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Abstract

The high efficiency of C4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the 
mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, 
we enriched C4 tissues along a developing leaf gradient. This method treats both C4 tissues in an integrity-preserving 
and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, 
thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and 
weaknesses of different C4 tissue separation techniques. While the method reported here achieves the least enrich-
ment, it is the only one that shows neither strong 3′ (degradation) bias, nor different severity of 3′ bias between sam-
ples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that 
aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C4 cycle model, and 
a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full com-
parative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.
hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consist-
encies and their conflicts.
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Introduction

Specialization and coordination between two cell types 
improves photosynthetic efficiency in most C4 photosyn-
thetic plants. Specifically, most C4 plants shuttle carbon 
from a surrounding mesophyll (M) tissue into a surrounded 

bundle sheath (BS) tissue (Hatch, 1987). The shuttling con-
centrates CO2 around the carbon fixing enzyme, Rubisco, 
thereby suppressing photorespiration and increasing pho-
tosynthetic efficiency. This lends selective advantage to 
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C4 plants in photorespiration-inducing (e.g. hot and arid) 
environments (Schulze et  al., 1996). The high photosyn-
thetic efficiency and stress tolerance of  C4 species has led to 
interest in engineering the trait. However, the complexity of 
the trait—with many changes to anatomy and metabolism 
beyond the core biochemical pump—makes this an ambi-
tious goal, which will require a full systems-level under-
standing of  both the mature C4 trait and its development to 
be achieved (Sage and Zhu, 2011).

BS and M cells show extensive specialization in metabo-
lism and anatomy in C4 plants. In the classic C4 arrange-
ment—Kranz anatomy—enlarged BS cells form a ring 
around the vascular bundle and are in turn surrounded by 
M cells (Hatch, 1987). Narrow vein spacing means each M 
cell borders a BS cell, allowing direct transfer of  metabolites 
between them. Compared with a C3 leaf, there is a massive 
increase in the relative amount of  BS tissue, allowing for a 
division of  labor between cell types that includes both pho-
tosynthesis and major facets of  other metabolism (Majeran 
et  al., 2010; Friso et  al., 2010). Following Rubisco, most 
enzymes in the Calvin–Benson–Bassham Cycle (CBBC) and 
the linked photorespiratory cycle are restricted to the BS 
(Broglie et al., 1984; Rawsthorne et al., 1988; Döring et al., 
2016). In Z. mays, distribution of  photosystem II and there-
fore linear electron transport and reducing equivalent regen-
eration are restricted to the M, while the BS relies on ATP 
from cyclic electron transport around photosystem I  and 
biochemical shuttles that transfer reducing equivalents to 
the BS for energy (Romanowska et  al., 2008; Wang et  al., 
2014; Bellasio and Griffiths, 2014). Subsets of  metabolism 
are divided up between the two cell types with, for instance, 
amino acid, nucleotide, and isoprenoid synthesis in the 
M, and sulfur metabolism and starch synthesis in the BS 
(Majeran et al., 2005; Friso et al., 2010).

Information on anatomical and metabolic changes has 
been gained through comparative proteomic and tran-
scriptomic studies both between C3 and C4 species (e.g. 
Bräutigam et  al., 2011, 2014; Gowik et  al., 2011; Wang 
et  al., 2014; Covshoff  et  al., 2016), and between isolated 
tissue types (Majeran et  al., 2005; Friso et  al., 2010; Li 
et  al., 2010; Chang et  al., 2012; Tausta et  al., 2014; John 
et  al., 2014; Aubry et  al., 2014). Many of  the differences 
between cell types are set up early in development, and tis-
sue maturation studies have obtained mechanistic insights. 
For instance, comparison of  C4 and C3 Cleomaceae species 
linked delayed photosynthetic differentiation to extended 
vein proliferation and ultimately closer vein spacing in 
the C4 species (Külahoglu et  al., 2014). In Z.  mays care-
fully comparing the primordia of  Kranz leaf  tissue with 
non-Kranz husk tissue implicated the recruitment of  the 
ScareCrow regulatory module from the root epidermis to 
BS cells (Wang et al., 2013). Potentially due to the difficul-
ties of  isolating cell types, to date there has only been one 
transcriptomics (Tausta et  al., 2014) and one proteomics 
(Majeran et al., 2010) study that have looked at immature 
M and BS tissue. These studies have shown the early estab-
lishment of  tissue specificity of  major C4 enzymes and the 
roles of  M and BS cells in sink vs source tissue to logically 

reflect the broader changes between source and sink tissue. 
As neither of  the above studies could look at metabolites, 
and interstudy comparisons have produced distinct results 
on cell specificity—particularly of  transcription factors 
(Tausta et  al., 2014)—we judged further analysis to be 
warranted.

Here we successfully perform an ‘omics’-scale analysis 
on developmental tissue separated by a method developed 
by Stitt and Heldt (1985), and thus simultaneously capture 
changes in the transcriptome, enzymatic activities, and the 
metabolome. A  subsequent meta-analysis of this and other 
BS and M separation studies highlights the strengths and 
weaknesses of each of the various separation methods, and 
the advantages of using complementary techniques. The com-
parative dataset has been made available for visual explora-
tion or download, and can assist both in experimental design 
both for BS/M related studies and for studies in the broader 
category of tissue separation.

Materials and methods

Plant genome data
Genome and gene-model data was downloaded for Setaria viridis 
(v1.1/v311; Bennetzen et al., 2012) and Panicum virgatum (v1.1/v273; 
DOE-JGI, 2016) from Phytozome 11.0 (Goodstein et al., 2012). The 
AGPv3.22 release of the Zea mays genome with the 5b+ filtered 
gene set was obtained from ensemble plants (Kersey et al., 2016) and 
Gramene (Tello-Ruiz et al., 2016), respectively. Orthologs were identi-
fied by best BLAST (Altschul et al., 1997) hit from Z. mays to S. vir-
idis or P. virgatum.

