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Abstract

Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because 
less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip 
concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most 
Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospho-
lipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has 
no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, 
but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was sig-
nificantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the 
cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic 
enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark con-
ditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: 
inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for 
sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis.
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Introduction

To adapt to acidic soil environments, plants have developed 
various strategies to protect root tips from aluminum (Al). 
The molecular basis and the role of Al sensing and signaling 
in Al tolerance have been reviewed (Liu et al., 2014).

A few studies have revealed some of the mechanisms by 
which the composition of plasma membrane (PM) lipids 
affects Al tolerance. Dysfunction of phosphatidyl phospho-
hydrolase in an Arabidopsis mutant led to the accumulation 
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of phospholipids in the PM and a decrease in Al tolerance 
(Kobayashi et  al., 2013). The expression level of PsCYP51 
(encoding OBT 14DM in pea, Pisum sativum L.) was cor-
related with Al tolerance, and knocked-down CYP51A 
expression suppressed Al tolerance in Arabidopsis. The 
decreased expression level of CYP51 lowered the sterol con-
tent and increased the PM permeability in Al-treated root tips 
(Wagatsuma et al., 2015). Sterols are essential for the main-
tenance of membrane fluidity and permeability in living cells, 
and the ion leakage from roots (as an index of membrane 
integrity) was markedly increased in cyp51 mutants (Kim 
et  al., 2005). All sterol species in plants affect membrane 
fluidity, but each one has different effects depending on its 
structure (Hartmann, 1998). Among all the sterols, sitos-
terol most strongly restricts the mobility of the surrounding 
phospholipid acyl chains. The trans-oriented double bond at 
C22 in the side chain of stigmasterol significantly reduces its 
ordering ability, with an efficiency that can be measured by 
the reduction in water permeability through the membrane; 
the order of efficiency is sitosterol>campesterol>>stigmast
erol (Schuler et al., 1991). Therefore, higher proportions of 
stigmasterol lead to greater membrane permeability. To date, 
there are no reports on the contribution of different sterol 
species to differences in Al tolerance.

The synthesis of  lipids in the PM is under complex regu-
lation, and responds to various environmental conditions 
other than Al. Seedlings grown under −P pretreatment 
showed enhanced Al tolerance, which was mainly attributed 
to a decrease in phospholipids and increase in galactolipids 
in the PM of  root cells (Maejima et al., 2014). Enzymes in 
sterol biosynthesis pathways show different activities under 
light and dark conditions. For example, 3-hydroxy-3-methy-
glutaryl CoA reductase (HMGR, encoded by HMG), the 
key limiting enzyme in phytosterol biosynthesis via the 
mevalonate (MVA) pathway (Schaller et  al., 1995), was 
induced under dark conditions in Arabidopsis seedlings, ex-
cept in the roots (Enjuto et al., 1994; Learned, 1996). In rice 
roots, expression of  HMG2, which is also involved in sterol 
biosynthesis, was slightly increased in the dark (Ha et al., 
2001). The overexpression of  HMG in tobacco (Nicotiana 
tabacum L.) increased sterol contents (Schaller et al., 1995). 
On the basis of  those results, we speculated that a dark 
treatment could confer Al tolerance via increased expres-
sion of  HMGs.

Sterols are isoprenoid-derived molecules that are found in 
a wide range of organisms including plants (Schaller, 2004). 
All isoprenoids are biosynthesized from a common pre-
cursor, i.e. the five-carbon (C5) molecule isopentenyl diphos-
phate (IPP; see Fig. 7). In plants, IPP is produced via both the 
MVA and the methylerythritol 4-phosphate (MEP) pathways, 
although they are localized in different cell compartments, i.e. 
the cytosol/ER and plastids, respectively. The MEP pathway 
was discovered only relatively recently (Lichtenthaler et al., 
1997); consequently, little is known about the crosstalk be-
tween the MEP and MVA pathways, and especially their roles 
in producing IPP in the roots under dark conditions.

In this study, Al-sensitive rice cultivars showed increased 
Al tolerance under dark conditions. Therefore, we conducted 

molecular and physiological analyses to explore the reasons 
for the difference in Al tolerance between dark-grown and 
light-grown plants. Changes in the sterol status in the dark 
led to enhanced Al tolerance of temperate japonica rice cul-
tivars. These changes were related to IPP crosstalk between 
the cytosol and the plastid, and the increased expression of 
HMG genes in the root tip in the dark.

