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Background. Human immunodeficiency virus (HIV) antibodies are generated and maintained by ongoing systemic expression 
of HIV antigen. We investigated whether HIV antibody responses as measured by high-throughput quantitative and qualitative 
assays could be used to indirectly measure persistent HIV replication in individuals receiving antiretroviral therapy (ART).

Methods. HIV antibody responses were measured over time in the presence or absence of suppressive ART and were compared 
to the HIV reservoir size and expression of antiviral restriction factors.

Results. Among untreated individuals, including both elite controllers (ie, persons with a viral load of ≤40 copies/mL) and non-
controllers, antibody parameters were stable over time and correlated with the individual viral load. Viral suppression with ART led 
to a progressive decline in antibody responses after treatment induction that persisted for 5–7 years. Higher levels of HIV antibodies 
during suppressive therapy were associated with later initiation of ART after infection, with higher DNA and cell-associated RNA 
levels, and with lower expression of multiple anti-HIV host restriction factors.

Discussion. These findings suggest that declining antibody levels during ART reflect lower levels of antigen production and/
or viral replication in the persistent HIV reservoir. Results of relatively inexpensive and quantitative HIV antibody assays may be 
useful indirect markers that enable efficient monitoring of the viral reservoir and suppression during functional-cure interventions.
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Despite undetectable levels of plasma RNA in human immu-
nodeficiency virus (HIV)–infected individuals who receive 
antiretroviral therapy (ART), HIV persists in latently infected 
cells [1, 2] that are sequestered in lymphoid tissue and other 
anatomic compartments [3–6]. Functional-cure interventions 
have been developed to reduce or eliminate the latent reservoir 
and are moving into clinical studies, with the ultimate goal of 
achieving ART-free HIV remission. Assays to quantify the total 
burden of the HIV-infected reservoir will be essential in deter-
mining whether intervention methods are successful in reduc-
ing the reservoir size and potentially eradicating the virus. The 
lack of reliable, reproducible, and sensitive assays to evaluate the 
magnitude and character of the latent reservoir has been a key 
barrier in evaluating these interventions.

HIV antibody recency assays have been extensively used 
to calculate population incidence in cross-sectional serosur-
veys [7]. It is well documented that ART administration or 

spontaneous elite control of HIV replication results in reduc-
tions in HIV antibodies as measured by these assays [8–11]. 
In this study, we explore the use of recency assays to evaluate 
viral suppression in a diverse and well-characterized cohort 
of both untreated and treated HIV infection. Three different 
assays were used to measure the relative quantity and quality 
of HIV antibodies. These include the chemiluminescent Vitros 
anti-HIV1 + 2 assay, which is used to measure relative antibody 
concentration (by using a diluted plasma sample) and antibody 
avidity (by measuring a plasma sample incubated with a cha-
otropic agent and compared it to findings for sample that is 
unmanipulated), and the Sedia limiting antigen (LAg) assay was 
used to measure quantity and avidity at the same time.

Given the established association between antigenic burden 
and antibody production that has been noted in HTLV-1 and 
HIV [12–19], we hypothesized that the total size of the reservoir 
is directly associated with the degree of systemic antigen expo-
sure. We also hypothesized that antigen expression contributes 
to the level of antibody production and avidity and that antibody 
levels can hence be used as a surrogate marker of the HIV reser-
voir during ART [20]. To more fully characterize the relationship 
between the HIV antigen burden and HIV antibody responses 
during ART, we compared antibody responses to both viral res-
ervoir levels and expression of restriction factors in untreated 
individuals, elite controllers, and patients who initiated ART 
early or later after HIV infection and were followed over time.
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METHODS

Individuals and Specimen Processing

Specimens from patients participating in the UCSF Options 
and SCOPE cohort studies were analyzed [9, 20–23] and are 
listed in Table 1. Patients provided written informed consent for 
study participation, according to the Declaration of Helsinki.

Specimens from untreated participants were analyzed for the 
relationship between anti-HIV antibody responses and the viral 
load (n = 274) [9]. To determine variability of the assays over 
time, longitudinal anti-HIV antibodies were measured in both 
untreated viremic individuals (ie, 50 individuals with a viral 
load of ≥80 copies/mL and infected for >2 years; a median of 5 
time points per individual were measured) and elite controllers 
(ie, 25 individuals with a viral load of ≤80 copies/mL; a median 
of 3 time points per individuals were measured) [9].

