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Background.  We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to 
Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity.

Methods.  In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, 
IE surface antigens, and antibody functional activities were quantified.

Results.  Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; 
estimated half-lives of antibody duration were 0.8 year and 1–3 years, respectively. However, 69%–74% of children maintained their 
seropositivity to AMA1 alleles and 42%–52% to MSP2 alleles. Levels and prevalence of antimerozoite antibodies were consistently 
associated with increasing age and concurrent parasitemia. Antibodies promoting opsonic phagocytosis of merozoites declined 
rapidly (half-life, 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface 
antigens expressing virulent phenotypes were much better maintained (half-life, 4–10 years).

Conclusions.  A decline in malaria transmission is associated with reduction in naturally acquired immunity. However, loss 
of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may con-
tinue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine 
development.
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In areas of moderate to high malaria endemicity, naturally 
acquired immunity to malaria is characterized by protection 
against clinical disease and control of high-density parasitemia 
[1, 2]. Antibodies play a major role in naturally acquired immu-
nity to Plasmodium falciparum malaria [1, 2] and predominantly 
target the blood stages, including merozoites and infected eryth-
rocytes (IEs). Antimalarial antibodies typically increase with 
age, exposure, and transmission intensity, and the link between 
antibody acquisition and the level of malaria exposure has been 
largely established (reviewed in [3, 4]). As a result of intensified 
control efforts and other factors (eg, change in malaria policies 
and practices, changes in users’ and health providers’ behaviors), 
P. falciparum transmission has declined in many regions in recent 

years, and these declines have been associated with higher rates 
and severity of clinical malaria [5–7], which may be attributed to 
declining naturally acquired immunity in populations. Although 
there is evidence that declines in malaria transmission are asso-
ciated with reductions in antibodies to blood-stage antigens [8–
10], what is less clear is how rapidly antibody levels to different 
targets decline in the context of declining transmission, whether 
significant humoral immune responses are maintained after 
reductions in transmission, or the impact of changing transmis-
sion on functional antibody responses.

Reported estimated half-lives of antibodies to blood-stage 
malaria antigens range from weeks to years (reviewed in [3]). 
These data are mainly for merozoite antigens, whereas there 
are limited data on the maintenance of functional antibody 
responses associated with protection (eg, opsonization of mero-
zoites for phagocytic clearance and complement fixation on 
merozoites) [11, 12]. The maintenance and function of anti-
bodies to IE surface antigens or merozoite antigens might be 
impacted by their different presentation to the immune system, 
but there are limited data comparing the decay of antibodies 
to different blood-stage antigens. Also, different kinetics of 
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antibody responses specific for different alleles might give some 
indication of the relative prevalence and dynamics of circulat-
ing parasite strains, and antibody decay rates for different alleles 
may vary [13, 14]. Greater knowledge on how declining malaria 
transmission affects maintenance of immunity, especially func-
tional immune responses, is required to identify biomarkers of 
exposure, evaluate the impact of interventions, and help iden-
tify populations at risk (reviewed in [4]), as well as inform the 
development of long-lasting vaccines.

Here, we examined the impact of declining P.  falciparum 
transmission on the maintenance of antibodies to P. falciparum 
antigens in a 3-year longitudinal cohort of Kenyan children. 
We measured antibody responses to 2 representative merozoite 
antigens, apical membrane antigen 1 (AMA1) and merozoite 
surface protein 2 (MSP2). The 2 antigens are important targets 
of naturally acquired antibodies, including functional antibod-
ies, that have been associated with protection against clinical 
disease in our study population [11, 15, 16], and are established 
vaccine candidates [17, 18]. We included different alleles of 
AMA1 and MSP2 to assess patterns of allele-specific antibodies 
over time. We examined the acquisition of antibody responses 
in relation to age and parasitemia over time, and calculated 
antibody decay rates. Furthermore, we determined the main-
tenance of functional antibodies to merozoites and compared 
maintenance of antibodies between merozoite and IE surface 
antigens to determine whether different response types are 
maintained differently.