Materials and methods

Plant material and growth conditions
We used six cultivars of rice: five temperate japonica subpopulations 
(Rikuu-132, Hidekomochi, Norin-21, Rikuu-20, and Koshihikari) 
and one Indica aus subpopulation (Kasalath) (Xu et al., 2009). Seeds 
were soaked in tap water with aeration for 24 h at 27 °C in a growth 
room and germinated under fluorescent white light (80  µmol m−2 
s−1). The germinated seeds were spread on a nylon screen, placed on 
a container filled with 9 l tap water containing (in mg l−1) Ca 8.0, Mg 
2.92, K 1.95, and minor quantities of other minerals (P, Fe, Mn, Zn, 
and Cu) (Khan et al., 2009), and grown for 5 d.

Analysis for Al tolerance under different illumination conditions
Twelve seedlings of each cultivar were used as a set of seedlings for 
root growth experiments. Sets of seedlings with similar root length 
(ca 4 cm) were pre-incubated in control solution (pH 4.9; 0.2 mM 
CaCl2) for 6 h. Then, each set was transferred to the Al-toxic solu-
tion containing 10 µM AlCl3 (+Al) or control solution (−Al). Root 
elongation was measured after 24 h of incubation and then relative 
root elongation (+Al/−Al, expressed as a percentage) was calculated 
as an index of Al tolerance (Khan et al., 2009). Seedlings were kept 
in the light (L; continuous light; 80 µmol m−2 s−1), in the dark (D) 
or in the dark with MVA (1  mM; Sigma-Aldrich, St Louis, MO, 
USA) and glucose (1  mM) (DMG). The pH of all solutions was 
maintained at 4.9 by adjusting at 2  h and 18  h after the start of 
the treatment. The root growth experiment was replicated independ-
ently using five sets for L, four sets for D, and two sets for DMG. 
The same trends were observed in each replicated experiment, and 
so the results from all experiments were pooled and used to calculate 
average values and standard errors.

Visualization of Al accumulation in roots
After treatment with or without Al, whole roots were stained with 
hematoxylin (0.2% hematoxylin in 0.02% sodium iodide, w/w, pH 
4.8) for 15 min as described by Khan et al. (2009), and Al accumu-
lation in the root tip was observed under a stereoscope (SMZ-10, 
Nikon, Tokyo, Japan).

Real-time qRT-PCR
Total RNA was extracted from 1-cm root tips of cv. Rikuu-132 
(R132) and cv. Koshihikari (Ko) after 24 h treatment with 0.2 mM 
CaCl2 with or without 10  µM AlCl3 (pH 4.9) under L or DMG. 
Extraction and purification of the total RNA was performed using 
an RNAqueous column with Plant RNA Isolation Aid (Ambion, 
Austin, TX, USA). cDNA was synthesized from 1  µg total RNA 
with a QuantiTech reverse transcription kit (Qiagen, Hilden, 
Germany). Real-time qRT-PCR using SYBR Green I  was car-
ried out with a TP800 thermal cycler (Takara Bio, Shiga, Japan) 
as described previously (Wagatsuma et al., 2015) using the follow-
ing gene-specific primers; 5′-GGACGTGGAAAGTCTGTGGT-3′ 
(sense) and 5′-AACAGCTGAACCAGCAAGGT-3′ (antisense) 
for OsHMG2, and 5′-AAGGCCTTCTTGGATTC-3′ (sense) and 
5′-GCAGCAGCTGAATCTCATGT-3′ (anti-sense) for OsHMG3. 
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The gene transcript levels were quantified by the standard curve 
method using a complementary DNA dilution series as described by 
Bustin et al. (2009). The transcript levels of each gene were normal-
ized to that of 18S rRNA.

Extraction and quantification of sterols and phospholipids in 
the roots
Sterols were extracted and quantified as described by Suzuki et al. 
(2004). Briefly, the freeze-dried 1-cm root tips of 5-day-old seedlings 
of three rice cultivars [Kasalath (Ka), Ko, and R132] after 24 h treat-
ment with 0.2  mM CaCl2 with or without 10  µM AlCl3 (pH 4.9) 
under L or DMG were extracted with CHCl3–methanol (1:1), and 
[25,26,26,26,27,27,27-2H7]cholesterol was added to the extract as 
an internal standard. The extract was dried and chromatographed 
on a silica gel column with hexane–ethyl acetate (2:1) and CHCl3–
methanol (1:1). The hexane-ethyl acetate eluent was dried, saponified 
with methanol and 20% KOH, and its eluent with CHCl3–methanol 
was dried. The residue and the debris from extraction were com-
bined and hydrolysed with MeOH and 4 M HCl. These mixtures 
were extracted with hexane, and the combined hexane layer was 
dried. The residue was trimethylsilylated and analysed by GC-MS 
(GC: 6890A, Agilent Technologies, Wilmington, DE, USA; MS: 
JMS-AM SUN200, JEOL, Tokyo).