As previously reported, study participants were identified as 
having early HIV infection if they had 2 plasma specimens in 
which HIV-1 RNA levels  were ≥3000 copies/mL and a nega-
tive or indeterminate HIV-1 antibody test result, if they tested 
positive for HIV antibodies but had a history of negative HIV-1 
antibody test results during the past 6 months, or if they tested 
negative for HIV-1 antibodies within the past 12 months and 
had a reactive result of a standard HIV-1 antibody test but a 
result of a less sensitive (ie, “detuned”) HIV-1 antibody test 
suggesting infection within <6  months [24–26]. Standardized 
estimated infection dates were calculated from these data [20]. 
Antibodies were measured in HIV-infected adults with acute/
early infection who started ART early (ie, within 6 months of 
the estimated infection date) or later (ie, >2 years after the esti-
mated infection date) and had measurements of cell-associated 
HIV RNA and DNA performed longitudinally as previously 

reported [21]. In the early treated (ET) group (n  =  31), anti-
body levels were measured at baseline (during acute/early HIV 
infection), 1 year following ART start, 3 and 5 years after ART 
start, and, among those who had received ART for ≥2 years, at 
the final observed time points. In the later treated (LT) group 
(n = 35), antibody responses were measured at baseline, 1 year 
following infection, at the final observed pre-ART time points, 
1 year following ART start, and, among those who had received 
ART for ≥2  years, at the final observed time points [21]. In 
the ET and LT groups, cell-associated HIV DNA/RNA levels 
were measured only at time points during therapy (ie, 1  year 
after ART initiation and at the final time point during ART). 
Antibody responses were compared to viral loads from all time 
points, and cell-associated RNA and DNA levels at the final 
time point were analyzed.

Expression of host restriction factor genes was measured 
in 72 individuals with ART-suppressed HIV infection [22]. 
Peripheral blood mononuclear cells (PBMCs) and plasma spec-
imens were collected from individuals with ART-suppressed 
HIV infection who were enrolled in the SCOPE and Options 
cohorts within 1–2 years of ART initiation, either during early 
infection (ie, <1  year after infection; range, 0.11–0.58  years; 
n = 23) or later infection (ie, >1 year after infection; n = 49).

HIV Antibody Recency Assays

The less sensitive and avidity-modified Vitros HIV 1 + 2 assays 
are based on a previously described [8] modification of the 
Vitros HIV 1 + 2 ECi/ECiQ Immunodiagnostic System, which 
is a chemiluminescence assay that is licensed for diagnosis of 
HIV infection (Ortho-Clinical Diagnostics, Rochester, NY). 
These assays provide a quantitative readout of envelope and 
p24-specific HIV antibodies relative to an assay calibrator. For 
the less sensitive Vitros system, the assay was modified by using 
a 1:400 dilution of a specimen in Vitros buffer B (Ortho-Clinical 
Diagnostics), and the reported signal-to-cutoff ratio is given for 
a diluted specimen relative to the calibrator. For the Vitros avid-
ity-modified assay, one aliquot of a sample was diluted 1:10 in a 
chaotropic agent (guanidine), and another aliquot of the sam-
ple diluted 1:10 in phosphate-buffered saline. After incubation, 
signal-to-cutoff ratios of each dilution were determined, and an 
avidity index was calculated as the signal-to-cutoff ratio of the 
guanidine dilution divided by that of the phosphate-buffered 
saline dilution. The product as used here is still investigational, 
and the assay is not currently approved for clinical application.

The gp41-detecting limiting antigen (LAg) avidity enzyme 
immunoassay was performed as previously described [27]. 
Assay controls and HIV-positive specimens were diluted 1:101 
in specimen diluent; 100  μL of calibrator, controls, or speci-
mens was added to antigen-coated plates; and the plates were 
incubated. Plates were washed 4 times with 1× wash buffer 
to remove unbound antibodies. A  buffer (pH 3.0) was added 
to each well to dissociate low avidity antibodies. Plates were 

Table 1. Characteristics of Patient Groups Included in the Analyses

Analysis, Group
ART Initiation 

Criteria
Measurements, 

No.
Time Points, 
No., Median

Untreated, antibody cor-
relation with viral load 
analysis [9]

NA 274 …

Untreated, longitudinal antibody analysis [9]

