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Zika virus was discovered in East Africa in 1947 by the Rockefeller Foundation during investigations on the ecology of yellow fever. 
Although it was subsequently shown to have widespread distribution in Africa and Asia, it was not known to cause epidemics until 
2007. This paper describes the history of the virus discovery, emergence and evolution as an epidemic virus, and the its evolving 
clinical spectrum.
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DISCOVERY AND EMERGENCE

The confirmation that yellow fever (YF) was caused by a virus 
and was transmitted to humans by a mosquito resulted indi-
rectly in the discovery of Zika and many other arboviruses by 
the Rockefeller Foundation YF program (reviewed in detail by 
Schwartz [1]). In brief, Zika virus (ZIKV) was first isolated in 
1947 from a febrile sentinel rhesus monkey (no. 766) held in a 
cage on a platform in the canopy of the Zika Forest in Uganda 
during studies to identify the vector of sylvatic YF [2]. A blood 
sample from this monkey was collected on day 3 of fever and 
was inoculated intracerebrally into Swiss mice and into another 
rhesus monkey (no. 771). All mice showed signs of illness on 
day 10 postinoculation, and a filterable transmissible agent was 
isolated from the brains of these sick mice. Monkey 766 showed 
no other clinical signs or symptoms, and monkey 771 remained 
asymptomatic. The convalescent serum from both monkeys 
(766 and 771) neutralized the virus isolated from monkey 766 
in mice, which was designated ZIKV 766. Preinfection sera 
from these monkeys did not neutralize ZIKV 766.

A few months later, another strain of ZIKV was isolated by 
inoculating mice with the homogenate from a pool of Aedes 
africanus mosquitoes collected in the same area of the Zika 
Forest [2, 3]. That virus strain was designated ZIKV E/1. The 
E/1 virus was also inoculated into a rhesus monkey (no. 758), 
which remained asymptomatic, but convalescent serum from 
this monkey neutralized ZIKV E/1. Both ZIKV 766 and ZIKV 
E/1 were neutralized by the convalescent serum from monkeys 
766 and 758 showing that the 2 viruses were the same.

There is some controversy surrounding the first ZIKV isolate 
from humans. The first report was from serum of a 10-year-old 

Nigerian female in 1954 [4]. The patient was clearly jaundiced, 
but interpretation of the clinical presentation was complicated 
by coinfection with malaria. In cross-neutralization tests with 
convalescent sera from monkeys infected with Bunyamwera, 
Bwamba, Mengo, Ntaya, Semliki Forest, Uganda S, West Nile, 
YF, and Zika viruses, only the serum from the monkey infected 
with ZIKV neutralized the virus isolated from the patient, 
strongly suggesting the girl was infected with ZIKV. It was sub-
sequently reported that the Nigerian isolate was more closely 
related to Spondweni virus (also called CHUKU) [5–7]. These 
events were recently summarized by Wikan and Smith [8] who 
suggest that the first case of confirmed human ZIKV infection 
occurred in Uganda in 1962–1963 [9]. Whether the Nigerian 
virus was Zika or Spondweni will have to await further study 
using new molecular technology. However, subsequent studies 
have documented that ZIKV does occur in humans and mos-
quitoes widely in West Africa [10–12].

Outside of Africa, ZIKV was isolated for the first time from 
mosquitoes (Aedes aegypti) in 1966 in Malaysia [13], but human 
infections in Asia were not reported until 1977 in Central Java, 
Indonesia [14]. However, serosurveys conducted in the 1950s, 
1960s, and 1970s strongly suggested that ZIKV had a wide-
spread geographic distribution in both tropical Africa and 
Asia [3]. Unfortunately, the extensive cross-reactivity among 
the antibodies produced by infection with closely related fla-
viviruses [3, 15–18] makes interpretation of serological results 
difficult, but more specific neutralization tests and virologic 
studies on humans, nonhuman primates, and mosquitoes have 
confirmed widespread circulation of ZIKV in these regions [3, 
19–22]. Collectively, the data suggest that silent ZIKV trans-
mission among humans, animals, and mosquitoes has occurred 
throughout tropical Africa and Asia for more than 70  years. 
Significant events in ZIKV history are summarized in Figure 1.