Phospholipids were extracted and quantified as described by 
Khan et  al. (2009). Briefly, phospholipids were extracted by the 
modified Bligh and Dyer method [isopropanol: chloroform: H2O 
(1:1:1, v/v/v)]. After purification and dehydration of the extract, 
phosphorus was quantified by the molybdenum blue spectrophoto-
metric method.

Extraction and quantification of carotenoids in the root
Carotenoids were extracted and quantified as described by Şükran 
et  al. (1998). Briefly, fresh 1-cm root tips of 5-day-old seedlings 
of two rice cultivars (Ko, R132) after 24 h treatment with 0.2 mM 
CaCl2 with or without 10  μM AlCl3 (pH 4.9) under L or DMG 
were extracted with 96% MeOH. The absorbance of the extract was 
determined at 470, 653, and 666 nm with a spectrophotometer. The 
carotenoid concentration was calculated as follows: carotenoids (μg 
ml−1)=(1000A470−2.86chloropyll a−129.2chlorophyll b)/245.

Statistical analysis
All data were analysed using Fisher’s least significant difference 
(LSD) test (Fisher, 1958).

Results

Aluminum tolerance of rice cultivars and Al 
accumulation in root tip under different illumination 
conditions

Under L, the order of Al tolerance among the rice culti-
vars was as follows: R132≥Hidekomochi (Hi)>Norin-21 
(No)≥Rikuu-20 (R20)≥Ko>Ka (Fig.  1). Under D, the Al 
tolerance became similar among R132, Hi, No, R20, and Ko, 
because of an increase in the Al tolerance of the Al-sensitive 
cultivars. The Al tolerance of the most Al-sensitive indica-
type Ka and the most Al-tolerant japonica-type R132 was 
unchanged by the different illumination conditions. Addition 
of MVA and glucose (sterol precursors) to the Al toxic solu-
tion further enhanced the Al tolerance of all Al-sensitive 
japonica-type cultivars (Fig.  1). All japonica-type cultivars 
showed similar growth in the Al toxic solution. The most 

Al-sensitive japonica-type cultivar under L, Ko, grew compa-
rably to the most Al-tolerant one, R132, under D.

We compared Al accumulation in the root tip of the three 
cultivars with significant differences in Al tolerance (Fig. 2). 
Under L, more Al accumulated in the Al-sensitive cultivars 
than in R132, as judged by the blue color intensity of hema-
toxylin staining. The blue color in the Ko root tip was lighter 
under DMG, suggesting that the DMG treatment improved 
the Al tolerance of Ko by decreasing Al accumulation in the 
root tip.

Sterol profile and phospholipid content in the root tip 
under different illumination conditions

Irrespective of the genotype, Al treatment, or illumination 
conditions, the major sterol species were sitosterol, stigmas-
terol, and campesterol (together accounting for 81–92% of 
total sterols) and the minor sterol species were isofucosterol 
and 24-methylene cholesterol (together accounting for 8.2–
18.2% of total sterols) (Fig. 3). Other sterol species accounted 
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Fig. 1. Aluminum tolerance of six rice cultivars under different light 
conditions. Five-day-old rice seedlings were treated for 24 h with 10 µM 
AlCl3 in the presence of 0.2 mM CaCl2 (pH 4.9), and Al tolerance was 
calculated as the ratio of net elongation of the longest root in the Al 
treatment to that in the control (0.2 mM CaCl2 without Al). Twelve seedlings 
with similar root length (ca 4 cm) were used for one set in Al tolerance 
analysis. Analysis was carried out independently for five sets for L, four 
sets for D, and two sets for DMG. L, light; D, dark; DMG, dark in the 
presence of 1 mM mevalonate and 1 mM glucose. Rice cultivars: Ka, 
Kasalath; Ko, Koshihikari; Hi, Hidekomochi; No, Norin-21; R20, Rikuu-20; 
R132, Rikuu-132. Values are means of independent replicates±standard 
error. Different letters above bars indicate significant differences (P<0.05; 
Fisher’s LSD).
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for only small proportions of total sterols: i.e. cholesterol, 
0.33–0.69%; cycloartenol, 0.12–0.87%; unidentified sterols, 
0.44–0.81% (data not shown).

