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Increased mortality and morbidity occur among human immunodeficiency virus (HIV)–infected patients in whom CD4+ T-cell 
counts do not increase despite viral suppression with antiretroviral therapy (ART). Here we identified an underlying mechanism. 
Significantly elevated plasma levels of anti-CD4 immunoglobulin G (IgG) were found in HIV-positive immunologic nonresponders 
(ie, HIV-positive individuals with CD4+ T-cell counts of ≤350 cells/μL), compared with levels in HIV-positive immunologic respond-
ers (ie, HIV-positive individuals with CD4+ T-cell counts of ≥500 cells/μL) and healthy controls. Higher plasma level of anti-CD4 IgG 
correlated with blunted CD4+ T-cell recovery. Furthermore, purified anti-CD4 IgG from HIV-positive immunologic nonresponders 
induced natural killer (NK) cell–dependent CD4+ T-cell cytolysis and apoptosis through antibody-dependent cell-mediated cytotox-
icity (ADCC) in vitro. We also found that anti-CD4 IgG–mediated ADCC exerts greater apoptosis of naive CD4+ T cells relative to 
memory CD4+ T cells. Consistently, increased frequencies of CD107a+ NK cells and profound decreases of naive CD4+ T cells were 
observed in immunologic nonresponders as compared to responders and healthy controls ex vivo. These data indicate that autoreac-
tive anti-CD4 IgG may play an important role in blunted CD4+ T-cell reconstitution despite effective ART.
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The advent of antiretroviral therapy (ART) has dramatically 
improved survival and slowed disease progression in human 
immunodeficiency virus (HIV)–infected individuals [1]. 
ART suppresses HIV replication, improves immune function, 
restores peripheral CD4+ T-cell counts, and decreases mor-
bidity and mortality [2, 3]. However, in a substantial num-
ber of patients, CD4+ T-cell counts are not restored to levels 
observed in healthy controls, despite prolonged HIV suppres-
sion with ART [4]. Aviremic ART recipients whose peripheral 
CD4+ T-cell counts rebound to ≥500 cells/μL can be defined 
as immunologic responders, while patients with CD4+ T-cell 
counts that remain at ≤350 cells/μL despite effective viral 
suppression are defined as immunologic nonresponders [5]. 
Notably, increased levels of inflammation, cardiovascular dis-
ease risk, neurologic dysfunction, malignancy, and liver dis-
ease are observed in nonresponders [6–8].

Potential mechanisms of poor CD4+ T-cell reconstitution 
after viral suppression with ART in HIV disease have been 
extensively explored, including persistent immune activation, 
presence of lymphoid fibrosis, thymic insufficiency, and gut 
mucosal dysfunction leading to microbial translocation and 
inflammation [5, 9–11]. However, a mechanism specific to 
direct CD4+ T-cell destruction in patients with virologic sup-
pression is not known.

In the current study, we examined the potential role of 
anti-CD4 immunoglobulin G (IgG) in insufficient recov-
ery of the CD4+ T-cell count. Here, in the setting of ART and 
long-term virologic suppression, we found that plasma levels 
of anti-CD4 IgG were increased in nonresponders relative to 
those in responders and healthy controls. In vitro, anti-CD4 IgG 
purified from plasma of nonresponders mediated CD4+ T-cell 
cytolysis and apoptosis. Thus, our results suggest that anti-CD4 
autoantibodies may constitute an important mechanism of 
blunted immune restoration in HIV-infected patients with viro-
logic suppression.

METHODS

Study Subjects

Three study groups, healthy controls, HIV-positive responders, 
and HIV-positive nonresponders were included in the pres-
ent study. The clinical characteristics are shown in Table 1. All 
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HIV-positive responders and HIV-positive nonresponders had 
been receiving ART and had had an undetectable plasma HIV-1 
RNA load (ie, <40 copies/mL) for at least 2 years. Long-term 
nonprogressors were HIV-infected patients who had main-
tained undetectable or low levels of plasma HIV RNA (ie, <5000 
copies/mL) without ART for >10  years [12]. All participants 
provided written informed consent. This study was approved by 
the institutional review board from the Medical University of 
South Carolina and the University of Alabama at Birmingham.