External RNAseq data
Complementary RNAseq data were downloaded from the sequence 
read archives (Kodama et  al., 2012) and European nucleotide 
archives (Leinonen et al., 2010). We included two additional Z. mays 
BS and M separation studies (Chang et al., 2012: SRP009063; Tausta 
et al., 2014: SRP035577); corresponding whole developmental leaf 
sections (Li et al., 2010; SRP002265); Z. mays tissue atlas (Sekhon 
et al., 2013; SRP010680); and primordial leaf and husk tissue (Wang 
et al., 2013; SRP028231). The non-Z. mays studies were separation 
of BS and M cells in S. viridis (John et al., 2014; ERA275647) and 
P. virgatum (Rao et al., 2016; SRP062667).

Note that as the original authors included the same precise set of 
sequences for BS and M tissues in section 14 (Li et al., 2010; Tausta 
et al., 2014), and reported the same plant growth conditions, we’ve 
considered these studies broadly comparable. However, to avoid 
redundancy, the BS and M samples for section 14 are only included 
with Tausta et al. (2014).

Plant growth conditions and harvest
Z. mays B73 was grown in the summer of 2012 under conditions 
previously described (Pick et al., 2011). The third leaf was harvested 
when it measured 18 cm from the second ligule to the leaf tip. Two 
different harvesting methods were performed. In the first, a leaf 
gradient with five sequential developmental slices (4 cm each) was 
harvested with the ‘leaf guillotine’ (see Fig. S1A available at Dryad 
Digital Repository http://dx.doi.org/10.5061/dryad.tf6q6; Pick 
et al., 2011). This method required 10 s to extract the third leaf and 
properly align it, which does not allow for reliable estimates of the 
high-turnover photosynthetic metabolite distributions. Therefore, 
a second harvesting method was performed, in which the plants 
were positioned above two liquid nitrogen containers and two 8 cm 
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slices were cut with connected scissors (see Fig. S1A, B at Dryad) 
achieving a delay of less than 1 s between slicing and flash-freezing. 
Metabolite abundance and enzyme activity were measured from 
both harvest sets; the full five-slice gradient was used for RNAseq.

Tissue enrichment
M and BS tissues were enriched using a method modified from Stitt 
and Heldt (1985). Ground material was filtered through 250, 80, and 
41 μm meshes on liquid nitrogen. Three fractions were selected for 
further analysis. The ‘BS-e’ fraction showed the most enrichment 
of BS tissue (it did not pass through 80 μm mesh); the ‘M-e’ frac-
tion showed most enrichment in M tissue (it passed through 41 μm 
mesh); and the ‘I-e’ fraction showed intermediate, but consistent, 
proportions of tissues (it did not pass through 41 μm mesh).

Extraction and abundance measurements metabolites and 
enzymes
Enzymes were extracted and desalted as described in Bräutigam 
et  al. (2014), and the enzyme activity was measured through col-
orimetric assays as described in Hatch and Mau (1977) and Walker 
et al. (1995). Metabolites were extracted and quantified via gas chro-
matography–electron-impact time-of-flight mass spectrometry as 
described in Rudolf et al. (2013). Both low-signal metabolites and 
individual replicates with a percentage abundance in BS more than 
3 standard deviations from the mean were excluded. The integrated 
peaks were divided by the area of the ribitol (internal standard) peak 
and the fresh weight, and to further reduce noise and compensate for 
FW/DW differences between the cell types by the mean abundance 
for the replicate. Therefore, normalized differences between metab-
olites represent not absolute distribution, but distribution relative 
to the other metabolites, particularly sucrose and the other highly 
abundant metabolites.

Sequencing and estimating transcriptional abundances
RNA was extracted with QIAGEN RNeasy Plant kits, according 
to the manufacturer’s instructions except for an extra wash step in 
80% ethanol after the standard wash steps. Libraries were prepped 
from RNA with an RNA integrity number >8 and sequenced with 
the Illumina HiSeq 2000 platform. The quality was checked with 
FastQC (Andrews, 2010). Quality and adapter trimming was per-
formed with Trimmomatic (Bolger et  al., 2014). Trimmed reads 
were mapped to their respective genomes with Tophat2 (Kim 
et al., 2013) and the unique counts per locus were quantified with 
HTSeq (Anders et  al., 2015); transcripts per million (TPM) was 
calculated from the unique counts and gene length. Coverage 
metrics including 3′ bias were calculated with PicardTools 2.4.1: 
CollectRnaSeqMetrics (Wysoker et al., 2012). Non-default param-
eters used for bioinformatics programs are provided (see Table S1 at 
Dryad). The same pipeline was used for all studies except as neces-
sitated by experimental differences (e.g. paired vs single end reads), 
or otherwise noted.

Differential expression and tissue specificity normalization
Differential expression P-values and log2 fold changes were calcu-
lated with EdgeR (Robinson et al., 2009). Where no replicates were 
available (Chang et al., 2012), the mean common dispersion from 
the remaining studies was used. Additionally, due to the low level of 
enrichment achieved in this study, ContamDE (Shen et al., 2016), 
a cross-contamination tolerant package for RNAseq statistics, was 
employed for the data generated here. As necessary for interstudy 
comparisons in Z. mays, log2 fold changes from edgeR (Chang et al., 
2012; Tausta et al., 2014) and ContamDE (this study) were quantile 
normalized, and the fully normalized TPM back calculated from the 
quantile normalized log2 fold change and mean TPM.