During the first 60  years of its known existence, epidemic 
ZIKV was never reported, and fewer than 20 human infections 
were recorded during this extended period of silent transmis-
sion [3]. Assuming the earlier serological data were correct, 
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it is likely that sporadic human cases of ZIKV infection have 
occurred for decades but were unrecognized or misdiagnosed 
as dengue, Japanese encephalitis, West Nile, or one of the many 
other flaviviruses, other viruses, bacteria, and parasites that are 
enzootic or endemic in these regions. That being the case, then 
why has epidemic ZIKV emerged in recent years? The defin-
itive answer to that question will have to await more detailed 
epidemiologic, ecologic, and virologic studies, but current 
understanding of factors responsible for emergence of other 
Aedes-transmitted viral diseases that have similar epidemiology 
or ecology suggests that, similar to dengue and chikungunya, 
genetic changes in the virus likely resulted in emergence of a 
virus strain with increased transmissibility leading to greater 
epidemic potential and perhaps virulence [23–31]. As with 
dengue and chikungunya, emergence and spread of ZIKV 
was probably facilitated by the global demographic, social and 
technological trends of population growth, unprecedented 
urbanization and globalization, combined with lack of effective 
mosquito control in urban areas, which provided conditions 
for the “perfect storm”, leading to increased transmission and 
spread of the viruses and their mosquito vectors [32, 33].

The first known ZIKV epidemic occurred in the isolated 
islands of Yap, Federated States of Micronesia, located in the 
Western Pacific [34] (Figure 2), when an epidemic of dengue-like 
illness was reported in April–May 2007. Although dengue had 
occurred there earlier [35, 36], local physicians suspected a dif-
ferent etiology because of atypical clinical presentation in some 

patients. Ross River virus was suspected, but this was ruled 
out at the University of Hawaii (D. J.  G., unpublished data, 
2007). Samples were sent to the Centers for Disease Control 
and Prevention (CDC) Arbovirus Diagnosis and Reference 
Laboratory (Fort Collins, CO) where ZIKV infection was con-
firmed [37]. The outbreak was relatively small (approximately 
5000 infections, approximately 75% of the population), and all 
reported illness was mild [34].

No further epidemic ZIKV transmission was reported until 
October 2013 when cases of ZIKV were reported in French 
Polynesia, a South Pacific territory [38], while in Southeast Asia 
only sporadic transmission was occurring [39]. A  major epi-
demic occurred in 2013/2014 involving all French Polynesian 
islands with more than 30 000 cases, some with neurologic 
complications [40–42] (see below). The virus spread to New 
Caledonia, the Cook Islands, Easter Island, and to the rest 
of the South Pacific [43]. Zika virus is still circulating in the 
Pacific in 2017 (CDC web site: https://wwwnc.cdc.gov/travel/
page/world-map-areas-with-zika). The latest data suggest the 
virus was introduced into Brazil as early as 2013 or 2014 [44, 
45] from the Pacific, but the disease was not recognized until 
November 2015, when a major epidemic of neurologic disease 
in new born babies occurred, with a second peak in April 2016 
[3, 46–49]. From Brazil, ZIKV spread rapidly throughout the 
American region [49].

In Asia, 2 outbreaks have been reported in Singapore [49, 50] 
and Vietnam [51], but widespread transmission has occurred in 

1947–1948 First isolation of ZIKV in Uganda, Africa (Rhesus macaque in 1947 and Aedes africanus in 1948)

Zika virus history

First human ZIKV infection, Uganda, Africa

Isolation of ZIKV in Aedes aegypti mosquitoes in Malaysia

First outbreak, Yap State, Western Pacific

Second outbreak, French Polynesia, South Pacific. Description of

Spread in the Pacific
Emergence in Brazil and spread in the Americas and Caribeans
Description of microcephaly and other congenital central nervous system (CNS) malformation potentially
associated to ZIKV
First outbreak in Africa (Cabo Verde)