 Elite controller group viral 
load, <80 copies/mL

NA 50 5

 Viremic group viral load, > 
80 copies/mL

NA 25 3

Longitudinal antibody analysis [21]

 Early treated group <6 mo after 
infection

31 5

 Late-treated group > 2 y after 
infection

35 5

Restriction factor analysis [22]

 Early treated group <1 y from 
infection

23 1

 Late-treated group >1 y from 
infection

49 1

Abbreviations: ART, antiretroviral therapy; NA, not applicable.
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developed, and the OD was read using a spectrophotometer 
(Molecular Devices Microplate Reader). The raw OD for each 
specimen was normalized using the calibrator OD on each plate 
as a ratio, with the normalized OD calculated as the OD of the 
specimen divided by the median OD of the calibrator.

Gene Expression Profiling

CD4+ T cells were enriched by negative selection using the 
EasySep Human CD4+ T Cell Enrichment Kit (Stemcell 
Technologies, Vancouver, Canada), according to the manu-
facturer’s instructions. Genomic DNA and total RNA were 
extracted from enriched CD4+ T cells (1 million–2 million cells), 
using the Allprep DNA/RNA/miRNA Universal Kit (Qiagen, 
Valencia, CA) with on-column DNase treatment (Qiagen 
RNase-Free DNase Set). RNA was transcribed into complemen-
tary DNA (cDNA), using random primers and the SuperScript 
Vilo cDNA Synthesis Kit (Invitrogen/Thermo Fisher, Waltham, 
MA) according to manufacturer’s instructions. Quantitative 
real-time polymerase chain reaction (PCR) analysis using cus-
tom-made TaqMan low-density arrays (Life Technologies) was 
used to comprehensively profile the relative expression of 42 
established anti–HIV-1 host restriction factors, as previously 
described [22]. A panel of 6 housekeeping genes was included 
in the TaqMan low-density array plates (GAPDH, 18S, ACTB, 
PPIA, RPLP0, and UBC). GAPDH was identified as the most 
stably expressed gene from those 6 housekeeping genes among 
all samples, using the GeNorm algorithm. Therefore, raw cycle 
threshold numbers of amplified gene products were normalized 
to the housekeeping gene, GAPDH, to control for cDNA input 
amounts. Fold induction was determined using the compara-
tive cycle threshold method [28].

HIV DNA and Cell-Associated RNA

Methods for quantification of HIV DNA and cell-associated 
RNA levels were previously published [21]; in brief, extracted 
PBMC DNA was measured using real-time PCR analysis tar-
geting Gag DNA sequences; total amplifiable DNA (indicated 
cell input) was measured using real-time PCR analysis of a 
single-copy gene (the conserved region of the HLA-DQ alpha 
locus), as described elsewhere [29–32], and values were normal-
ized per million PBMCs. Extracted cell-associated RNA levels 
were measured with the transcription-mediated amplification 
assay (Aptima; Gen-Probe), using modified PBMC extraction 
and transcription-mediated amplification of cell-associated 
HIV RNA [33, 34]. This yields HIV RNA values expressed as 
signal-to-cutoff ratios (range, 0–30; undetectable, <1.0; detect-
able, >1.0). Signal-to-cutoff ratios were normalized per million 
PBMCs, as with DNA.

Statistical Analysis

All data were compiled and analyzed in Prism 6.0 (GraphPad, 
La Jolla, CA). Antibody kinetics were determined by calculating 

the change in antibody responses over time. Group comparisons 
were performed using analysis of variance (the Kruskal-Wallis 
test). Plasma viral load, host restriction factor expression, cel-
lular HIV RNA/DNA levels, and antibody responses were log 
transformed and analyzed using Pearson correlation. For the 
restriction factor analysis, P values were adjusted into false-dis-
covery rates by the Benjamini and Hochberg controlling pro-
cedure, a commonly used method for analysis of large sets of 
biological data (available at: http://www.sdmproject.com/utili-
ties/?show=FDR) [35].

Ethics Statements

Informed consent was obtained from patients. Human experi-
mentation guidelines of the Department of Health and Human 
Services and/or those of the authors’ institution(s) were fol-
lowed in the conduct of clinical research.