Estimation of initial tissue specificity by ‘deconvolution’
The distribution of metabolites and enzyme activities was compared 
with the distribution of markers to estimate the original tissue speci-
ficity in a method modified from Stitt and Heldt (1985). First, all data 
were converted into fraction of total by developmental slice. Second, 
marker enzyme activities were used as proxies for the amount of 
M (phosphoenolpyruvate carboxylase (PEPC) activity) and BS 
(NADP-malic enzyme (ME) activity) tissue in each enrichment frac-
tion. The slope of a regression line between the ln(target/M) against 
ln(BS/M) estimated the fraction of the target found in pure BS (see 
Fig. S1C at Dryad). P-values were calculated with a null hypothesis 
of slope=0.5 (50% M, 50% BS). This was automated with a linear 
regression in R and calculated for every metabolite and non-marker 
enzyme. To estimate the ‘pure’ abundance values, the estimated frac-
tion in BS and M (1–fraction BS) were multiplied by 2× the average 
abundance value for the developmental slice.

Functional category enrichment testing
Functional categories were assigned with Mercator (Lohse et al., 
2014). Enrichment was tested with Fisher’s exact test, and the false 
discovery rate calculated according to (Benjamini and Yekutieli, 
2001).

Statistics
Unless otherwise noted, all statistical analysis was performed in the 
R statistical environment (R Development Core Team, 2011) and 
whenever a test was performed more than 20 times, the false discov-
ery rate (Benjamini and Hochberg, 1995) was calculated from the 
resulting P-values.

Accession numbers
The reads related to this article have been deposited in the Sequence 
Read Archives under the accession number SRP052802.

Results

Validation of separation method

Here, we enriched BS and M cells along a developing Z. mays 
leaf by grinding and serial filtration (Stitt and Heldt, 1985). 
Two harvesting methods were used, the first using a ‘guillo-
tine’ (Pick et al., 2011) to sample five contiguous 4 cm slices 
from tissue just emerging from the ligule (slice 5) to the leaf 
tip (slice 1). In the second, targeted at capturing unadulter-
ated metabolite levels, two 8 cm slices were harvested in full 
illumination and quenched in liquid nitrogen within a second 
of cutting. M and BS tissues were enriched using a method 
modified from Stitt and Heldt (1985) that capitalizes on the 
distinct physical properties of M and BS cells to enrich them 
in different separation fractions as ground tissue is filtered 
through serially smaller meshes over liquid nitrogen. The 
activity of C4 enzymes and the metabolite levels were meas-
ured from both harvests, and RNAseq was performed on 
material from the five-slice gradient.

The distribution of tissue specific markers indicated BS 
and M tissue were successfully enriched (see Fig. S1D and 
Dataset S1 at Dryad). The classic BS marker is NADP-ME, 
the enzyme responsible for releasing the carbon from C4 
acids in the BS. NADP-ME activity and transcripts were 
both higher in the coarsest (from here on, BS-e for bundle 
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sheath enriched) separation fraction; in between in the mid-
dle (from here on, I-e for intermediate enrichment) separa-
tion fraction; and lowest in the finest (from here on, M-e, for 
mesophyll enriched) fraction (see ‘Materials and methods’ for 
details). The classic M marker, PEPC, the C4 fixing enzyme, 
showed the opposite pattern, with highest activity and tran-
script abundance in the fine, M-e fraction. While the enrich-
ment was strongest in mature tissue, it was also apparent in 
the youngest tissue (slice 5). For non-marker enzymes and 
metabolites, the original distribution was estimated based on 
the marker enzymes (see ‘Materials and methods’; Fig S1C 
at Dryad).

This enrichment method was chosen over other separa-
tion methods both for sample integrity and to obtain data on 
metabolite abundance, enzyme activity, and transcript abun-
dance from the same material. However, in the rapid harvest 
(with less than 1 s between cutting and quenching in liquid 
nitrogen), very few significant differences were found between 
metabolite levels in M and BS ((iso)-citric acid and malonic 
acid were both enriched in BS slice 3–4; FDR<0.05; Fig. S2C 
at Dryad). In contrast, many metabolites showed significant 
differences based on leaf age (10 metabolites with FDR<0.05 
between slice 3–4 and slice 1–2 in the sub-1 s harvest, and 20 
with FDR<0.05 between at least one of the neighboring slices 
in the 10 s harvest; Fig. S2E and Dataset S1 at Dryad). The 
observed developmental changes were very similar between 
the sub-1 s and 10 s harvest; however, there were a few excep-
tions. One example is phenylalanine, which increased in abun-
dance with leaf age in the fast harvest, but decreased in the 
slow harvest (Fig. S2C, D at Dryad). Although not statisti-
cally significant, the BS vs M trend of several metabolites cor-
responded with expectations. Notably, serine and the other 
photorespiratory metabolites were higher in the BS, where 
they are expected to be produced, both in the faster (Fig. 1B) 
and, to a lesser extent, also in the slower (Fig.S2B at Dryad) 
harvest. Malate, which presumably moves from M to BS 
entirely based on a diffusion gradient, tended towards enrich-
ment in the mature M (slices 1–2, 1–3; Fig. 1A and Fig. S2A 
at Dryad). Further, there is a modest consistency between 
previous studies measuring distribution of metabolites and 
that measured here (Fig. 1C). All measured core C4 metabo-
lites shift from putative BS towards putative M enrichment 
between slice 3–4 and 1–2 (Fig.  1A). Such synchronized 
changes could relate to increasing flux (or changing rate-lim-
iting steps) in the C4 cycle. The differences between harvest 
speeds highlights how labile these metabolites can be, and 
discrepancies between studies or low enrichment values may 
simply reflect response to conditions and the readiness with 
which they pass the plasmodesmata, respectively. Higher con-
fidence in metabolite distribution will require more replicates, 
and, potentially, more defined conditions.

