emerging community reservoirs, may help thwart the rapid dis-
semination of these truly menacing pathogens.
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