METHODS

Study Design and Population

This cohort study was conducted in Ngerenya (Kilifi district, 
Kenya) [19], where biannual malaria transmission occurs 
(May–July and November–December), and comprised approx-
imately 300 children aged 0.5–10 years who were followed for 3 
years from May 2002 to October 2004. This was an aging cohort 
(median age, 3.7 years in May 2003 and 5.3 years in October 
2004). Venous blood was collected in May (high transmission) 
and October (low transmission) in 2002–2004 (6 time-points). 
The same children were seen at most time points and 186 chil-
dren were present at all 6 sampling points. At each time-point, 
presence of P. falciparum parasitemia was assessed among all 
children by light microscopy examination of blood smears. 
Active malaria case detection was performed weekly; children 
who were febrile (temperature ≥ 37.5°C) or had a recent history 
of fever or illness had a blood smear performed. Malaria was 
defined as any parasitemia with fever in children aged <1 year and 
a parasitemia ≥2500/µL of blood with fever in children ≥1 year 
[20]. Ethics approval was obtained from the Ethics Committee 
of the Kenya Medical Research Institute, and the Alfred Health 
Human Research and Ethics Committee. Parents/guardians of 
each participant provided written informed consent.

For cross-sectional analyses of antibody prevalence at each 
time-point, all available children were included (n = 270–298). 
For longitudinal analysis of changes in antibody levels over 
time, only children who were sampled at all time points were 
included (n = 186). For estimating antibody half-life during a 
period of minimal malaria transmission, only children who were 
sampled at all 3 time-points that corresponded to the decline in 
malaria prevalence (October 2003, May 2004, October 2004), 
and were aparasitemic at the time of sampling and during the 
interval periods, were included. From those, a subset of 71 chil-
dren (who were positive for antibodies to merozoite antigens 
at October 2003)  was selected for analysis of maintenance of 
functional antibodies and antibodies to IEs.

Antibody Measurements

Immunoglobulin G (IgG) among serum samples was measured 
by standard enzyme-linked immunosorbent assay, as described 
previously [21] using recombinant AMA1 (W2mef, HB3, and 
3D7 alleles) and MSP2 (3D7 and FC27 alleles), which were 
expressed in Escherichia coli [15, 22]. For functional antibodies 
to merozoites, we used intact purified merozoites of the D10 
isolate [23]. Merozoite opsonic phagocytosis was performed as 
described elsewhere [24]. Antibody-mediated fixation of C1q 
to the surface of merozoites, a biomarker of classical comple-
ment activation that leads to inhibition of merozoite invasion 
and merozoite lysis, was measured as described previously [25]. 
IgG reactivity to surface antigens of IEs (3D7 and IT4var19 
isolates) was evaluated using an established flow cytome-
try–based approach [26]. Further details are provided in the 
Supplementary Methods.

Data Analysis

Analyses were performed using Stata Software, versions 13 and 14. 
Antibody seropositivity threshold was defined as the mean reactiv-
ity of negative controls plus 3 standard deviations [27]. Prevalence 
of antibodies to AMA1 and MSP2 between different age groups and 
different time-points were compared using the χ2 test. Antibody 
levels across groups at a single time point were compared using 
Kruskal–Wallis and Mann–Whitney tests. Multivariate analysis 
of variance for repeated measures using the Wilks lambda crite-
ria was used to test for differences in antibody levels over time on 
the T – 1 absolute differences between subsequent measurements. 
Estimated mean antibody half-lives were determined from linear 
mixed-effect models as previously described [21].

RESULTS

Declining Malaria Transmission Associated With Decreased Levels of 

Antibodies to Merozoite Antigens

Antibodies to merozoite antigens AMA1 and MSP2, including 
different alleles, were measured at each of the 6 cross-sectional 
surveys from May 2002 to October 2004. In the later part of 
the study, October 2003 to October 2004, malaria transmission 



Declining Malaria and Immunity  •  JID  2017:216  (1 October)  •  889

significantly decreased. Parasite prevalence at cross-sectional 
bleeds dropped from 14.0% (May 2002)  to 3.7% (October 
2004) (Figure 1A). The incidence of any detectable parasitemia 
(of any density) was <3% by active surveillance between May 
and October 2004 (Supplementary Table 2).