RESULTS

Anti-HIV Antibody Levels in Chronically Infected Individuals Correlate 

With Plasma HIV-1 RNA Levels

We set out to investigate the relationship between anti-HIV anti-
body and viral load measurements in untreated HIV-infected 
individuals. Antibody levels from untreated time points for 
chronically infected individuals were compared to the viral 
loads from the same time points. Antibody levels detected by all 
3 assays showed modest but statistically significant correlations 
with viral load (r = 0.31 and P < .005 for the less sensitive Vitros 
assay, r = 0.18 and P = .002 for the avidity-modified Vitros assay, 
and r = 0.31 and P < .0001 for the LAg assay; Figure 1A).

Antibody Levels Are Stable Over Time in Chronically Infected Individuals

Median variabilities in coefficients of variation for the less sensi-
tive Vitros assay, the avidity-modified Vitros assay, and the LAg 
assay were 10%, 4%, and 15%, respectively, for the viremic chronic 
infected individuals and 10%, 3%, and 7%, respectively, for the 
elite controllers (Figure 1B). There was a statistically significant 
difference between the viremic and elite controller antibody lev-
els detected by the less sensitive Vitros assay only, with median 
signal-to-cutoff ratios of 61.3 and 31.6, respectively (P = .02), for 
all longitudinal time points in viremic and suppressed groups 
(median avidity indexes of 0.91 and 0.74, respectively [P = not 
significant], were observed for the avidity-modified Vitros assay, 
and median normalized ODs of 4.4 and 4.0, respectively [P = not 
significant], were observed for the LAg assay).

Antibody Levels Decline as Treatment Duration Increases

We compared antibody levels between chronic, untreated 
HIV-infected individuals, elite controllers, and individuals 
with ART-suppressed infection to determine the impact of 
viral replication or ART on antibody production. Median sig-
nal-to-cutoff ratios yielded by the less sensitive Vitros assay for 
untreated individuals, elite controllers, and treated individuals 
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were 60.4, 21.9, and 2.5, respectively; median avidity indexes 
for the avidity-modified Vitros assay were 0.91, 0.74, and 0.31, 
respectively; and median normalized ODs for the LAg assay 
were 4.5, 3.8, and 0.5, respectively. There were higher relative 
antibody amounts and avidity in individuals with chronic 
viremic infection, compared with amounts for elite control-
lers or individuals with ART-suppressed infection (P < .005 for 
each pairwise comparison; Figure 2A–2C). All antibody levels 
decreased significantly in individuals with ART-suppressed 
infection, compared with those in elite controllers (P < .05 
for all comparisons; Figure 2D–2F). We found that, in this 
cross-sectional analysis, antibody levels decreased as the dura-
tion of ART increased and that these measures were signifi-
cantly lower than in elite controllers.

Decline in Antibody Responses in the ET and LT Groups

Antibody responses were measured in the ET and LT cohorts 
from pretreatment to ≥5 years after ART initiation. Participants 
from the ET and LT groups showed decreased antibody 
responses after treatment. On the day of treatment, antibody 
responses were significantly higher in the LT group as com-
pared to the ET group (for the less sensitive Vitros assay, sig-
nal-to-cutoff ratios were 5.5 vs 0.27; for the avidity-modified 
Vitros assay, avidity indexes were 0.86 vs 0.28 AI; and for the 
LAg assay, normalized ODs were 3.88 vs 0.3; P  <  .005 for all 
comparisons). In longitudinal sample sets, decay rates were cal-
culated between the first and last time points after treatment. 
For all assays, declines in antibody responses were slower in the 
ET group as compared to the LT group, with signal-to-cutoff 
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Figure 1. Antibody levels in chronically infected untreated individuals correlate with viral loads. A, The concentration of virus influences antibody production, 
and the log viral load was found to correlate with antibody levels. Antibody concentration assays (ie, the less sensitive Vitros [LS-Vitros] assay and the Sedia limiting antigen 
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individuals show stable antibody concentrations measurable by these assays. LS-Vitros and AM-Vitros assay measurements are more stable than LAg assay measurements. 
Antibody levels in viremic individuals are significantly higher than those in elite controllers (ECs; P < .001, by the t test). Viral loads undetectable by a standard assay and 
those determined to be <40 or <75 copies/mL were excluded from the analysis. ODn, normalized OD; S/Co, signal-to-cutoff ratio.
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ratio decreases of 9.5 × 10–5 and 6.3 × 10–4 per day (P < .001) 
for the less sensitive Vitros assay, avidity indexes decreases of 
6.5 × 10–4 and 1.3 × 10–2 per day (P < .001) for the avidity-mod-
ified Vitros assay, and normalized OD decreases of 5.2 × 10–5 
and 5.1 × 10–4 per day (P < .001) for the LAg assay (Figure 3).