Flow Cytometry

Peripheral blood mononuclear cells (PBMCs) were isolated 
over a Ficoll-Hypaque cushion (GE, Pittsburgh, PA) from eth-
ylenediaminetetraacetic acid–containing blood specimens. 
Plasma was isolated, aliquoted, and stored at −80°C before use. 
Antibodies were incubated with PBMCs at 4°C for 30 minutes 
for surface staining and for 30 minutes for intracellular staining 
after membrane permeabilization (Fixation/Permeabilization 
Solution Kit; BD Pharmingen, San Jose, CA). The following 
fluorochrome-labeled monoclonal antibodies (clones) from BD 
were used: anti-CD4 (RPA-T4), anti-CD3 (OKT3), anti-CD8 
(RPA-T8), anti-CD45RA (HI100), anti-CD107a (H4A3), anti–
interferon γ (IFN-γ; B27), anti-CD38 (HIT2), anti-HLA-DR 
(G46-6), annexin V, and isotype control antibodies. Ghost Red 
780 was purchased from Tonbo Biosciences (San Diego, CA). 
Cells were collected in a BD FACSVerse Flow Cytometer (BD 
Biosciences), and data were analyzed by FlowJo software (ver-
sion 10.0.8).

Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Anti–

Nuclear Antigen and Anti–Double-Stranded DNA (dsDNA) IgG

Plasma levels of anti-dsDNA IgG were quantified using a com-
mercial kit according to the manufacturer’s protocol (Immuno-
Biological Laboratories, Minneapolis, MN). Anti–nuclear 
antigen IgG detection was performed by ELISA, using Hep-2 
laryngeal carcinoma cells (ATCC, Manassas, VA) lysate as the 
coating antigens.

ELISA Development for Detection of Anti-CD4 IgG and Anti-CD8 IgG

Human soluble CD4 protein (sCD4; Progenics, Tarrytown, 
NY) or human soluble CD8B/P37/LEU2 protein (sCD8; Sino 
Biological, Beijing, China) were diluted at a concentration of 

16 μg/mL, added to microtiter wells, and incubated at 4°C over-
night. Microwells were washed 3 times with phosphate-buffered 
saline (PBS) wash buffer (ie, PBS with 0.1% Tween 20) and then 
blocked with PBS containing 3% bovine serum albumin (BSA) 
for 120 minutes at 37°C. Plasma was diluted 1:40 in PBS con-
taining 3% BSA, and 100 μL of the dilution was added to the 
wells. The plate was incubated at room temperature for 60 min-
utes. Biotin-labeled goat anti-human IgG was added at a 1:5000 
dilution in PBS containing 3% BSA. The plate was then incu-
bated for 60 minutes at room temperature. Horseradish peroxi-
dase–conjugated streptavidin was added at a 1:1000 dilution in 
PBS containing 3% BSA and then incubated for 30 minutes at 
room temperature. After washing, 100 μL of 2,2'-azino-di(3-eth-
ylbenzthiazoline-6-sulfonate) was added and incubated for 30 
minutes, and 405-nm emission was read within 30 minutes.