This decline in transmission was accompanied by significant 
reductions in the prevalence of antibodies to all AMA1 (Table 1) 
and MSP2 (Table 2) alleles within most age groups over that period 
(2–8 years for AMA1 and MSP2-FC27; 3 years and 5–7 years for 
MSP2-3D7). Furthermore, from October 2003 levels of antibod-
ies to all AMA1 and MSP2 alleles significantly decreased between 
cross-sectional bleeds (Figure 1B; Tables 3 and 4; P < .001).

Despite declining transmission and immune responses, AMA1 
and MSP2 antibody prevalence and levels were consistently 
higher among older children at every time point (P  <  .001 to 
P = .033; P < .001, respectively; Tables 1 and 2), such that median 
antibody levels were significantly higher among 7- to 10-year-
olds compared with 1- to 3-year-olds (P < .001; Tables 2 and 3; 
S3, S4, and S5). Similar associations with age were observed for 
antibody responses to all alleles of AMA1 and MSP2 and to schi-
zont protein extract used as a proxy for P. falciparum blood-stage 

exposure (Supplementary Table 6). The prevalence of antibodies 
to MSP2-3D7 was higher than to the MSP2-FC27 allele, reflect-
ing the moderately higher prevalence of MSP2-3D7 genotype 
infections in the study population [28].

At each time point, children with parasitemia (including any 
density) at time of sampling had higher levels of antibodies to 
all alleles of AMA1 (Tables 3 and 4; Supplementary Table  3) 
and MSP2 (Table 4; Supplementary Table 5) compared to apar-
asitemic children (P  <  .01). This suggests that ongoing expo-
sure to infection helped maintain higher levels in the cohort, 
and the declining transmission and exposure therefore resulted 
in declining antibody levels. Associations between antibodies 
and increasing age were observed in aparasitemic children, but 
less consistently among parasitemic children. Similar results 
were observed for antibody responses to all alleles of MSP2 and 
AMA1 and to schizont extract (Supplementary Table 6).

Decay Rates of Antibodies to Merozoite Antigens With Declining Malaria 

Transmission

We examined the rate of decline of levels and prevalence of 
antibodies to AMA1 and MSP2 between October 2003 and 
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Figure 1.  Decline in parasite prevalence and antibody levels over the study period. A, Decline of prevalence of parasite prevalence at each cross-sectional bleed. At each 
time-point, presence of Plasmodium falciparum parasitemia was assessed by light microscopy. Data are presented as parasite prevalence (of any density), with the number 
of parasitemic children over the total number of children tested indicated for each cross-sectional survey time point. B, Number of episodes of malaria at each cross-sectional 
bleed. Data are presented as number of episodes of malaria (ie, any parasitemia accompanied by fever in children aged <1 year and a parasitemia ≥2500 infected erythro-
cytes/µL of blood accompanied by fever in children aged ≥1 year) for each time-point. The percentage of children with malaria is indicated for each cross-sectional survey 
time-point. C, Mean antibody levels to merozoite antigens over the study period. Antibody levels against different alleles of AMA1 and MSP2 were measured by standard 
enzyme-linked immunosorbent assay. Data are presented as locally weighted scatterplot smoothing curves (the numbers of subjects included at each time point are: May 
2002, 298; October 2002, 294; May 2003, 285; October 2003, 294; May 2004, 279; October 2004, 273). The mean half-life of antibodies is shown for each antibody; this was 
calculated for the period between October 2013 and October 2014 when malaria transmission declined, and included children who were present at each time-point and had 
no malaria parasitemia detected during that time period. Abbreviations: CI, confidence interval; OD, optical density.
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October 2004 as malaria transmission declined. While there 
was interindividual variation and fluctuation over time, overall 
cohort antibody levels to all AMA1 and MSP2 alleles signifi-
cantly declined in all age groups during this interval (Figure 1B; 
Tables 1 and 2). We estimated the mean half-life of antibodies to 
AMA1 or MSP2 between October 2003 and October 2004 [21] 
in children who were seropositive at the October 2003 contact 
point and had no recorded parasitemia at the time of sample 
collection or during this 12-month period of follow-up (Figure 
1B). Estimated half-lives of antibodies to the different AMA1 
alleles were similar at around 0.8 years (range, 0.78–0.83 years) 