Viral Reservoir Levels Correlate With Antibody Responses

Levels of the viral reservoir (as determined by measuring levels 
of cell-associated RNA and DNA) significantly correlated with 
antibody responses in the ET and LT groups combined. DNA 
levels correlated with findings of the less sensitive Vitros assay 
(r = 0.26 and P = .02), the avidity-modified Vitros assay (r = 0.30 
and P = .01), and the LAg assay (r = 0.25 and P = .04; Figure 4). 
Cell-associated RNA levels correlated with findings from the 
avidity-modified Vitros assay only (r = 0.27 and P = .04). Levels 
of the viral reservoir correlated with antibody responses for the 
ET and LT groups combined but not separately.

Antibody Levels Are Associated With Lower Levels of Expression of Anti-

HIV Host Restriction Factors

Of the 42 genes assessed, expression of 9 restriction factors had 
inverse correlations (r < –0.25 and P < .05, by the Benjamini-
Hochberg false-discovery rate correction) with antibody 

levels for BRD4, CNP, CTR9, HERC5, PAF1, RTF1, SLFN11, 
TNFRSF10A, and TRIM28 (Supplementary Table 1). This cor-
relation remained significant in 6 of 9 restriction factors in the 
subgroup analysis involving individuals from the LT group 
(P < .05; Figure 5).

DISCUSSION

In this longitudinal study of patients with well-characterized 
histories of HIV infection and treatment, we found that changes 
in HIV antibody responses over time during ART reflect the 
timing of treatment initiation, the degree of viral control over 
time, and the size of the persistent HIV reservoir. The antibody 
levels are stable, with higher antibody levels in viremic individ-
uals, lower antibody levels in elite controllers, whereas antibody 
levels during ART-induced viral suppression are very low and/
or consistently declining. These observations are consistent with 
the idea that viral replication or antigen expression is responsi-
ble for maintenance of antibody levels in both untreated indi-
viduals and individuals with viral suppression. Among patients 
taking continuous ART in our study, declining antibody levels 
corresponded to better viral control and a lower systemic viral 
burden (ie, lower cell-associated HIV DNA levels). In a few of 
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our subjects, responses declined with ART but increased again 
later, as revealed by multiple-antibody assays—however, these 
patients maintained “undetectable” viral loads during the study. 
It seems likely that the antibody assays detected viral replication 
too low or too brief to be captured by standard, intermittent 
viral load measurements. Taken together, the data from this 
study suggest that monitoring HIV antibody responses over 
time in treated patients could provide information on the effec-
tiveness of viral control over time (as hemoglobin A1C levels 
reflect consistent glycemic control in diabetes mellitus). These 
findings might have implications for adherence monitoring in a 
broad range of antiretroviral treatment and research programs, 

since antibody levels summarize responses to viral antigens 
during the periods between clinical viral load measurements.

The ability to identify the degrees of cumulative HIV repli-
cation or antigen expression taking place in reservoirs of ART 
recipients (or even untreated individuals) could be particularly 
important for ongoing research aiming to enhance intrinsic 
control of the HIV reservoir. Analysis of serial antibody lev-
els could be used to assess pre-intervention control in patients 
receiving ART or to monitor changes in low-level viral burdens 
that may occur during viral breakthrough, as has been shown 
in other studies [12, 14], or during treatment interruption. 
A  validated measure of tight viral control could be useful in 
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identifying patients who were more or less likely to have low 
reservoirs during ART. Because of the tendency for antibody 
levels to continue declining without a plateau for many years 
during ART, single measurements of antibody levels at a point 
in time are unlikely to directly estimate the viral reservoir size. 
While we did see evidence of an association between antibody 
levels and available measurements of the reservoir levels in our 
pooled cohort of treated patients, the association was not found 
when the ET or LT groups were considered separately. If early 
treatment led independently to lower antibody levels [36–38] 
and to lower HIV DNA levels [21, 39], this would produce a 
spurious association. Further analysis of the timing of treat-
ment and effects on reservoir size will require additional stud-
ies, larger sample numbers, and detailed analysis of alternative 
measurements of viral reservoir levels.