Under L, the Al treatment caused a greater decrease in the 
total sterol content in the Al-sensitive Ko than in the Al-tolerant 
R132, while the sterol content was similar in the two cultivars in 
the absence of Al under L (Fig. 3). The Al treatment also affected 
the sterol profile. Under L, the proportion of the two major sterol 
species (stigmasterol and campesterol) out of total sterols was sig-
nificantly higher in the Al treatment (stigmasterol, 16.3 ± 0.40% 
in R132 and 16.8 ± 0.13% in Ko; campesterol, 39.3 ± 0.10% in 
R132 and 42.6 ± 0.17% in Ko) than in the control (stigmasterol, 
14.5  ±  0.12% in R132 and 14.3  ±  0.07% in Ko; campesterol, 
38.4 ± 0.09% in R132 and 41.2 ± 0.28% in Ko) (P<0.05; LSD 
test). The Al-induced increase in the proportion of the major 
sterol species was slightly greater in the Al-sensitive Ko than in 
Al-tolerant R132 (Fig. 3 and Table 1). Under L, the proportion of 
sitosterol was unchanged by the Al treatment (32.8 ± 0.44% [con-
trol] and 33.3 ± 0.30% [Al treatment] in R132 and 32.0 ± 0.12% 
[control] and 32.1 ± 0.38% [Al treatment] in Ko).

Under L, the proportion of the two minor sterol species 
(isofucosterol and 24-methylene cholesterol) out of total ster-
ols was significantly lower in the Al treatment (isofucosterol, 
8.33 ± 0.27% in R132 and 6.03 ± 0.16% in Ko; 24-methylene 
cholesterol, 2.41  ±  0.07% in R132 and 2.16  ±  0.09b in Ko) 
than in the control (isofucosterol, 10.7 ± 0.06% in R132 and 
8.82 ± 0.14% in Ko; 24-methylene cholesterol, 3.22 ± 0.12% 
in R132 and 2.96 ± 0.03% in Ko). The decrease in the propor-
tion of the minor sterol species by the Al treatment was larger 

in the Al-sensitive Ko than in the Al-tolerant R132 (Fig. 3 and 
Supplementary Table S1 at JXB online).

Under DMG, the total sterol content was decreased by 
the Al treatment in the Al-tolerant R132, as under L. However, 
the total sterol content in the Al-sensitive Ko was increased 
by  the Al treatment (Fig.  3). The effect of the Al treat-
ment on  the sterol profile under DMG was the reverse of 
that observed under L, that is, the proportion of the two major 
sterol species (stigmasterol or campesterol) out of total sterols 
was decreased significantly by the Al treatment in both culti-
vars except for stigmasterol in R132 (stigmasterol, 15.6 ± 0.15% 
in the control and 14.9 ± 0.35% in the Al treatment for R132, 
and 14.9 ± 0.09% in the control and 13.5 ± 0.09% in the Al 
treatment for Ko; campesterol, 40.2 ± 0.15% in the control and 
38.0 ± 0.31% in the Al treatment for R132, and 41.6 ± 0.09% 
in the control and 39.7 ± 0.23% in the Al treatment for Ko). 
In contrast, the Al treatment increased significantly the pro-
portion of the minor two sterol species except for 24-methyl-
ene cholesterol (isofucosterol, 11.5 ± 0.23% in the control and 
12.6 ± 0.24% in the Al treatment for R132, and 10.2 ± 0.07% 
in the control and 12.7 ± 0.18% in the Al treatment for Ko; 
24-methylene cholesterol, 4.48  ±  0.05b% in the control and 
4.88 ± 0.27% in the Al treatment for R132, and 4.18 ± 0.08% in 
the control and 5.23 ± 0.07% in the Al treatment for Ko). The 
decrease in one of the major sterol species (stigmasterol) (Fig. 3 
and Table 1) and the increase in the minor sterol species (Fig. 3 
and Supplementary Table S1) by the Al treatment were larger 
in the Al-sensitive Ko. The proportion of sitosterol out of the 
total sterol content was slightly increased or similar for the Al 
treatment in both cultivars (27.9 ± 0.33% in the control and 
29.0 ± 0.47% in the Al treatment for R132, and 28.7 ± 0.12% in 
the control and 28.5 ± 0.06% in the Al treatment for Ko).

The phospholipid content in the root tip did not differ sig-
nificantly among the three rice cultivars, i.e. Ka, Ko, and R132, 
irrespective of the Al treatment and illumination conditions 
(Fig. 4).

Carotenoid content in root tip under different 
illumination conditions

To explore the crosstalk between the MVA and MEP path-
ways under different illumination conditions or Al treat-
ment, we measured the carotenoid content as a measure 
of IPP transport from the cytosol to the plastids, although 
plastids contain not only carotenoids but also plastoquinone, 
monoterpenes, diterpenes, GAs, phytols, and other products 
(see Fig. 7). Under L, the Al treatment slightly decreased the 
carotenoid content in the root tip of the Al-tolerant R132, but 
markedly increased that in the root tip of Al-sensitive Ko 
(Fig. 5). Under D, the carotenoid content in the root tip was 
slightly decreased by the Al treatment in both R132 and Ko.