and comparable to antibodies to MSP2 FC27 allele (1.1 years), 
but substantially shorter than that of antibodies to MSP2 3D7 
allele (3.4 years). No significant differences in decay rates were 
found between age groups, although confidence intervals were 
wide.

Despite declining malaria transmission, many children 
among the whole cohort maintained their seropositive status 
for antibodies to AMA1 and/or MSP2 (Table 5); 69%–73% of 
children who were seropositive at October 2003 maintained 
seropositivity to each AMA1 allele at October 2004, but overall 
antibody reactivity had declined substantially. For MSP2 alleles, 

Table 1.  Seropositivity to AMA1 Alleles by Age at Each Cross-sectional Survey

Age, y

Seroprevalence (95% CI)

May 2002a October 2002a May 2003a October 2003a May 2004a October 2004a P Valueb

AMA1(W2mef)

  0 26.7 (10.6–42.9) 67.6 (52.3–83) 26 (9.1–42.9) 43.5 (22.7–64.3) 19.1 (1.8–36.4) 33.4 (8.6–58.2) .182

  1 14.6 (4.5–24.8) 21.9 (7.3–36.5) 34.7 (15.9–53.4) 11.8 (.8–22.9) 16 (1.3–30.8) 8.4 (–3.1 to 19.7) .385

  2 33.4 (18.3–48.4) 48.8 (32.8–64.7) 11.4 (1.9–20.9) 15.7 (2.8–28.5) 6.5 (–2.4 to 15.3) 3.2 (–3.1 to 9.3) <.001

  3 48.8 (33.3–64.4) 59 (43.3–74.7) 34.4 (17.6–51.2) 43.3 (27–59.5) 32.5 (17.1–47.8) 17.9 (3.4–32.4) .002

  4 50 (32.4–67.7) 76.7 (61.3–92.2) 40 (24.6–55.5) 47.7 (32.3–63) 17.3 (3.2–31.3) 33.4 (16.1–50.6) .001

  5 61.8 (47.6–75.9) 71.5 (58.6–84.3) 48.3 (29.7–66.9) 46.2 (26.6–65.8) 45.5 (28.2–62.8) 42.5 (25.3–59.7) .007

  6 65.8 (50.5–81.2) 75.9 (60–91.8) 52.8 (36.2–69.4) 62 (47–76.9) 54.2 (33.8–74.7) 41.7 (21.5–62) .032

  7 74 (55.5–92.4) 82.9 (70.2–95.6) 71 (54.7–87.3) 52 (32–72.1) 57.9 (42–73.9) 55.3 (39.2–71.4) .007

  8c … 100 (0–0) 75 (55.5–94.6) 81.9 (68.4–95.3) 72 (54–90.1) 41.7 (21.5–62) .005

  9c … … … … 81.3 (61.5–101.1) 72 (54–90.1) .506

  P valued <.001 <.001 <.001 <.001 <.001 <.001

AMA1(HB3)

  0 26.7 (10.6–42.9) 56.8 (40.6–73.1) 37.1 (18.4–55.7) 34.8 (14.8–54.8) 23.9 (5.1–42.6) 33.4 (8.6–58.2) .361

  1 14.6 (4.5–24.8) 9.4 (–1 to 19.7) 34.7 (15.9–53.4) 14.8 (2.6–26.9) 12 (–1.1 to 25.1) 8.4 (–3.1 to 19.7) .619