Comparison with other separated transcriptomes

Quantitative study comparison
While this separation method provides high integrity and 
allowed us to simultaneously measure transcripts, metabo-
lites, and enzyme activities, it comes with its own caveats due 

to the limited enrichment. As separation studies will likely 
continue, either in new species or with variations such as sep-
arating the husk (Huang and Brutnell, 2016), we evaluated 
the advantages and disadvantages of different separation 
methods and their effect on biological results. We compiled 
a comparative dataset from all existing M/BS specific full 
RNAseq experiments in monocots. These covered mechani-
cal and enzymatic separation in Z. mays (Chang et al., 2012); 
mechanical separation in S. viridis (John et al., 2014); laser 
micro-dissection in Z. mays (Li et al., 2010; Tausta et al., 2014);  

Fig. 1. Metabolites. (A, B) The estimated tissue enrichment 
and abundance of measurable metabolites associated with the 
photorespiratory cycle (A) and the C4 cycle (B). Error bars indicate 
standard error. (C) Comparison of metabolite tissue enrichment measured 
by Leegood (1985) and Stitt and Heldt (1985) with the average of slice 1 
and 2 in the slower five-slice harvest and slice 1–2 in the faster two-slice 
harvest.
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mechanical micro-dissection in P. virgatum (Rao et al., 2016); 
and the serial filtration performed here (referred to as ‘Denton 
2016’ in figures). While the data encompass three origins 
and two subtypes of C4 photosynthesis, and BS and M cell 
specificity is not expected to match perfectly, previous stud-
ies have found substantial conservation even between mono-
cots and dicots (Aubry et al., 2014). Overall, the combination 
of mechanical BS preparation and enzymatic (Chang et al., 
2012) or leaf rolling (John et al., 2014) M separation achieved 
the highest marker enrichment, followed by the micro-dissec-
tion studies (Li et al., 2010; Tausta et al., 2014; Rao et al., 
2016), while the method used here, as anticipated from the 
original report (Stitt and Heldt, 1985), showed the least 
enrichment (Fig. 2A). Consistent with the lower enrichment, 
this study showed the lowest statistical power of the various 
methods with an average of 2100 discoveries (FDR<0.05) per 
slice, compared with 4030–12 777 discoveries for the other 
(biological-replicate-including) studies when computed with 
edgeR. Therefore, a cross contamination aware R-package, 
contamDE, which includes a factor for the relative tissue 
enrichment of each replicate, was employed. With contamDE 
an average of 4479 discoveries (BS-e vs M-e FDR<0.05) were 
made per slice, and this was used for further analysis (see 
Table S2 at Dryad).

Tissues were matched to achieve a more in-depth compari-
son between the Z. mays studies. For mature tissues, the sam-
ple from Chang et al. (2012) was most similar to section 14 
from Tausta et al. (2014) and to slice 2, here, while the young-
est section in Tausta et al. (2014) was most similar to slice 4, 
here (Spearman correlation, Fig. S3A at Dryad). The Tausta 
et al. (2014) study was able to detect genes with a lower log 
fold change (relative to the total log fold change distribution) 
than either Chang et  al. (2012), with just one replicate, or 
this study, with low enrichment. However, examining log fold 
change indicated the differences between studies ran deeper 
than statistical power, with many genes significant in one 
study not enriched or even significantly enriched in the oppo-
site direction in another study (Fig 2B–D).

Qualitative study comparison
For a more qualitative look at the differences between stud-
ies we performed a hierarchical clustering of samples from 
this study, those from Chang et al. (2012) and Tausta et al. 
(2014), and the unseparated sections from Li et  al. (2010) 
that corresponded to Tausta et al. (2014). The samples clus-
tered primarily by study, followed by leaf age and then M and 
BS, with some mixing (Fig.  2E). Between-study differences 
could in theory come from growth conditions and plant age, 
from differences in separation method or from a combina-
tion thereof, and all studies but Li et al. (2010) and Tausta 
et  al. (2014) used distinct growth and harvest conditions 
(see Table S3 at Dryad). Notably, the unseparated sections 
from Li et al. (2010), which were grown comparably to those 
from Tausta et  al. (2014) clustered not with the associated 
leaf sections of Tausta et al. (2014), but with the respective 
older or younger serial filtration data here, indicating a sub-
stantial role of separation method in clustering. Indeed, one 
of the gene clusters (3) was primarily expressed at a lower 

level across the laser micro-dissection (Tausta et  al., 2014) 
samples compared with all the other samples (including 
Li et  al., 2010). RNA is known for its degradability under 
procedures like laser micro-dissection, and Li et  al. (2010) 
clearly reported the 3′ bias in the laser micro-dissection sec-
tion 14, but did not at that time have the comparative studies 
to evaluate how this would globally affect the results. A list 
of genes most dramatically affected by laser micro-dissection 
was obtained by looking for genes with significantly different 
abundance between unseparated (Li et al., 2010) and the laser 
micro-dissection separated section 14 (Li et al., 2010; Tausta 
et al., 2014). The majority (3298 of 3362) of the differentially 
regulated genes were downregulated in the laser micro-dissec-
tion samples. These laser micro-dissection ‘downregulated’ 
genes were depleted in BS vs M, differences shared with this 
study (Fig. 3A; Fisher’s exact test, P<0.001). Further, these 
genes showed several functional enrichments (MapMan cat-
egories), including major categories such as transport and 
signaling; and minor categories such as minor CHO metabo-
lism.callose, GARP G2-like transcription factor family and 
Class XI Myosin (Dataset S2 at Dryad). Finally, the strong 
3′ bias resulted in a low diversity library compared with the 
other studies (see Fig. S3B, C at Dryad).