Transcript levels of HMG2 and HMG3 in root tip under 
different illumination conditions

Among the HMG genes, both HMG2 and HMG3 are 
thought to be related to sterol biosynthesis although their 
functions are different (Ha et  al., 2001; Ohyama et  al., 
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Fig. 2. Aluminum accumulation in root tip. Roots of 5-day-old seedlings 
of three rice cultivars, i.e. Ka (Kasalath), Ko (Koshihikari), and R132 
(Rikuu-132), were treated for 24 h with 10 μM AlCl3 + 0.2 mM CaCl2 
(pH 4.9) under light (LIGHT) or dark conditions in the presence of 1 mM 
mevalonate and 1 mM glucose (DARK[M,G]). More than six root tips were 
used for each cultivar, and two representative tips are shown. Aluminum 
accumulation was observed by hematoxylin staining; denser purple 
staining indicates greater Al accumulation. Scale bar: 1 mm.
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2007). We measured the mRNA levels of  these genes. 
Under L, both HMGs generally showed slightly higher 
transcript levels in the Al-tolerant R132 root tips than in the 
Al-sensitive Ko root tips, irrespective of  the Al treatment. 
Their transcript levels were generally decreased by the Al 
treatment (Fig.  6A). The transcript levels of  both HMGs 
were higher under DMG than under L (1.41–2.76 times 
higher) (Fig. 6B). The Al treatment decreased HMG tran-
script levels in the Al-sensitive Ko, but increased them in the 
Al-tolerant R132. Irrespective of  the illumination conditions, 
the transcript level of  HMG2 was always higher than that 
of  HMG3.

Discussion

New finding that enhanced Al tolerance of rice cultivars 
in the dark is not related to changes in phospholipids 
in the root tip

Several studies have focused on the effects of different ions in 
the rhizosphere (OH－, H＋, Ca2＋, Mg2＋, phosphate, SO4

2－)  
on Al tolerance (Tanaka et  al., 1987). However, none has 
focused on the effects of aboveground conditions on Al toler-
ance. Here, we have shown for the first time that the Al toler-
ance of Al-sensitive temperate japonica cultivars was enhanced 

Fig. 3. Sterol composition in 1-cm root tip of two rice cultivars (Ko, Koshihikari; R132, Rikuu-132) under different illumination conditions. Length of each 
bar indicates concentration of Δ5-sterols (µg g−1 FW of root tips); number within each bar indicates relative proportion of each sterol to total Δ5-sterols 
in that treatment (%). As the composition of cholesterol was too low (0.33–0.69%), it is concealed below that of 24-methylene cholesterol. Five-day-old 
rice seedlings were treated for 24 h with 0.2 mM CaCl2 in the presence or absence of 10 µM AlCl3 (pH 4.9) under light conditions (L) or dark conditions 
in the presence of 1 mM mevalonate and 1 mM glucose (DMG). Values are means of three independent replicates±standard error. Different letters in bars 
indicate significant differences (P<0.05; Fisher’s LSD) among the same sterol species in all treatments under the same illumination conditions.
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under darkness, especially in the presence of the precursors 
MVA and glucose (under DMG; Fig. 1). Aside from genetic 
engineering techniques, no other methods have successfully 
produced rice lines with enhanced Al tolerance. Dark or DMG 
conditions did not retard net root elongation in the absence of 
Al, and the net root elongation in the Al treatment under D or 
DMG was considerably increased in the most Al-sensitive tem-
perate japonica cultivar Ko, compared with that under L (ca 
60% increase under DMG) (Supplementary Table S2). These 
results indicate that the increase in Al tolerance under DMG 

is not an artefact of the calculation of the relative value for 
Al tolerance, but reflects an actual increase in root elongation 
under DMG.

The phospholipid content in the root tip did not differ 
significantly among the three rice cultivars, irrespective of 
the Al treatment and the illumination conditions (Fig.  4). 
The weaker negative charge associated with lower phospho-
lipid content in the PM has been reported as an effective 
Al-tolerance mechanism in rice, Arabidopsis, and tobacco 
(Khan et  al., 2009; Kobayashi et  al., 2013, Maejima et  al., 
2014; Wagatsuma et al., 2015; Zhang et al., 2016). However, 
we found that the phospholipid content did not contribute to 
the differences in Al tolerance among cultivars in this study. 
Greater permeation of Al through the PM into the cytoplasm 
is suggested to result not only from increased phospholipid 
content in the PM, but also from increased contents of other 
lipid species without a negative charge, such as sterols, which 
affects the permeability of the PM.

Enhanced Al tolerance of Al-sensitive Ko in the dark is 
due to quantitative and qualitative changes in sterols 
and regulated partitioning of IPP to plastids

The lower Al accumulation in the root tip of the Al-tolerant 
cultivar under L (Fig.  2) is consistent with the results of a 

Table 1. Proportional ratios of major sterol species under different 
conditions (calculated from data shown in Fig. 3)

Al/Cont: proportion of each sterol species to total sterols in Al/that in 
control. AlDMG/AlL: proportion of each sterol species to total sterols 
in Al under DMG/that in Al under L.