February: WHO declare ZIKV a public health emergency of international concern (PHEIC), detection
of ZIKV RNA in amniotic fluid
May: ZIKV infected, replicate and damage human neural progenitor cells, confirmation of ZIKV
transfusion transmission and of the link between ZIKV and GBS
April: confirmation of ZIKV sexual transmission
July: first outbreak in continental US
August: first outbreak in Asia (Singapore), DNA ZIKV vaccine entered phase 1 clinical trial
November: WHO declare ZIKV is no longer a PHEIC
December: demonstration of heterologous protection against ZIKV in Rhesus macaques

Over the past 10 years
About 80 countries or territories have reported active ZIKV circulation
13 countries or territories have reported person to person ZIKV transmission
23 countries or territories have reported an increase of GBS potentially associated to ZIKV
31 countries or territories have reported an increase of microcephaly and other congenital central
nervous system potentially associated ot ZIKV

First severe complications potentially associated to ZIKV: GBS
Potential for non-vector borne transmission: sexual, materno-fetal and transfusion
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Figure 1. Significant events in the history of Zika virus (ZIKV). Abbreviations: DNA, deoxyribonucleic acid; GBS, Guillain-Barré syndrome; RNA, ribonucleic acid; WHO, 
World Health Organization.
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Thailand as well (Thailand Ministry of Public Health, unpub-
lished data, 2017), and sporadic cases of ZIKV infection have 
occurred in 10 countries since 2007 [50, 51]. The first epidemic 
in Africa occurred in Cabo Verde in 2015–16, apparently the 
result of introduction from Brazil [52]; from 2007, over 80 
countries have reported active transmission of ZIKV [49, 52].

EVOLUTION OF ZIKA VIRUS

The rapid geographic radiation of ZIKV in the past 3 years is 
consistent with a pattern of intense diversification (“boom and 
bust” period) (Figure 3), fueled, as noted above, by the explo-
sive and rapid human movement by modern transportation, 
urbanization, poor water management, and vector control, and 
facilitated by large immunologically naive human populations 
and the global spread of the anthropophilic mosquito vector, Ae 
aegypti. The fundamental basis of ZIKV genetic diversity can be 
attributed to its error-prone ribonucleic acid (RNA)-dependent 
RNA polymerase, which does not have proof-reading capacity 
and is thought to produce approximately 1 mutation per round 
of genome replication. Analyses based on selective pressures, 
represented as the ratio of nonsynonymous to synonymous sub-
stitutions (dN/dS) per site, suggest that the majority of DENV 
mutations are deleterious and subject to strong purifying selec-
tion (dN/dS << 1) [53]. However, genetic variation and population 
diversity probably played a role for ZIKV to occupy and adapt to 
new and changing ecological niches and selective pressures.

Current analyses based on 93 complete genome sequences 
reinforce the hypothesis that ZIKV originated in Africa and 
diverged into 3 major lineages: African, Asian, and American 

(Figure 3). The African strains fall into 2 distinct groups: (1) 
the Uganda cluster, which is anchored by the prototype strain 
MR766 and includes isolates from Senegal and Central African 
Republic sampled from 1947 to 2001; and (2) the Nigeria clus-
ter, which includes strains isolated in Nigeria and Senegal from 
1968 to 1997. It is interesting to note that at least 2 distinct lin-
eages are circulating in Senegal (blue and green lines, Figure 3), 
suggesting multiple introductions, likely fueled by trade routes 
[54]. It is worth mentioning that most of the known African lin-
eage strains to date were isolated from enzootic vectors, reflect-
ing continuous surveillance efforts in Senegal [54]. The Asian 
cluster is anchored by the P6-740 strain isolated in Malaysia in 
1966 from Ae aegypti and includes strains isolated in Cambodia, 
Thailand, Micronesia, French Polynesia, and the recent intro-
ductions in Japan, China, Australia, and Singapore, supporting 
the presence of the Asian lineage throughout Southeast Asia. 
Within this cluster, a new American lineage has emerged and 
includes strains from Brazil, Colombia, Ecuador, Panama, 
Mexico, Honduras, Venezuela, the Dominican Republic, Puerto 
Rico, Haiti, Guatemala, United States, and Suriname, as well as 
Italy and China, reinforcing the role of modern transportation 
in the rapid spread of these viruses on a global scale.