Considering the effect degraded RNA can have, we evalu-
ated the 3′ bias across studies to see how the other separation 
methods compared. The three prime bias was highest in the 
laser (Tausta et al., 2014) and mechanical (Rao et al., 2016) 
micro-dissection studies; however, it was present to various 
degrees in at least some samples of the other separation stud-
ies and in multiple other Z.  mays studies without separa-
tion (Li et al., 2010; Sekhon et al., 2013; Wang et al., 2013; 
Fig. 3C). Notably, both studies that used distinct methods for 
isolation of BS strands and M cells (John et al., 2014; Chang 
et al., 2012) showed minor 3′ bias, but each M sample showed 
more than its corresponding BS sample (Fig. 3C). The 3′ bias 
was not spread evenly across all genes, but was higher in the 
199 genes where Chang et al. (2012) and slice 2 (this study) 
were significantly, but oppositely, enriched in the BS and M, 
respectively (see Fig. S4 at Dryad). Overall mild increases in 
3′ bias between samples are prominent in these 199 genes and 
their orthologs, notably including the M samples in Chang 
et  al. (2012) and Tausta et  al. (2014) and one BS replicate 
from this study. The orthologs of these 199 genes, measured 
by John et al. (2014) mostly (138 of 184; 75%) were enriched 
in the same direction as Chang et al. (2012), while those meas-
ured by Rao et  al. (2016) mostly (101 of 152; 66%) agreed 
with this study (Fig.  3C). In contrast, neither cross-species 
comparison showed a notable BS or M bias in orthologs of 
the opposite gene set—the 14 genes where Chang et al. (2012) 
and slice 2 (this study) were significantly enriched in the M 
and BS, respectively (Fig.  3D). In summary, despite evolu-
tionary distance between Z.  mays and S.  viridis, the stud-
ies with higher, degradation-marking 3′ bias in the M than 
BS (Chang et al., 2012; John et al., 2014) share a set of ‘BS 
enriched’ genes that conflict with the M enrichment seen in 
Z. mays (this study) and P. virgatum (Rao et al., 2016).

To determine if  different RNA quality and 3′ bias relate 
to some of the discrepancies between the Z.  mays studies, 
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we quantified the level of 3′ bias on genes in two differ-
ent conflict sets—conflict set 1: BS specific in Chang et  al. 
(2012) or Tausta et al. (2014) and M specific in the compa-
rable tissue here, or BS (Chang et al., 2012) and M (Tausta 
et  al., 2014, section 14); conflict set 2: as conflict set 1 but 
with BS and M switched). This showed that conflict set 1 
had the most 3′ bias across all studies while conflict set 2 had 
the same or even less bias than the whole gene set (Fig. 3B). 
One of the genes in ‘conflict set 1’ is related to the C4 cycle, 

namely phosphoenolpyruvate carboxylase kinase (PPCK; 
GRMZM2G178074), which regulates PEPC in the M (Vidal 
and Chollet, 1997). The coverage across the PPCK locus 
shows a mild 3′ bias in unseparated studies and in both BS 
and M samples here, with higher coverage in the M (Fig. 4). 
In the laser micro-dissection study, there is a strong 3′ bias in 
both samples, with more remaining coverage in the M sam-
ple, while in the Chang et al. (2012) sample, there is a mild 3′ 
bias in the BS sample, but a strong 3′ bias in the M sample, 

Fig. 2. Interstudy comparison. (A) Enrichment of the classic BS (NADP-ME) and M (PEPC) marker genes in each study. (B–D) Log2 fold change of genes 
that were significantly enriched in BS or M in at least one of the paired Z. mays studies. (E) Hierarchical clustering of fully normalized log2 (TPM) for 
Z. mays samples, with Pearson and Spearman correlation-based distance for genes and samples, respectively. Genes filtered to those with TPM min>0, 
max>50. Side colors included to help delineate studies on the x-axis and major clusters on the y-axis. C, Chang et al. (2012); D, this study; L, Li et al. 
(2010); T, Tausta et al. (2014).
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causing PPCK to appear higher in the BS based on total read 
count. While not all genes in ‘conflict set 1’ looked like this 
(e.g. many had a very strong 3′ bias across every sample and 
study; not shown), other similar examples were not hard to 
find (see Fig. S5 at Dryad). Further, components of ‘conflict 
set 1’ were enriched in several MapMan categories. These 
included three transcription factor sub-categories (PHD fin-
ger, pseudo ARR, and putative), and minor CHO metabo-
lism.callose in genes BS specific in Chang et al. (2012), and M 
specific in slice 2 of this study (Dataset S2 at Dryad).

Another likely artifact of the separation method is the 
residual contamination with non-M and non-BS tissue types. 
The mechanical separation methods are expected to co-purify 
the vascular bundle with the BS cells, while the serial grinding 

and filtration used here presumably includes all cell types in at 
least one of the enrichment fractions. To confirm and quan-
tify these expectations would require unambiguous markers 
that were known to, for instance, be highly specific to the 
vascular tissues and absent from M or BS. In the absence of 
fully characterized markers in Z. mays, we tested a variety of 
candidates, largely known from other species.

Putative vascular markers were initially selected from the 
literature based on functions expected to be highly vascu-
lar specific. Enzymes associated with lignification of proto-
xylem elements (LAC17) were more abundant in the BS base 
sample (Fig. S6A at Dryad; FDR<0.05 for three of the four 
expressed). Similarly, homologs to Arabidopsis XYLEM 
CYSTEIN PROTEASE (XCP) 1 (GRMZM2G066326) and 

Fig. 3. Technical bias. (A) The fraction of significant differences discovered here (slice 2) that were shared with the Tausta et al. (2014; section 14) study 
broken up based on whether these genes were of significantly lower abundance in the laser micro-dissected section 14 compared with whole section 
14 (Li et al., 2010; Tausta et al., 2014). (B) The 3′ bias observed in the coverage for the genomic background and the two conflict sets in each Z. mays 
separation study, and all the unseparated samples of Li et al. (2010), Wang et al. (2013), and Sekhon et al. (2013). (C, D) The tissue enrichment of the 
Z. mays genes and the S. viridis (John et al., 2014) and P. virgatum (Rao et al., 2016) orthologs where the Z. mays gene was significantly more abundant 
in the BS in Chang et al. (2012), and the M in slice 2 (this study) (C), or vice versa (D). (E) Transcript coverage by study. For all BS and M separation 
studies, blue represents BS, yellow represents M, and tissue maturity increases from light to dark. Green represents I-e in this study (Denton 2016).
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2 (GRMZM2G367701), involved in programmed cell death 
in the xylem, were higher in the BS base sample (Fig. S6B at 
Dryad; FDR<0.001 for all three). These markers, however, 
were not expressed in older tissue and thus could not be used 
for interstudy comparisons. SUCROSE TRANSPORTER 
2 (SUT2), frequently used as a companion cell marker in 
Arabidopsis (AT2G02860; Meyer et  al., 2000), has five 
homologs in Z.  mays, for which the cumulative expression 
was enriched in the BS across all Z. mays studies (see Fig. 
S6C at Dryad). A  study on phloem transported RNAs in 
Arabidopsis (Deeken et  al., 2008) provided a larger list of 
potential vascular markers; however, the cumulative expres-
sion was again higher in the BS across studies (Fig. S6D at 
Dryad). We further examined sets of genes that included 
‘phloem’ (Fig. 5A), ‘xylem’ (Fig. S6E at Dryad), or ‘vascu-
lar’ (Fig. S6F at Dryad) in their descriptions. Cumulative 