Sitosterol Stigmasterol Campesterol

Al/Cont L R132 1.02 1.12 1.02
Ko 1.00 1.17 1.04

DMG R132 1.04 0.96 0.95
Ko 0.99 0.91 0.95

AlDMG/AlL R132 0.87 0.91 0.97
Ko 0.89 0.80 0.94

Fig. 4. Phospholipids content in 1-cm root tip of three rice cultivars with or without Al treatment under different illumination conditions (μmol g−1 
FW). Five-day-old rice seedlings were treated for 24 h with 0.2 mM CaCl2 in the presence or absence of 10 μM AlCl3 (pH 4.9) under light (L) or dark 
conditions in the presence of 1 mM mevalonate and 1 mM glucose (DMG). Ka, the most Al-sensitive indica aus cv. Kasalath; Ko, Al-sensitive japonica cv. 
Koshihikari; R132, Al-tolerant japonica cv. Rikuu-132. Values are means of independent replicates±standard error. The same letters above bars indicate 
non-significant differences (P<0.05; Fisher’s LSD).
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previous study (Khan et al., 2009). Under DMG, the Al accu-
mulation in the root tip was remarkably decreased only in the 
most Al-sensitive temperate japonica cultivar Ko. There are 
no previous reports of a decrease in Al accumulation in the 
root tip of rice under DMG.

Several studies have isolated and characterized Al toler-
ance genes from rice (Liu et al., 2014). However, fewer studies 
have focused on Al tolerance mechanisms or genes related to 
lipid metabolism.

Under L, the total sterol content in the Al treatment 
was higher in the Al-tolerant R132 than in the Al-sensitive 
Ko (Fig.  3). Under DMG, the increase in Al tolerance in 
Al-sensitive Ko was accompanied by an increase in the total 
sterol content and the relatively greater decrease in Al accu-
mulation in the root tip, compared with that in the root tip of 
the Al-tolerant R132 in the Al treatment (Figs 1–3). Therefore, 
our results indicate that higher Al tolerance is related to 
higher sterol content and lower Al accumulation in the root 
tip. These points agreed with the results of other studies 
on pea (P.  sativum), triticale (×Triticosecale Wittmark cv. 
Currency), maize (Zea mays), wheat (Triticum aestivum), sor-
ghum (Sorghum bicolor), rice, and Arabidopsis (Khan et al., 
2009; Wagatsuma et al., 2015).

Campestanol, P1 (stigmasta-5,7,Z-24(241)-trien-3β-ol) and 
P2 (ergosta-5,7,24(241) -trien-3β-ol) (Fig.  7) were far lower 

than those of the three major sterols and the two minor sterol 
species detected in this study (Fujioka et al., 1997; Kim et al., 
2005). Therefore, the changes in the sterol profile can be dis-
cussed based on the fate of these five sterol species. In normal 
light conditions, the proportional ratio (Al/Cont) of the two 
major sterols (sitosterol and campesterol) in the Al-tolerant 
R132 was almost 1.0. The proportional ratio of stigmasterol 
was increased to 1.12 in the Al-tolerant R132 and 1.17 in the 
Al-sensitive Ko (Table 1). Under DMG, however, the propor-
tional ratio of stigmasterol was decreased in both cultivars 
(0.96 in Al-tolerant R132 and 0.91 in Al-sensitive Ko), and 
the decrease was greater in the Al-sensitive Ko. There was a 
greater decrease in the ratio of the proportion of stigmasterol 
to total sterols in the Al treatment under DMG to that under 
L (AlDMG/AlL) in the Al-sensitive Ko than in the Al-tolerant 
R132 (0.91 in Al-tolerant R132 and 0.80 in Al-sensitive Ko). 
Stigmasterol has no ability to reduce membrane permeabili-
zation because of the trans-oriented double bond at C22 in its 
side chain (Schuler et al., 1991; Hartmann, 1998).