  2 33.4 (18.3–48.4) 20.6 (7.7–33.5) 25 (12.1–38) 21.9 (7.3–36.5) 9.7 (–1 to 20.4) 3.2 (–3.1 to 9.3) .001

  3 46.4 (30.9–61.9) 46.2 (30.3–62.1) 31.3 (14.9–47.7) 43.3 (27–59.5) 32.5 (17.1–47.8) 17.9 (3.4–32.4) .017

  4 53.2 (35.5–70.8) 66.7 (49.5–83.9) 55 (39.4–70.7) 45.3 (30–60.6) 27.6 (11–44.3) 30 (13.3–46.8) .002

  5 68.1 (54.6–81.7) 57.2 (43.1–71.3) 62.1 (44.1–80.2) 46.2 (26.6–65.8) 45.5 (28.2–62.8) 39.4 (22.4–56.4) .004

  6 79 (65.8–92.2) 55.2 (36.7–73.7) 61.2 (44.9–77.4) 57.2 (42–72.4) 54.2 (33.8–74.7) 37.5 (17.7–57.4) .004

  7 74 (55.5–92.4) 77.2 (63–91.4) 83.9 (70.7–97.1) 52 (32–72.1) 52.7 (36.5–68.8) 52.7 (36.5–68.8) .002

  8c … 100 (0–0) 85 (68.9–101.2) 84.9 (72.4–97.4) 80 (64–96.1) 45.9 (25.4–66.3) .002

  9c … … … … 75 (53–97.1) 76 (58.9–93.2) .943

  P valued <.001 <.001 <.001 <.001 <.001 <.001

AMA1(3D7)

  0 23.4 (7.9–38.8) 48.7 (32.3–65.1) 29.7 (12.1–47.3) 26.1 (7.7–44.6) 23.9 (5.1–42.6) 26.7 (3.4–50) .384

  1 8.4 (.4–16.3) 3.2 (–3.1 to 9.3) 34.7 (15.9–53.4) 20.6 (6.8–34.5) 8 (–3 to 19) 12.5 (–1.1 to 26.1) .386

  2 35.9 (20.6–51.3) 20.6 (7.7–33.5) 13.7 (3.4–24) 18.8 (5–32.6) 13 (.9–25) 6.3 (–2.4 to 14.9) .002

  3 46.4 (30.9–61.9) 35.9 (20.6–51.3) 28.2 (12.3–44.1) 37.9 (22–53.8) 29.8 (14.8–44.8) 17.9 (3.4–32.4) .027

  4 40.7 (23.3–58) 63.4 (45.8–81) 47.5 (31.8–63.3) 40.5 (25.4–55.6) 17.3 (3.2–31.3) 33.4 (16.1–50.6) .017

  5 63.9 (49.9–77.8) 49 (34.8–63.2) 51.8 (33.2–70.4) 46.2 (26.6–65.8) 39.4 (22.4–56.4) 30.4 (14.4–46.3) .003

  6 71.1 (56.4–85.8) 55.2 (36.7–73.7) 50 (33.4–66.7) 57.2 (42–72.4) 41.7 (21.5–62) 33.4 (14–52.7) .004

  7 65.3 (45.3–85.3) 68.6 (53–84.3) 77.5 (62.4–92.5) 52 (32–72.1) 50 (33.9–66.2) 50 (33.9–66.2) .022

  8c … 100 (0–0) 75 (55.5–94.6) 87.9 (76.6–99.3) 76 (58.9–93.2) 41.7 (21.5–62) .003

  9c … … … … 81.3 (61.5–101.1) 72 (54–90.1) .506

  P valued <.001 <.001 <.001 <.001 <.001 <.001

All samples included in analysis.