Recent reports have suggested ZIKV recombination between 
field isolates [55] or with Spondweni virus [56]. Evidence for 
recombination among members of the genus Flavivirus has 
been reported mainly in dengue virus ([DENV] reviewed in ref-
erence [56]). Despite concerted efforts, however, recombination 
has not been achieved experimentally, and thus caution should 
be exercised when inferring conclusions about these putative 

First African ZIKV
outbreak, Cabo Verde,
2015-2016

ZIKV discovery,
Uganda, 1947

First Asian ZIKV
outbreak, Singapore,
2016

Fist ZIKV outbreak,
Yap State, 2007

ZIKV endemic areas (past and present)

First US
continental ZIKV
outbreak, Florida,
2016

Emergence of  
ZIKV in the
Americas, Brazil,
2015

Second ZIKV
outbreak, French
Polynesia, 2013-2014

ZIKV endemic areas (Past and present)

Figure 2. Geographic regions where Zika virus (ZIKV) is enzootic/endemic and has caused epidemics.
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recombination events based solely on coalescent bioinformatic 
tools. For natural recombination to be definitive, the follow-
ing prerequisites should be met: (1) the recombinant crossover 
should be demonstrated in a single polymerase chain reaction 
amplicon after cloning to ensure it occurs in a single deoxy-
ribonucleic acid molecule, (2) the recombination should be 
demonstrated repeatedly in clonal populations of viable virus 

(eg, a plaque harvest or limited endpoint dilution), and (3) the 
recombinant should maintain adequate sequence conservation 
during post-recombination evolution [56].

To explain the rapid global spread of ZIKV, 3 hypotheses have 
been put forward: (1) ZIKV underwent adaptive evolution facil-
itating more efficient urban transmission in Ae aegypti mosqui-
toes or in humans, (2) stochastic factors, and (3) a combination 
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Figure 3. Phylogenetic tree of Zika virus based on 93 complete open reading frame sequences inferred using maximum likelihood methods.
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of genetic change and stochastic factors [3, 57]. Although 
a number of phylogenetic studies [57–59] may support the 
hypothesis that adaptive evolution may have occurred in south-
east Asia where the virus has been circulating since at least the 
1960s, to date experimental studies with laboratory colonies 
or feral populations of mosquitoes (reviewed in [58] and [59–
63]) have failed to support this hypothesis, suggesting that the 
intense ZIKV transmission in the Americas was also influenced 
by other factors, including immunologically naive human pop-
ulations. It is possible that the Asian ZIKV lineage may have 
adapted to generate higher viremia levels in humans, which 
would lead to more efficient mosquito infection, transmission, 
and spread. Higher viremia was also suggested to enhance 
transplacental transmission in humans, which could explain 
the dramatic emergence of microcephaly in the Americas and 
remains to be experimentally confirmed. Some studies based 
on bioinformatic analyses of ZIKV sequences suggested an 
increase in the use of human codons by the virus, which may 
support this hypothesis [54, 64, 65]. Nonetheless, the potential 
link between adaptive evolution and enhanced human infection 
will require comprehensive longitudinal studies in humans and/
or animal models. Ultimately, this hypothesis will be difficult to 
test because various animal models may not respond to ZIKV 
infection in the same manner as humans. To date, however, 
evidence suggests that a combination of stochastic factors and 
selective evolution may have fueled the spectacular emergence 
and spread of ZIKV. The initial chance introduction of the virus 
into naive populations in the South Pacific likely facilitated suf-
ficient amplification by competent mosquito vectors and raised 
the risk of transport to the Americas. Similar to the spread of 
dengue in the aftermath of World War II, increased air travel 
undoubtedly increased the risk of spreading other viruses with 
increased epidemic potential in recent decades [23–26]. In the 
case of ZIKV, the origin of introduction in Brazil is unknown, 
but athletic competitions in Brazil (Soccer Confederation Cup 
in June 2013, soccer World Cup in June 2014, Va’a World Sprint 
Championship canoe race in August 2014) are believed to 
have brought travelers from the South Pacific around the time 
that ZIKV circulation was discovered there [66–69]; however, 
molecular clock analyses suggested that introduction may have 
occurred between May and November 2013 [44, 45, 70]. One 
hypothesis cannot be favored over another, because introduc-
tion by a single traveler coming from the Pacific is also possible. 
The area of first introduction of ZIKV in Brazil is also a matter 
of debate The recent epidemics in Singapore and widespread 
introduced cases and/or sporadic transmission in other Asian 
countries support the notion that stochastic events have played 
a role in the global spread of ZIKV. Unanswered is the ques-
tion of whether emergence and spread were facilitated by new 
strains of virus with greater epidemic potential that took advan-
tage of the global trends of the 21st century [3, 49].