expression of these keyword gene sets was largely higher in 
the BS across studies; however, for ‘phloem’ and ‘vascular’ 
genes, BS enrichment in the laser micro-dissected samples 
was less than BS enrichment of these genes in the mechanical 
separation studies.

We further evaluated the distribution of putative epider-
mal markers. A previous study using laser micro-dissection 
to separate epidermal and M tissues identified two epi-
dermal specific genes in Z.  mays (Javelle et  al., 2010). The 
more highly expressed of these, GRMZM2G345700, was 
consistently higher in the M samples (Fig. S6G at Dryad; 
FDR<0.05 in six of nine comparisons), while the less highly 
expressed GRMZM2G387360 was not significantly enriched. 
A broader look at all genes including the words ‘epidermal’ in 
their descriptions (Fig. 5B) showed higher cumulative expres-
sion in the M in most comparisons, while the most substan-
tial M enrichment appeared to be in this study (Fig. 5B). It is 
hard to draw a firm conclusion in the absence of unambigu-
ous markers, as expression patterns in epidermal cells may 
be more similar to M than BS, and vice versa for vascular 
expression. However, both expectation and a view on the 
broader patterns support co-purification of vascular tissues 
with the mechanical BS purification methods, co-purification 
of epidermal tissue with the M in the serial filtration method 
used here, and generally less co-purification using laser 
micro-dissection.

The strengths of interstudy comparison

Multiple study comparisons allow for confidence in results 
that would seem dubious alone. In this study, aspartate ami-
notransferase stood out as having transcript enrichment in 
M cells (Fig. 6A) that was contrary to the expected even dis-
tribution between cell types in the current Z. mays C4 model 
(Furbank, 2011; Pick et al., 2011). Comparison with the other 
datasets confirmed the same pattern in all NADP-ME studies 
(Z. mays and S. viridis). Previous studies (Chang et al., 2012; 
Tausta et al., 2014) have mentioned a low-expression BS spe-
cific AspAT paralog, or the detection of AspAT in both BS 
and M proteomic studies as balancing explanations. However, 
in both transcriptomics and proteomics (Friso et  al., 2010; 
Majeran et al., 2010) the total abundance is much higher in 
the M.  This is further supported by the high M specificity 
of the AspAT enzyme activity (Fig. 6A). A similar but less 
pronounced pattern in transcripts could be found for alanine 
aminotransferase (see Fig. S7A at Dryad).

Consistent BS or M enrichment as the leaf develops helps 
increase confidence, both as a repeat observation and as a sim-
ple explanation consistent with the gradual nature of changes 
in transcript abundance during leaf development (Pick et al., 
2011). On the flip side, however, it seems less likely that a gene 
changed from BS specific to M specific or vice versa during 
development. We used the interstudy comparison to evalu-
ate the reliability of observed switches in enrichment across 
leaf development. As expected, genes that were significantly 
enriched in M-then-BS or BS-then-M in sections 4 and 14 of 
Tausta et al. (2014) were much less likely to find cross-study 
support (same enrichment direction in slice 4 and 2 of this 

Fig. 4. Coverage of example gene PPCK. Read depth across genomic 
region of PPCK (GRMZM2G178074; which is in conflict set 1) in the 
various Z. mays separation studies, and in the unseparated samples of Li 
et al. (2010), Wang et al. (2013), and Sekhon et al. (2013).



Freeze-quenched separation of maize mesophyll and bundle sheath | 155

study) than their M-then-M or BS-then-BS enriched coun-
terparts (19% vs 78%, Fisher’s exact test P<0.001). However, 
the 48 genes that were significantly enriched in the BS in sec-
tion 4 (Tausta et al., 2014) and in the M in section 14 (Tausta 
et al., 2014) with support from this study showed enrichment 
in the functional category ‘protein.synthesis.ribosomal pro-
tein.eukaryotic.60S subunit’ and all parental categories there 
of (Dataset S2 at Dryad). Further investigation showed that 
both the 60S and 40S ribosomal subunits have a clear pattern 
with strong BS enrichment in young but entirely unsheathed 
tissue (section 4, Tausta et al., 2014; slice 4, here). As the leaf 
develops the strong BS enrichment fades, and even switches 
to a mild M enrichment (Fig. 6B and Fig. S7B at Dryad). To 
determine if  the mature M enrichment could be related to 
supporting the high turnover of photosystem II components, 
we included the data for S.  viridis (John et  al., 2014) and 
P. virgatum (Rao et al., 2016) in the analysis. Notably the 60S 
and 40S ribosomal subunits showed M enrichment in S. vir-
idis (Fig. 6B and Fig. S7B at Dryad), in which photosystem 
II, like in Z. mays, is primarily localized to the M (Fig. 6C). 
In contrast, these subunits showed BS enrichment in P. virga-
tum (Fig. 6B and Fig. S7B at Dryad), in which photosystem 
II is not primarily localized to the M (Fig. 6C).