Antibody Affinity Purification

Total IgG was purified from plasma of nonresponders by using 
protein A/G agarose beads in accordance with the manufactur-
er’s instructions (Pierce, Pittsburgh, PA). Anti-CD4–specific 
IgG from plasma of nonresponders was purified using NHS 
Mag Sepharose (GE Healthcare, Wauwatosa, WI). sCD4 pro-
tein was covalently coupled to NHS magnetic beads. Plasma 
samples and binding buffer were mixed at a 1:1 ratio in the 
presence of 2 M urea and incubated at 4°C for 4 hours in a col-
umn with sCD4 immobilized on magnetic beads. The unbound 
fraction was removed using a magnetic tube rack. To purity 
high-affinity antibodies, the column was washed extensively 
with 50 mM Tris/150 mM NaCl in the presence of 2 M urea. 
Antigen-specific polyclonal IgG was eluted sequentially with 0.1 
M glycine/HCl buffer plus 2 M urea at pH 2.9. The purified IgG 
was concentrated using ultracentrifugal filters (Amicon, EMD 
Millipore, MA), and the IgG concentration was assessed by 
quantitative ELISA. Human IgG (ThermoFisher, Rockford, IL) 
and the human monoclonal anti-CD4 antibody zanolimumab 
(HuMax-CD4; Genmab) were used to generate standard curves.

To prepare negative controls, purified anti-CD4 IgG from 
plasma of nonresponders was pretreated with sCD4 at a con-
centration ratio of 1:2 at 4ºC for 30 minutes (control 1), and 
anti-CD4 IgG-depleted total IgG from nonresponders was 
prepared by sCD4 protein-coupled NHS magnetic beads, 

Table 1. Clinical Characteristics of Study Participants

Characteristic
Healthy Control  

(n = 17)
HIV-Positive  

Responders (n = 26)
HIV-Positive  

Nonresponders (n = 22)
P (Responders vs 
Nonresponders)

Sex ratio, female:male 12:5 7:19 5:17 >.99

Age, y 38 (33–55) 43 (30–55) 47 (40–53) .25

CD4+ T-cell count, cells/µL 782 (534–982) 655 (558–804) 259 (231–287) <.0001

ART duration, y … 4 (3.8–6) 6 (2.5–8) .26

Nadir CD4+ T-cell count, cells/µL … 381 (226–591) 54 (14–155) <.0001

Data are median (interquartile range).
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using NHS Mag Sepharose (control 2). A  human monoclo-
nal anti-CD4 antibody, zanolimumab, was used as a positive 
control.

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)
Antibody-Dependent NK Cell Activation
CD107a and IFN-γ intracellular staining in NK cells was per-
formed to assess NK cell cytotoxicity. Briefly, PBMCs from 
aviremic HIV-positive ART recipients were used to isolate NK 
cells, using the NK Cell Enrichment Kit; and CD4+ T cells, 
using the CD4+ T-Cell Enrichment Kit (StemCell, Vancouver, 
Canada). The purities of CD4+ T cells were >95%, and the puri-
ties of NK cells were >94%. Purified NK cells were cocultured 
with CD4+ T cells at 1:1 ratio in 96-well U-bottomed plates 
(Corning, NY) in the presence of anti-CD4 IgG and controls. 
PE-conjugated anti-CD107a, monensin (2.6  μg/mL; BD), and 
brefeldin A (5 μg/mL; BD) were added and incubated 15 min-
utes. Next, plates were spun at 250 × g for 4 minutes and incu-
bated for 6 hours at 37°C. After incubation, cells were surface 
stained with antibodies, permeabilized, intracellularly stained, 
and analyzed by flow cytometry.

Antibody-Dependent CD4+ T-Cell Activation, Cytotoxicity, and 
Apoptosis
NK cells were cocultured with CD4+ T cells at a 3:1 ratio in 
96-well V-bottomed plates (Corning, NY) in the presence of 
anti-CD4 IgG and controls. Cells were incubated for 15 min-
utes, spun at 300 × g for 1 minute, and incubated for 6 hours at 
37°C. After incubation, cells were surface stained and fixed with 
2% paraformaldehyde solution containing a constant number 
of flow cytometry particles (5 × 104 particles/mL; AccuCount 
blank particles, 5.3 μm; Spherotech, Lake Forest, IL). A constant 
number of particles (2.5 × 103) were counted during cytome-
try acquisition, to normalize the number of CD4+ T cells. The 
cytolysis percentage was calculated using the formula: [(num-
ber of CD3+ T cells in the presence of medium alone) − (num-
ber of CD3+ T cells in the presence of anti-CD4 IgG)]/(number 
of CD3+ T cells in the presence of medium alone) × 100. Cell 
apoptosis was analyzed by annexin V binding.