EVOLUTION OF THE CLINICAL PRESENTATION AND 
NONVECTOR-BORNE TRANSMISSION

Because of the small number of human cases reported before 
2007, the clinical presentation associated with ZIKV infection 
was ill defined. When the virus emerged in Yap State in 2007, 
the majority of patients presented with rash, low-grade fever, 
conjunctivitis, arthralgia, and myalgia [3, 34]. The same clini-
cal presentation was observed when ZIKV emerged in French 
Polynesia in 2013/2014 and in Brazil in 2015 [3, 38, 47, 71]. 
Serosurvey studies conducted after the outbreaks in Yap State 
and French Polynesia suggested that most of the infections 
were asymptomatic [34, 72]. The first description of severe 
neurological complications in adults and the potential for non-
vector-borne transmission of ZIKV were reported during the 
French Polynesia outbreak [3]. These new data were subse-
quently confirmed with the emergence of ZIKV in the Americas 
and additionally the first description of severe central nervous 
system malformation in fetuses/neonates [49].

Neurological complications have been reported for arbovi-
rus infections, especially those caused by the Flavivirus [73] 
and Alphavirus genera [74] (Table 1). Although Guillain-Barré 
syndrome (GBS) had been associated with other flaviviruses, 
the 20-fold increase in GBS observed during the ZIKV epi-
demic in French Polynesia was unexpected [3, 41, 75]. The inci-
dence of GBS in French Polynesia was 1 in 6500 inhabitants, 