Data accessibility and visualization

To facilitate public comparison of these transcriptomes, we 
are providing (i) a Z. mays gene browser with gene-specific or 
gene-group visualization of the data from BS/M separation 
studies in Z. mays; and (ii) all the data analysed in this study 
(including non-Z.  mays BS vs M comparisons, and unsepa-
rated Z. mays studies) in tabular format (Dataset S3 and S4 at 
Dryad). The Z. mays gene browser aims to facilitate compari-
son and critical evaluation of the similarities and differences 
between these studies. To this end, the graphics include the sep-
aration method in the display and necessary contextual data 

(e.g. unseparated samples from Li et al. (2010) corresponding 
to the laser micro-dissection samples from Tausta et al. (2014), 
and 3′ bias (Fig.  7). Further, the browser includes several 
pre-loaded gene sets to help users compare studies (Fig. 7B). 
These sets include, for example ‘conflict set 1’ described above. 
Further gene sets include three gradations of highly supported 
M or BS specific genes across studies (735, 365, and 126 signifi-
cant differences; shared between 7+, 8+, or all 9 of the com-
parisons, respectively), and highly supported M or BS specific 
transcription factors (52 significant differences shared between 
7+ comparisons), and transcription factors of special inter-
est in immature tissue (36 significant differences in two of the 
three youngest comparisons (Tausta et al., 2014 section 4, and 
slice 4 and 5, here) and higher in foliar than husk primordia in 
Wang et al. (2013). Full lists and descriptions are provided in 
Dataset S5 at Dryad and with the visualization tool at http://
www.plant-biochemistry.hhu.de/resources.html.

Discussion

Despite the variety of BS and M separation methods used 
and increasing number of studies, no method presents itself  
as a clear best option. Rather, the various methods come with 
advantages and disadvantages, which should be considered 
both when planning the experiment and evaluating the data.

The only fast methods for metabolite extraction are leaf 
rolling (Leegood, 1985) for M compared with whole tissue, 
and grinding and serial filtration on liquid nitrogen as per-
formed here (Stitt and Heldt, 1985). Only a handful of metab-
olites measured in these studies overlap, and the correlation 
between studies is modest. Elements of this study might help 
clarify why and plan the next experiment. First, there were 
very substantial differences between the <1 s harvest and the 
10 s harvest and between the different leaf slices. This high-
lights that the dynamics of abundance of metabolites make 
them extremely sensitive to both conditions and harvest 
methods. Considering the dominance of age, conditions and 

Fig. 5. Co-purification of additional tissues. Fully normalized abundance of genes that included the word ‘phloem’ (A) or ‘epidermal’ (B) in their MapMan 
description.

http://www.plant-biochemistry.hhu.de/resources.html
http://www.plant-biochemistry.hhu.de/resources.html
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method over BS vs M differences in the clustering of RNAseq 
data, it is perhaps unsurprising that the even more labile 
metabolites continue to pose challenges. Similarly, the low 
absolute enrichment of this method and the Leegood (1985) 

method decreases the signal to noise ratio, particularly mak-
ing identification of low log fold changes between cell types 
difficult (as seen in the RNAseq). This is likely exacerbated 
by the division of some metabolites, such as aspartate and 

Fig. 6. Biological insights drawn from interstudy comparison. (A) Tissue enrichment of AspAT of transcripts in maize (left), enzyme activity in Z. mays 
(mid-left), transcripts in S. viridis (mid-right) and transcripts in P. virgatum (right). (B, C) Tissue enrichment of transcripts in the MapMan functional category 
for 60S ribosomal protein (B) and photosystem II (C) in Z. mays (left), S. italica (middle), and P. virgatum (right). In (A) asterisks denote significance of FDR 
for transcripts and P-values for enzyme activity (*P<0.05, **P<0.01, ***P<0.001).
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malate, into active and inactive pools. These inactive pools 
can be substantial, accounting for about 60% and 80% of the 
total aspartate and malate, respectively, in the grass Chloris 
gayana (Hatch, 1979). In contrast, the high density of plas-
modesmata between M and BS cells in C4 plants supports 
diffusion of C4-cycle metabolites at the rate of carbon fixa-
tion (Laisk and Edwards, 2000); it is thus implausible that 
any cytoplasmic metabolite could build up enrichment levels 
comparable to transcripts and enzymes. Therefore a study 
prioritizing understanding metabolic differences between BS 
and M cells should err on the side of a few more replicates 
than the five that is the ‘industry standard’ for metabolic stud-
ies (Sumner et  al., 2007). Similarly, sequencing a few more 
than the typical two to three replicates for RNAseq may help 
compensate for the lower sensitivity of this method.

For any study not targeting metabolites, the higher purity 
achieved by any of the other methods over the method here 
has an obvious allure; however, the biases associated with 
lower quality RNA must be accounted for. As shown here 
and reported previously (Romero et al., 2014) RNA does not 
degrade at consistent rates, but rather some RNA molecules, 

often including transcription factors (Yang et al., 2003), are 
much more sensitive to degradation. These degradation-
sensitive genes are numerous (12.5% of detectable genes 
showed significantly lower abundance after laser micro-dis-
section; Li et al., 2010; Tausta et al., 2014). Further, shared 
genes with bias in Chang et al. (2012) and John et al. (2014) 
indicate degradation sensitivity is conserved across species 
and can masquerade as conserved tissue specificity. For the 
above reasons, care must be taken not to intermingle any 
biological signal sensitive to degradation and the biological 
signal between samples. For instance, the two callose syn-
thases that Chang et al. (2012) discussed as being BS specific 
(GRMZM2G553532 and GRMZM2G004087) appear to 
be very sensitive to degradation as they are both among the 
genes significantly less abundant after laser micro-dissection, 
and one, GRMZM2G553532, is in the conflict set 1 list with 
strong 3′ bias. This raises the worrisome question of whether 
this is a case of differential expression, or differential degrada-
tion. Future studies may be able to circumvent such problems 
by including a third and unseparated sample that can be used 
to detect genes particularly affected by degradation—much 

Fig. 7. Web visualization resource. (A) Comparative BS and M separation targeted graphical heatmap view of example gene (GRMZM2G129261). (B) 
Example gene set visualization of highest confidence M transcription factors.
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as we’ve been using the unseparated section 14 from Li et al. 
(2010) as the context for the Tausta et  al. (2014) separated 
section. This method has been employed by a recent study 
using SuperSage on mechanically separated BS and M proto-
plast in Sorghum (Döring et al., 2016).