Statistical Analysis

The differences in continuous measurements were compared 
using the Mann-Whitney U test (unpaired) and the Friedman 
paired nonparametric test (paired). In the prespecified hypoth-
esis, we were interested in the comparisons of nonresponders 
versus responders or healthy controls; therefore, P values from 
comparing nonresponders to each control group were not 
adjusted for multiple comparisons [13]. The same approach was 
applied to the comparisons of immune parameters induced by 
anti-CD4 IgG and control antibodies. To explore associations 
between pairs of continuous variables, Spearman rank correla-
tion was used. A multivariable linear regression model with log 
transformation was used to analyze anti-CD4 IgG, using SAS 

(version 9.3, Cary, NC). All tests were 2-sided, and P values of 
≤.05 were considered to denote statistical significance.

RESULTS

All patients (26 responders and 22 nonresponders) were receiv-
ing virologically suppressive ART. There was no difference in 
sex, age, and years of ART between responders and nonre-
sponders. However, nadir CD4+ T-cell counts were significantly 
lower in nonresponders compared to responders (Table 1).

Elevated Plasma Anti-CD4 IgG Levels Are Present in HIV-Infected 

Subjects After ART and Correlate With Blunted CD4+ T-Cell Recovery In 

Vivo

Elevated plasma levels of autoreactive antibodies have been 
previously observed in untreated HIV and simian immunodefi-
ciency virus infections [14–17], and levels of these autoantibod-
ies decrease markedly after ART [18]. A previous study showed 
that self-reactive repertoires of immunoglobulin M and IgG in 
responders differed significantly from those of nonresponders 
[19]. These results suggest that autoantibodies may differ in 
nonresponders and responders and may be impacted by treat-
ment. To investigate the association of autoantibody production 
with incomplete immune reconstitution, we quantified plasma 
levels of CD4-specific autoreactive IgG in a cross-sectional 
study and correlated them with peripheral CD4+ T-cell counts. 
When we stratified the ART recipients by CD4+ T-cell count 
(responders versus nonresponders), we found that peripheral 
CD8+ T-cell counts were similar between the 2 HIV-positive 
study groups, suggesting that CD4+ T-cell depletion but not 
CD8+ T-cell count characterizes nonresponders (Figure  1A). 
Moreover, plasma anti-CD4 IgG levels were significantly higher 
in nonresponders relative to those in responders and healthy 
controls (Figure  1B), and the difference in plasma anti-CD4 
IgG level between responders and nonresponders was still sig-
nificant after controlling for nadir CD4+ T-cell count, age, and 
sex, which are thought to potentially be involved in CD4+ T-cell 
decline in HIV disease (P = .04) [20–22]. Both findings suggest 
the independence of anti-CD4 autoantibodies as a correlate of 
immune discordance in the 2 HIV-positive study groups. In 
addition, we found that 3 outliers among responders (ie, those 
with the highest plasma anti-CD4 IgG levels) had autoimmune 
diseases and higher levels of both current and nadir CD4+ T-cell 
counts, suggesting that a high level of plasma anti-CD4 antibod-
ies does not always result in CD4+ T-cell depletion in patients. 
Furthermore, plasma anti-CD4 IgG levels were inversely cor-
related with peripheral CD4+ T-cell counts (r = −0.53; P = .0002; 
Figure 1C) in HIV-infected subjects but not in healthy controls 
(r = 0.21; P = .42; Figure 1D).