The source and persistence of HIV-specific antibodies are 
dependent on the location of the viral reservoir and antigenic 
stimulation of antibody-producing B or plasma cells. The fol-
licular T-cell population has been identified as one of the pre-
ferred targets of HIV infection, and the B-cell follicle acts as a 
sanctuary site for these infected cells, where they evade direct 
killing by CD8+ T cells, as shown in simian immunodeficiency 
virus infection [6]. The close proximity of these infected cells to 
B cells allows for direct stimulation of antibody producing cells 
during HIV antigen expression in the follicular reservoir [40, 
41]. One of the major limitations of this study was the lack of 
single-copy RNA levels, owing to the fact that large volumes of 
plasma that are required to detect measurable viral loads using 
these assays were not available for our participants. It would be 

important to investigate changes in low-level viral replication and 
the subsequent impact on antibody concentration, in addition to 
determining the kinetics of this change. Overall, antibody levels 
may provide amore comprehensive characterization of viral rep-
lication in the tissue sanctuaries, which may not be sufficiently 
measured by determining the high sensitivity viral load measure-
ment alone. In preparation for clinical interventions, future stud-
ies investigating multiple viral reservoir measurements (eg, viral 
load analyses, cellular DNA and RNA analyses, tissue biopsies, 
quantitative viral growth assays, in vitro cell stimulation assess-
ments, and antibody response assays) will help to identify the best 
ways to measure the total HIV replication burden.

While the clinical utility of these new applications for quanti-
tative HIV antibody assays are not clear, these assays are already 
commercially available and could be readily adopted in many 
settings. In stark contrast with currently validated methods of 
measuring antiretroviral adherence, reservoir size, and low-
level replication [42–46], the quantitative HIV antibody assays 
examined in this study use very small sample volumes (5–10 μL 
of plasma), can be completed in minutes to hours, and cost only 
a few dollars. These assays have been extensively validated, have 
been found to be minimally variable (5%–10%), can be con-
trolled by using calibrators across runs to fine-tune assay preci-
sion, and could demonstrate usefulness in measuring long-term 
viral suppression through longitudinal analysis.

Previous work has shown that intrinsic viral restriction 
factors can influence viral replication and reservoir measure-
ments [22]. For example, restriction factors BRDF4, PAF1 and 
TRIM28, associated with anti-HIV antibody levels in this study, 
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Figure 5. Antibody levels inversely correlate with human immunodeficiency virus restriction factor expression. Concentrations of BRD4, CTR9, PAF1, RTF1, 
SLFN11, and TRIM28 inversely correlate with antibody levels. Early treated (blue) and late-treated (red) individuals were analyzed separately, and P values are reported for 
the groups together (values are reported in black) and separate (red for late-treated individuals and blue for early treated individuals). The figures presented here are the 
significant correlations after false-discovery rate correction in all and late-treated groups in at least one of the antibody levels. Abbreviations: AM-Vitros, avidity-modified 
Vitros assay; LAg, Sedia limiting antigen; LS-Vitros, less sensitive Vitros assay; ODn, normalized OD; S/Co, signal-to-cutoff ratio.
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suppress HIV transcription following viral integration. This 
supports the hypothesis that restriction factor suppression of 
viral replication in infected cells leads to lower HIV antigen 
expression and consequent reduction in host antibody pro-
duction. Expression levels of these genes have been shown to 
be inversely correlated with cell-associated HIV RNA levels in 
individuals with ART-suppressed HIV infection; therefore, they 
may contribute to limiting the turnover of the latent reservoir. 
In this study, there was no correlation with restriction factors 
in the ET group, likely because ART was initiated before full 
seroconversion. More work will be needed to fully elucidate the 
utility of combinations of biomarkers of latent infection and 
immunologic mechanisms governing viral persistence.

In summary, in this study we showed that HIV antibodies 
may be a useful marker of persistent low-level viral replication 
during ART, and demonstrated how certain innate immune 
factors and antiviral therapy reduce HIV antibody responses 
by limiting viral replication. Inexpensive, high-throughput 
quantitative antibody assays—originally developed as HIV 
recency assays for surveillance—could have important new 
uses in antiretroviral adherence monitoring and could facilitate 
research into HIV cure interventions.
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