A more ideal solution is of course to avoid mixing biologi-
cal and technical signals by handling RNA in a fashion that 
preserves RNA quality or at least results in the same amount 
of degradation in the M and BS samples. Quality control must 
be performed carefully as a study using the same separation 
technique as John et al. (2014) for qPCR in sorghum achieved 
very comparable bioanalyser traces for their mechanical BS 
purified and their leaf-rolled M samples (Covshoff et  al., 
2013). Indeed, this method was specifically employed for its 
speed and lack of stress response compared with M proto-
plast isolation, but still showed distinctly higher 3′ bias in M 
than BS (John et al., 2014). Thus if  a distinct method is to be 
used for M and BS purification, equivalent RNA needs to be 
confirmed for the particular species and particular researcher, 
and not simply assumed based on literature.

While the micro-dissection studies had the strongest overall 
3′ bias, there was equivalent bias in the M and BS samples. 
This resulted in false negatives and lower library complexity, 
but had no clear link to false positives. In the microdissec-
tion studies, an alternative explanation for the 3′ bias is the 
synthesis of the first strand cDNA using an Arcturus Ribo 
Amp HS kit, which has been shown to induce a strong 3′ bias 
in housekeeping genes (Clément-Ziza et al., 2009). This does 
not, however, nullify the substantial differences and loss of 
transcript detection seen between the laser micro-dissected 
(Li et al., 2010; Tausta et al., 2014) and the unseparated sam-
ples (Li et  al., 2010). There is ongoing research in improv-
ing laser-micro-dissection techniques in plants (Ludwig and 
Hochholdinger, 2014). We recommend that while techniques 
remain uncertain, researchers invest the necessary time and 
money in quality control steps and unseparated controls to 
assure that the bias that is there is traceable.

Use of a different bioinformatics workflow may make a 
small difference in the measured abundance of genes with a 
strong 3′ bias, but a perfect solution is not yet available, par-
ticularly as tools are not optimized for this. Small additions 
to a typical workflow, such as flagging discrepancy in 3′ bias 
between groups (e.g. Chang et al., (2012)’s samples in Fig. 4), 
could help avoid erroneous conclusions.

Where one study has weaknesses, interstudy comparison 
can provide a helpful additional opinion. The completion of 
a third Z. mays M and BS separation RNAseq study with a 
complementary technique here continued to yield new bio-
logical results. Particularly in areas where results may seem 
dubious, consensus between several studies (with different 
techniques or information gathered) is required to gain con-
fidence. An example of this is AspAT’s consistent M localiza-
tion, which while previously noted (Chang et al., 2012; Tausta 
et al., 2014), was not taken seriously without the supporting 
enzyme activity data. It may have a simple explanation such 
as a higher substrate to product ratio in the BS requiring less 
enzyme, or a more complex one such as an aspartate pool in 
the M simply adding stability to CO2 fixation should diffusion 

or decarboxylation of malate become temporarily limiting. 
Either way, this warrants further investigation. Similarly, 
the switch from BS to M specificity of ribosomal proteins is 
much easier to trust when identified in two independent stud-
ies. Differentiation of veins and the associated BS cells pre-
cedes that of the M, and signals from the BS are necessary for 
M differentiation in Arapidopsis (Kinsman and Pyke, 1998; 
Lundquist et al., 2014), and the C4 dicot Gynandropsis gynan-
dra shows the same developmental trajectory (Külahoglu 
et al., 2014). Therefore, we hypothesize the initial BS enrich-
ment in protein synthesis may reflect faster differentiation and 
photosynthetic ramp-up in the BS cells. As the photosynthetic 
rate increases along the developing leaf (Pick et  al., 2011), 
the shifting of the protein synthesis towards the M likely sup-
ports the high turnover of photosystem II subunits (Rokka 
et al., 2005). Considering that photosynthesis-related proteins 
make up over half of mature leaf protein (Friso et al., 2010; 
Majeran et al., 2010), the distribution of protein synthesis in 
mature leaf may reflect the balance between the demand from 
synthesizing photosystem II (when in the M) and synthesizing 
Rubisco and the other BS-specific CBBC enzymes.

Altogether, the separation technique of choice depends 
upon the research question. In many cases the weaknesses of 
one study are compensated for by the strengths of another, 
particularly when biases are characterized and taken into 
consideration. This work provides a visual access tool sum-
marizing this study and Li et al. (2010), Chang et al. (2012) 
and Tausta et  al. (2014), tables of all data looked at here 
(above and Wang et al., 2013; Sekhon et al., 2013; John et al., 
2014; Rao et al., 2016), and highlights biological observations 
drawn from the sum of many studies.

Data deposition

The following data are available at Dryad Digital Repository 
http://dx.doi.org/10.5061/dryad.tf6q6.

Datasets S1. Enzyme activity and metabolite abundance.
Datasets S2. Functional enrichments.
Datasets S3. Compiled RNAseq data.
Datasets S4. By gene 3′ bias.
Datasets S5. Gene sets of interest. 
Fig. S1. Setup and confirmation of separation method.
Fig. S2. Metabolite enrichment.
Fig. S3. Contextual data for interstudy comparison.
Fig. S4. Coverage of BS (Chang et  al., 2012) vs M (this 

study) conflict genes.
Fig. S5. Example read coverage.
Fig. S6. Co-purification of additional tissues.
Fig. S7. AlaAT and 40S ribosome distributions.
Table S1. Bioinformatics parameters.
Table S2. Counting significant differences.
Table S3. Harvest and growth conditions.
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