To define whether increased anti-CD4 IgG levels in nonre-
sponders and responders may be due to increased antigen avail-
ability, plasma sCD4 levels were analyzed. Interestingly, plasma 
sCD4 levels were similar among the 3 study groups (Figure 1E), 
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suggesting that differences in plasma anti-CD4 IgG levels in 
nonresponders and the other study groups were not due to 
soluble antigen availability in peripheral blood. To determine 
whether the presence of anti-CD4 antibodies in nonresponders 
represented a specific anti-CD4 response or was a generalized 

phenomenon due to polyclonal B-cell activation, we assayed for 
multiple other autoantibodies, including anti-CD8 IgG, anti–
nuclear antigen, and anti–dsDNA IgG, in plasma of healthy 
controls and patients. Notably, unlike anti-CD4 IgG, plasma 
levels of anti-CD8 IgG, anti-dsDNA IgG, and anti–nuclear 
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Figure 1. Increased plasma anti-CD4 immunoglobulin G (IgG) levels in aviremic antiretroviral therapy (ART)–recipient immunologic nonresponders. A, Median absolute 
numbers of peripheral CD4+ and CD8+ T cells, assessed by flow cytometry, in healthy controls, responders, and nonresponders. B, Median plasma levels of anti-CD4 IgG in 
healthy controls, responders, nonresponders, and long-term nonprogressors (LTNPs). C and D, Correlations between plasma levels of anti-CD4 IgG and peripheral CD4+ T-cell 
counts in all ART-recipient aviremic human immunodeficiency virus (HIV)–infected subjects (C) and healthy controls (D). E, Median plasma levels of soluble CD4 (sCD4) antigen 
in healthy controls, responders, and nonresponders. Statistical analyses were performed using the Mann-Whitney U test (unpaired).
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antigen were similar among healthy controls, responders, and 
nonresponders (Supplemental Figure 1A–1C), and none were 
correlated with peripheral CD4+ or CD8+ T-cell counts in HIV-
infected subjects (data not shown). These results suggest that the 
mechanism eliciting anti-CD4 IgG production may be different 
from those of other autoantibodies in treated HIV disease.

Anti-CD4 IgG of Immunologic Nonresponders Induce NK Cell Activation

Our recent work has shown that purified NK cells from nonre-
sponders induced uninfected CD4+ T-cell death in vitro, sug-
gesting that NK cells may be involved in CD4+ T-cell depletion 
and reconstitution during ART [23]. To further analyze the 
potential impact of anti-CD4 antibodies in nonresponders, 
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Figure 2. Anti-CD4 antibody-dependent natural killer (NK) cell activation. CD4+ T cells were cultured with purified anti-CD4 immunoglobulin G (IgG) from nonresponders or 
control antibodies and cocultured with NK cells at a ratio of 1:1. Intracellular CD107a and interferon γ (IFN-γ) expression in NK cells was analyzed by flow cytometry. A, Dot plots 
from a representative donor show CD107a and IFN-γ expression in NK cells in response to different concentrations of anti-CD4 antibodies from nonresponders. B, Percentages 
of NK cells expressing IFN-γ and CD107a in response to different concentrations of anti-CD4 IgG from 5 different nonresponders in vitro. Analyses were performed by the 
Friedman paired nonparametric test. C, Median percentages of NK cells expressing IFN-γ and CD107a in a mixed culture of CD4+ T cells and NK cells in the presence of anti-CD4 
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response to anti-CD4 IgG from nonresponders and controls at 5 μg/mL in vitro. Analyses were performed using the Mann-Whitney U test (unpaired). D, Percentages of CD4+ T 
cells undergoing apoptosis in response to different concentrations of anti-CD4 IgG from 5 different nonresponders through ADCC. Analyses were performed by the Friedman 
paired nonparametric test. E, Percentages of CD4+ T cells undergoing apoptosis in response to anti-CD4 IgG from nonresponders and controls at 5 μg/mL in vitro. Analyses 
were performed using the Mann-Whitney U test (unpaired). SSC, side scatter.
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we purified anti-CD4 IgG from plasma of nonresponders 
and analyzed their impact on NK cell–mediated cytotoxicity. 
To identify the CD4 specificity of anti-CD4 IgG from nonre-
sponders, we used purified anti-CD4 IgG pretreated with sCD4 
or anti-CD4 IgG-depleted total IgG from nonresponders as a 
negative control. Equal concentrations of negative controls and 
zanolimumab were used. The percentage of NK cells expressing 