Abbreviation: CI, confidence interval.
aCross-sectional survey when blood was collected.
bP values calculated using a χ2 test for trend for immunoglobulin G (IgG) prevalence in the same age group at different cross-sectional bleeds (P ≤ .05 indicated in bold type).
cMissing values are due to a lack of children in that age group.
dP values calculated using a χ2 test for trend for IgG prevalence in different age groups at the same cross-sectional bleed (P ≤ .05 indicated in bold type).
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42%–52% who were positive at October 2003 remained seropos-
itive at October 2004. Not all children had declining antibodies 
during this period. For example, for AMA1-W2mef, 28.5% of 
children showed no significant decline between October 2003 
to May 2004 (33.8% and 31% for 3D7 and HB3 alleles, respec-
tively); for MSP2, proportions were 32.1% and 27.8% for 3D7 
and FC27 alleles, respectively.

Maintenance of Functional Antibodies to Merozoites and Antibodies to 

Infected Erythrocyte Surface Antigens

We evaluated maintenance of functional antibodies to mero-
zoites as malaria transmission declined. We studied antibodies 
that promote opsonic phagocytosis of merozoites and antibod-
ies that fix complement on the surface of merozoites as these 2 
functional measures of merozoite antibodies have been associ-
ated with protective immunity in longitudinal studies of chil-
dren [24, 25, 29]. We measured antibody levels over the last 
12 months of the study (October 2003 to October 2004) among 
children who had no recorded episode of parasitemia during 
that period.

Antibodies with opsonic phagocytosis activity declined rap-
idly with a half-life of just 0.15 years (95% reference range, 0.09–
0.4 years), significantly shorter than the half-lives of antibodies 
to individual merozoite antigens (Figure 2A). Despite declining 
levels, the prevalence of phagocytosis-promoting antibodies 
remained consistently high, from 92.3% in October 2003 to 
89.4% in October 2004, suggesting that some level of functional 
opsonic phagocytosis activity is retained for long periods of 
time.

In contrast, levels of complement-fixing antibodies did not 
appreciably decline (0.7–∞) (Figure 2B). Accordingly, the pro-
portion of children seropositive for complement-fixing anti-
bodies remained constant from 78% in October 2003 to 81.3% 
in October 2004. However, there was a wide range of observed 
responses with some individuals exhibiting a measurable decline 
and others remaining stable throughout. No significant correla-
tions were found between the measures of functional antibodies 
to merozoites, consistent with the different rates of decline.

We measured levels of antibodies to surface antigens of 
IEs given they could be maintained differently to merozoite 

Table 2.  Seropositivity to MSP2 Alleles by Age at Each Cross-sectional Survey

Age, y

Seroprevalence (95% CI)

May 2002a October 2002a May 2003a October 2003a May 2004a October 2004a P Valueb

MSP2(3D7)

  0 10 (–1 to 21) 2.8 (–2.7 to 8.1) 3.8 (–3.6 to 11) 0 (0–0) 0 (0–0) 6.7 (–6.5 to 19.8) .246

  1 10.5 (1.7–19.2) 3.2 (–3.1 to 9.3) 3.9 (–3.8 to 11.5) 0 (0–0) 4 (–3.9 to 11.9) 4.2 (–4.1 to 12.4) .150

  2 15.4 (3.9–27) 0 (0–0) 6.9 (–.8 to 14.4) 3.2 (–3.1 to 9.3) 6.5 (–2.4 to 15.3) 3.2 (–3.1 to 9.3) .156

  3 31.8 (17.3–46.2) 10.3 (.6–20) 0 (0–0) 16.3 (4.2–28.4) 13.6 (2.3–24.8) 3.6 (–3.5 to 10.7) .013

  4 18.8 (5–32.6) 13.4 (1–25.8) 20 (7.4–32.7) 19.1 (7–31.2) 6.9 (–2.6 to 16.4) 10 (–1 to 21) .249

  5 49 (34.5–63.5) 14.3 (4.4–24.3) 13.8 (1–26.7) 3.9 (–3.8 to 11.5) 9.1 (–1 to 19.1) 6.1 (–2.3 to 14.4) <.001

  6 47.4 (31.3–63.6) 27.6 (11–44.3) 27.8 (12.9–42.7) 31 (16.8–45.2) 8.4 (–3.1 to 19.7) 0 (0–0) <.001