The initial Δ5-sterols, i.e. isofucosterol and 24-methylene 
cholesterol, are formed from P1 and P2, respectively (Fig. 7), 
in a reaction catalysed by Δ5,7-sterol Δ7-reductase encoded 
by DWARF5 (Choe et  al., 2000; Benveniste, 2002) (⑤ in 
Fig. 7). Formation of stigmasterol from sitosterol is catalysed 
by sterol-Δ22-desaturase encoded by CYP710A1 (Morikawa 

Fig. 5. Carotenoid content in 1-cm root tip of two rice cultivars under different illumination conditions. Ko, Koshihikari; R132, Rikuu-132; L, light 
conditions; DMG, dark conditions in the presence of 1 mM mevalonate and 1 mM glucose. Values are means of independent replicates±standard error. 
Letters (a–c) above error bars indicate significant differences (P<0.05; Fisher’s LSD).
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et al., 2006). We suggest that the reduced proportion of stig-
masterol in the Al-sensitive Ko under DMG may be due to 
inhibition of sterol-Δ22-desaturase (⑥ in Fig. 7) by Al that 
accumulated to moderately high level in the Al-sensitive Ko 
(Fig. 2).

The proposed effects of Al on sterol synthesis, based on 
the data obtained in this study, can be summarized as follows. 
Under L, Al inhibited the activity of Δ5,7-sterol Δ7-reductase, 
especially in the Al-sensitive Ko, as shown in the sterol pro-
files in Figs 3 and 7 and Table 1 (decreased isofucosterol and 
increased stigmasterol in the Al treatment). Under D, Al treat-
ment inhibited the activity of sterol-Δ22-desaturase, especially 
in the Al-sensitive Ko as shown in Figs 3 and 7 and Table 1 
(increased isofucosterol and decreased stigmasterol in the Al 
treatment). The higher Al accumulation in the Al-sensitive 
Ko (Fig. 2) supports these results. The Al-sensitive Ko may 
have greater potential to change the Al-targeted enzyme from 
Δ5,7-sterol Δ7-reductase to sterol-Δ22-desaturase to enhance 
Al tolerance under D.  This is promising information for a 
new strategy to generate Al-tolerant rice lines, although its 
detailed mechanisms are unknown. The most Al-sensitive 
indica aus, Ka, showed the largest increase in the proportion 
of stigmasterol out of total sterols in response to Al, irre-
spective of the illumination conditions: 20.5 ± 0.26% in the 
Al treatment and 16.2 ± 0.27% in the control (P<0.01; t-test) 
under L, and 20.5 ± 0.73 in the Al treatment and 14.0 ± 0.18% 
in the control under DMG (P<0.01; t-test) (Supplementary 
Fig. S1). This result suggests that the same mechanisms op-
erate in the most Al-sensitive indica aus, Ka, as in the two 
temperate japonica cultivars.

Under dark conditions, instant activation of the MVA 
pathway provides increased amounts of precursors for the 
biosynthesis of sterols, which are required for growth in 
search of light (Rodríguez-Concepción, 2006). The pivotal 

MVA intermediate IPP is transported to the plastid for the 
production of carotenoids under dark conditions (Park et al., 
2002). An active MEP pathway has been found in some non-
photosynthetic tissues such as roots (Walter et  al., 2002; 
Hampel et al., 2005; Seemann et al., 2006; Goldwasser et al., 
2008; López-Ráez et al., 2008; Kohlen et al., 2011; Abe et al., 
2014). Although active crosstalk of cytosolic IPP from the 
MVA pathway has been reported between the cytosol and the 
plastid, there is no information on IPP crosstalk in the roots 
under different illumination conditions. In the Al-sensitive 
Ko, carotenoid production was inhibited by Al treatment 
under DMG (Fig. 5), although greater carotenoid accumu-
lation occurred in the Al treatment under L.  Carotenoids 
are not the only plastidial compounds biosynthesized in the 
MEP pathway, but their fate is a measure of the crosstalk 
of cytosolic IPP between the cytosol and the plastids (④ in 
Fig. 6). These results suggested that the Al-sensitive Ko was 
able to shut down the cytosolic IPP transporter system under 
Al treatment in DMG to supply more IPP for increased sterol 
biosynthesis.

Enhanced expression of HMGs and its relationship 
with sterol biosynthesis in the rice root tip under DMG

We detected HMG1 (data not shown), but this gene is prob-
ably a pseudogene and is not a functional gene in temperate 
japonica rice (Nelson et al., 1994).

The transcript levels of  HMG genes, especially HMG2, 
were slightly higher in the whole roots of  dark-grown seed-
lings than in those of  light-grown seedlings of  temperate 
japonica rice (Ha et al., 2001). The HMG transcription pat-
terns and levels detected in rice root tips in this study were 
consistent with the results of  Ha et al. (2001). The transcript 
levels of  HMG genes under DMG were 1.41–2.76 times 