IFN-γ or CD107a was analyzed for antibody-dependent NK cell 
activation in vitro. Notably, purified anti-CD4 IgG from non-
responders but not the same concentration of negative control 
induced significant NK cell activation and cytotoxicity (IFN-
γ+ or CD107a+) in a dose-dependent pattern (Figure  2A and 
2C). Consistently, we found an increased frequency of CD107a+ 
NK cells from nonresponders as compared to responders 
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and controls ex vivo (Figure  2D). These results suggest that 
anti-CD4 autoantibodies from nonresponders have the ability 
to induce NK activation and cytotoxicity.

Anti-CD4 IgG From Immunologic Nonresponders Mediate CD4+ T Cell 

Cytolysis and Apoptosis Through ADCC

We next assessed whether anti-CD4 IgG from nonrespond-
ers can induce ADCC and death of primary CD4+ T cells. To 
quantitate the absolute CD4+ T-cell count in the mixed culture 
including NK cells (CD3−) and CD4+ T cells (CD3+), we stained 
cells for CD3 but not CD4 to avoid any possibility that puri-
fied anti-CD4 antibodies could bind and block surface CD4 
on CD4+ T cells. Notably, anti-CD4 IgG from nonresponders 
but not from negative controls induced CD4+ T-cell cytoly-
sis and apoptosis in vitro (Figure  3). The results suggest that 
anti-CD4 IgG from nonresponders can mediate CD4+ T-cell 
death through ADCC.

Anti-CD4 IgG From Immunologic Nonresponders Mediate CD4+ T Cell 

Activation

Increased surface CD4 expression and coexpression of CD38 
and HLA-DR on CD4+ T cells are related to T-cell activation 
[10, 24]. To determine whether anti-CD4 IgG from nonre-
sponders can activate CD4+ T cells, CD4+ T cells were cul-
tured with anti-CD4 IgG or controls (Figure 4A–4E). Notably, 
anti-CD4 IgG increased CD4 expression on total CD4+ T cells 
(Figure 4A) and coexpression of CD38 and HLA-DR on mem-
ory CD4+ T cells (Figure 4D) in vitro. Parallel to CD4+ T-cell 
activation in vitro, nonresponders had increased CD4 expres-
sion on naive (Figure 4B) and memory (Figure 4C) CD4+ T cells 
and increased coexpression of CD38 and HLA-DR on mem-
ory CD4+ T cells (Figure 4E), compared with responders and 
healthy controls ex vivo. However, neither the CD4 mean fluo-
rescent intensity (MFI) nor the percentages of coexpression of 

CD38 and HLA-DR on CD4+ T cells were increased by zanolim-
umab (data not shown), suggesting a difference in the capacity 
to activate CD4+ T cells or in the binding properties (eg, affinity, 
avidity, or binding site) between zanolimumab and anti-CD4 
IgG. Together, these data suggest that anti-CD4 IgG may play a 
role in CD4+ T-cell activation in HIV-positive nonresponders.

Naive CD4+ T Cells Were Predominantly Depleted in Immunologic 

Nonresponders

Next, we compared apoptosis of naive 
(CD3+CD4+CD8−CD45RA+CD27+) and memory 
(CD3+CD4+CD8−CD45RA−) CD4+ T cells in response to 
anti-CD4 IgG in vitro. Interestingly, although anti-CD4 IgG 
from nonresponders induced apoptosis of both CD4+ T-cell 
subsets, apoptotic induction by anti-CD4 IgG was greater 
on naive as compared to memory CD4+ T cells (Figure  5A). 
Moreover, the ratio of memory to naive CD4+ T cells was sig-
nificantly increased and naive CD4+ T-cell counts were lower 
than memory CD4+ T-cell counts in nonresponders as com-
pared to responders and controls ex vivo (Figure 5B–5C). These 
results are consistent with previous reports that naive CD4+ T 
cells are predominantly depleted in nonresponders [25–27].