Table 1. Clinical Features of ZIKV Compared With Other Arboviruses

Flavivirus Alphavirus

ZIKV DENV WNV YFV JEV CHIKV

Nonvector borne transmission

Materno fetal Yes Yes No Yesa No Yes

Sexual Yes No No No No No

Transfusion Yes Yes Yes Yesa No No

Main complication in newborn

Microcephaly Yes No No No No No

Other CNS malformation Yes No No No No No

Main complications in infants and adults

Bleeding No Yes Yes Yes No Yes

Plasma leakage No Yes No Yes No No

Severe organ involvement No Yes Yes Yes No No

Chronic arthralgia No No No No No Yes

Main complications in adults

Guillain-Barré syndrome Yes Yes Yes Yesa Yes Yes

Meningoencephalitis Yes Yes Yes Yesa Yes Yes

Myelitis Yes Yes No Yesa Yes Yes

Meningitis No No Yes Yesa Yes No

Prevention and treatment

Vaccine No Yes No Yes Yes No

Specific treatment No No No No No No

Abbreviations: CHIKV, chikungunya virus; CNS, central nervous system; DENV, dengue 
virus; JEV, Japanese encephalitis virus; WNV, West Nile virus; YVF, yellow virus fever; ZIKV, 
Zika virus.
aWith yellow fever vaccine virus.
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which is approximately the population of Yap State. Because it 
is a rare complication, it is not possible to know whether the 
potential for GBS was present in Yap State. For the same rea-
son, microcephaly in newborns was reported only retrospec-
tively in French Polynesia because of the small number of cases 
[76]. The link between ZIKV and GBS was demonstrated in 
a retrospective case-control study [41, 77, 78], and the asso-
ciation was subsequently confirmed in the Americas [79]. 
Similar findings were observed when West Nile virus (WNV) 
emerged in the Americas causing increased numbers of menin-
goencephalitis cases [80]. The potential for maternofetal trans-
mission of ZIKV was suspected in French Polynesia [81]. 
During the 2015 ZIKV epidemic in Brazil, a 20-fold increase 
in the incidence of neonates with microcephaly coincided with 
reports of cases of a febrile rash illness compatible with ZIKV 
infection in pregnant women [82]. The link between ZIKV 
and severe central nervous system malformations (especially 
microcephaly) was confirmed in numerous studies [83–86] in 
Brazil and retrospectively reported in French Polynesia [87]. 
Other malformations in fetuses/neonates have been reported, 
but the “congenital ZIKV syndrome” is not yet fully described 
[88]. Although maternofetal transmission of arboviruses was 
reported for DENV [89] and chikungunya virus [90], fetus/
neonate malformations were not. On the other hand, severe 
complications caused by the closely related DENV (plasma 
leakage, bleeding, and severe organ involvement) [91] have not 
been reported in ZIKV infections.

Arbovirus transfusion-transmission (TT) has been described 
for WNV [92] and DENV [93], so the potential for ZIKV TT 
was suspected in French Polynesia [94] and demonstrated in 
Brazil [95]. Although predictable, the percentage of positive 
blood donations was higher than reported for DENV and WNV.

Also new for an arbovirus was sexual transmission, first sus-
pected in a single case in a US citizen returning from Senegal 
[96]. Infectious ZIKV was then detected in the semen of a 
French Polynesian patient, and sexual transmission of ZIKV 
was confirmed after its emergence in the Americas [97, 98]. The 
duration of infectivity of semen and vaginal fluids, the impact of 
ZIKV infection on fertility, and the impact of nonvector-borne 
transmission on the burden of ZIKV disease remain to be deter-
mined [49].

As noted above, it is uncertain whether the unusual clini-
cal pattern observed in ZIKV infections from its emergence in 
French Polynesia was the result of observing larger numbers of 
patients during the epidemics or whether genetic changes in the 
virus resulted in greater virulence [31] or, most likely, a combi-
nation of both [3, 50]. Zika virus shares common clinical fea-
tures with other arboviruses, especially flaviviruses, including 
the high rate of asymptomatic infections and the neurotropism 
of the virus in adults. However, congenital central nervous sys-
tem malformations and sexual transmission make ZIKV unique 
among the arboviruses.

CONCLUSIONS

Zika virus has spread rapidly throughout the Pacific and Americas 
in the past 10 years, but critical gaps remain in our knowledge of 
the epidemiology and biology of this virus. In the near term, the 
following concerns must be of the highest priority: (1) development 
and application of preventive measures, including use of repellants, 
insecticide-impregnated clothing, elimination of household breed-
ing habitats, and sustainable vector control at the community, state, 
and federal level to decrease contact between people and Ae aegypti 
mosquitoes; (2) establishment of outreach and awareness programs 
targeted especially to sexually active individuals and pregnant 
women to avoid contact with the vectors and practice safe sex; (3) 
establishment of prospective cohorts to determine the risk of con-
genital Zika syndrome, GBS, and human-to-human transmission; 
and (4) determine whether ZIKV can establish an enzootic trans-
mission cycle in the Americas. This prospect will certainly render 
future eradication efforts practically impossible, and it also might 
inhibit our ability to control the ongoing outbreak of congenital Zika 
syndrome. In the longer term, we need to develop the following: 
(1) more effective prevention tools, eg, vaccines, therapeutics, and 
mosquito control measures; (2) better diagnostics that are accurate, 
inexpensive, and user friendly for use at point-of-care, as well as for 
sustainable, laboratory-based surveillance—this may be challeng-
ing once the current epidemics subside with growing herd immu-
nity and diagnostics that cannot distinguish ZIKV infections from 
DENV and other flaviviruses; and (3) more effective surveillance for 
arboviral diseases in general, especially in tropical areas where the 
potential risk of epidemic emergence is greatest.
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