Fig. 6. Relative transcript levels of HMG2 and HMG3 in 1-cm root tip of two rice cultivars under different light conditions. Five-day-old rice seedlings 
were treated for 24 h with 0.2 mM CaCl2 under L (light conditions) (A) or DMG (dark conditions with 1 mM mevalonate and 1 mM glucose) (B). Total 
RNA was extracted from frozen 1-cm root tips and used for real-time qRT-PCR. Relative transcript levels of HMGs were normalized to that of 18S rRNA 
(internal control). Numbers in parentheses indicate relative transcript level of each HMG under DMG to that under L. Rice cultivars: Ko, Koshihikari; R132, 
Rikuu-132. Values are means of three independent replicates±standard error. Different letters in bars indicate significant differences (P<0.05; Fisher’s 
LSD) among all treatments.
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higher than those under L irrespective of  the rice geno-
type or the presence of  Al (Fig. 6). The transcript level of 
HMG2 was always higher than that of  HMG3. Rice HMG2 
is homologous to Arabidopsis HMG1, which is a sterol bio-
synthesis housekeeping gene (Ha et al., 2001). There is no 

direct evidence for the function of  HMG3 in rice, but its 
encoded product is thought to be involved in both sterol bio-
synthesis and triterpenoids biosynthesis. Previous reports 
have shown that MVA in the medium is incorporated rap-
idly into sterols (Adler and Kasprzyk, 1975; Atallar et al., 
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1975). In the present experiment, therefore, we added 1 mM 
MVA to the medium under D to supply supplementary sub-
strate for sterol biosynthesis (Fig. 7).

Under L, the total sterol content in the root tip was gen-
erally parallel to the transcript levels of  HMGs (Figs 3 and 
6A). In the Al treatment, the transcript levels of  HMGs 
and the total sterol content were lower in the Al-sensitive 
Ko than in the Al-tolerant R132. The lower total sterol con-
tent in the Al-sensitive Ko than in the Al-tolerant R132 in the 
Al treatment (Fig. 3) is proposed to result from the greater 
inhibition of  HMGR activity resulting from the higher 
concentration of  root tip Al (Fig. 2) and the slightly lower 
transcript levels of  HMGs (Fig. 6). Under DMG, however, 
the sterol content in the root tip was not parallel to the tran-
script levels of  HMGs (Figs 3 and 6B). One of  the reasons 
for this discrepancy may be the post-translational control of 
HMGR by sucrose non-fermenting (SNF)-1 related protein 
kinase-1 (SnRK1), which inactivates HMGR by phosphor-
ylation of  Ser-577 (Halford et al., 2003). Further studies are 
required to clarify the roles of  such post-translational regu-
lation. Another possible reason for this discrepancy may be 
the unknown lipid homeostatic mechanisms observed in sev-
eral previous studies (Wang et al., 2014; Wagatsuma et al., 
2015; Zhang et  al., 2016). That is, under normal growth 
conditions, there was no increase in monogalactosyldiacyl-
glycerol synthase (MGD) in the leaves of  tobacco overex-
pressing MGD (Wang et al., 2014; Zhang et al., 2016), nor 
was there a decrease in sterol content in Arabidopsis plants 
with knocked-down expression of  CYP51 (which encodes 
obtusifoliol 14α-demethylase, the enzyme converting obtusi-
foliol to 24-methylene lophenol, the precursor of  Δ5-sterols) 
(Kushiro et al., 2001; Wagatsuma et al., 2015).

Although the expression levels of HMGs under DMG were 
almost double those under L (Fig. 6B), the total sterol content 
in all root tips was lower under DMG than under L (72.2–
96.1% of that under L) (Fig. 3). The light conditions affect 
many aspects of metabolism, especially sugar-related metab-
olism. Therefore, the differences in sterol contents under the 
different illumination conditions reflected natural changes in 
metabolism. The greater decrease in the total sterol content in 
Ko under DMG (72.2% of that under L, Fig. 3) than in R132 
under DMG (90.9% of that under L, Fig. 3) in the control 
may be due to a larger decrease in sucrose translocation from 
the shoot to the root tip under dark conditions.

In this study, we found that the Al-sensitive temperate ja-
ponica rice cultivars showed enhanced Al tolerance under 
dark conditions. Changes in phospholipids were not the de-
terminant of increased Al permeation into the cytoplasm or 
differences in Al tolerance among rice cultivars under Al treat-
ment. The results of the study suggest that the Al-sensitive 
temperate japonica rice cultivar had the following control 
mechanisms in the Al treatment under dark conditions: (i) in-
hibition of sterol-Δ22-desaturase, which decreased the produc-
tion of stigmasterol; (ii) inhibition of cytosolic IPP transport 
to the plastid, which increased the supply of the precursor for 
sterol biosynthesis; and (iii) enhanced expression of HMGs, 
which increased sterols biosynthesis. These findings have iden-
tified new targets for the generation of new Al-tolerant plants.
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Table S1. Proportion of minor sterol species under differ-

ent conditions.
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Fig. S1. Sterol contents in 1-cm root tip of rice cv. Ka 

under different illumination conditions.
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