DISCUSSION

In the current study, we found that the presence of anti-CD4 
antibodies characterizes nonresponders, as well as evidence 
suggesting that these specific autoantibodies could play a role in 
the mechanisms leading to long-term low recovery of the CD4+ 
T-cell count during virologically successful ART.

Plasma autoanti-CD4 IgG levels vary widely in both respond-
ers and nonresponders (Figure 1B), suggesting that this auto-
antibody may only account for a fraction of peripheral CD4+ 
T-cell counts in patients. Other contributors, such as the lev-
els of chronic T-cell activation and turnover, inflammation, 
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and parameters related to nadir CD4+ T-cell and naive CD4+ 
T-cell counts (eg, thymus dysfunction and irreversible damage 
to secondary lymphoid tissues), may account for the remaining 
variance. In addition, the inverse relationship between plasma 
anti-CD4 IgG and CD4+ T-cell counts does not indicate a causal 
relation in vivo, and elevated plasma anti-CD4 IgG may result 
from CD4+ T-cell activation (Figure 4).

Autoantibodies are present at low levels even in healthy indi-
viduals, but most of them have low affinity and no pathological 
activity [28]. In HIV infection, polyclonal B-cell activation and 
elevated autoantibody levels are present as early as the acute 
phase and persist during chronic infection [29, 30]. Most but 
not all of this activation is reversed after ART [18]. Several stud-
ies have shown negative correlations between plasma or serum 
autoantibodies against CD4+ T cells and CD4+ T-cell count or 
disease progression [31, 32]. However, these studies investigated 
total antibodies with specificities to diverse surface proteins of 
CD4+ T cells, rather than those specific to the CD4 protein. 
Moreover, anti-CD4 antibodies in HIV-infected patients were 
discovered early in the 1990s [33–35]. These studies, however, 
did not define any role of anti-CD4 antibody in HIV pathogene-
sis. Notably, HIV-positive subjects in the 1990s were most likely 
untreated and highly viremic, while nonresponders in the cur-
rent study are aviremic and receiving ART yet have CD4+ T-cell 
counts of <350 cells/µL. Therefore, the different results regard-
ing anti-CD4 IgG of the studies from pre-ART era [36, 37] and 
the present study may be due to the differences in patients’ sta-
tus. Furthermore, autoimmune diseases are often observed in 
HIV-infected individuals after ART initiation, suggesting that 
immune reconstitution by ART may promote autoantibody 
production and the development of autoimmune diseases [38, 
39]. Indeed, our study provides clear experimental evidence 
that, even in the context of viral control, anti-CD4 IgG are not 
only present but have all of the properties required to mediate 
CD4+ T-cell loss by ADCC.

Notably, even in the absence of detectable plasma viral RNA 
after long-term ART, HIV still actively replicates in the B-cell 
follicles of lymph nodes and/or tissues in certain patients, most 
likely nonresponders [40–42]. As a consequence, HIV proteins 
(eg, gp120), CD4 antigens, or released HIV protein-bound CD4 
(eg, gp120-CD4) may accumulate in lymph nodes and induce 
anti-CD4 antibody production in the presence of residual ele-
vated inflammation and B-cell activation after ART initiation 
[5, 43], a possibility that requires investigation in future studies.

In summary, we show that anti-CD4 IgG may participate in a 
thus far undescribed mechanism limiting CD4+ T-cell reconsti-
tution in patients with HIV infection during ART and provide 
evidence of its presence in vivo. Our findings elucidate possible 
new strategies to control antibody-mediated CD4+ T-cell death 
and thereby prevent a blunted recovery in the CD4+ T-cell 
count after ART.
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