  7 52.2 (31.3–73.2) 20 (6.5–33.6) 22.6 (7.6–37.7) 28 (10–46.1) 23.7 (10–37.5) 10.6 (.6–20.5) .009

  8c … 0 (0–0) 30 (9.4–50.7) 27.3 (11.8–42.8) 28 (10–46.1) 25 (7.3–42.8) .860

  9c … … … … 37.5 (12.9–62.2) 28 (10–46.1) .529

  P valued <.001 <.001 <.001 <.001 <.001 <.001

MSP2(FC27)

  0 13.4 (1–25.8) 5.5 (–2.1 to 12.9) 7.5 (–2.8 to 17.6) 4.4 (–4.3 to 13) 4.8 (–4.7 to 14.2) 0 (0–0) .113

  1 18.8 (7.6–30) 6.3 (–2.4 to 14.9) 7.7 (–2.8 to 18.2) 0 (0–0) 0 (0–0) 8.4 (–3.1 to 19.7) .012

  2 12.9 (2.2–23.5) 10.3 (.6–20) 6.9 (–.8 to 14.4) 3.2 (–3.1 to 9.3) 6.5 (–2.4 to 15.3) 0 (0–0) .026

  3 31.8 (17.3–46.2) 15.4 (3.9–27) 9.4 (–1 to 19.7) 24.4 (10.3–38.4) 16.3 (4.2–28.4) 3.6 (–3.5 to 10.7) .026

  4 18.8 (5–32.6) 40 (22.1–58) 20 (7.4–32.7) 21.5 (8.9–34.1) 6.9 (–2.6 to 16.4) 10 (–1 to 21) .024

  5 23.5 (11.2–35.7) 18.4 (7.4–29.4) 20.7 (5.7–35.8) 23.1 (6.5–39.7) 9.1 (–1 to 19.1) 6.1 (–2.3 to 14.4) .031

  6 31.6 (16.6–46.7) 20.7 (5.7–35.8) 27.8 (12.9–42.7) 26.2 (12.7–39.8) 0 (0–0) 4.2 (–4.1 to 12.4) .003

  7 39.2 (18.7–59.7) 34.3 (18.3–50.4) 35.5 (18.3–52.7) 20 (4–36.1) 10.6 (.6–20.5) 10.6 (.6–20.5) .000

  8c … 0 (0–0) 50 (27.5–72.6) 45.5 (28.2–62.8) 36 (16.8–55.3) 12.5 (–1.1 to 26.1) .012

  9c … … … … 50 (24.6–75.5) 36 (16.8–55.3) .381

  P valued .033 .004 <.001 <.001 <.001 .001

All samples included in analysis.

Abbreviation: CI, confidence interval.
aCross-sectional survey when blood was collected.
bP values calculated using a χ2 test for trend for immunoglobulin G (IgG) prevalence in the same age group at different cross-sectional bleeds (P ≤ .05 indicated in bold type).
cMissing values are due to a lack of children in that age group.
dP values calculated using a χ2 test for trend for IgG prevalence in different age groups at the same cross-sectional bleed (P ≤ .05 indicated in bold type).
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antigens due to their different presentation to the immune sys-
tem (Figure 2C and 2D). We previously reported that these anti-
bodies are acquired in an age-dependent manner [12, 24] in our 
study population and predominantly target PfEMP1 [30, 31]. 
We included 2 genetically distinct isolates expressing PfEMP1 
types associated with virulent phenotypes and disease patho-
genesis: (i) Isolate IT4var19 expresses var19 (containing a DC8 
arrangement) which mediates adhesion to cerebral endothelial 
cells; (ii) a 3D7 isolate we identified expresses group A var genes 

(including a DC13 arrangement) associated with virulent prop-
erties (Supplementary Table 1). Antibodies to IE surface anti-
gens expressed by both isolates were relatively stable as malaria 
transmission declined (half-lives, 10.5 [95% reference range, 
3.2–∞] and 4 [95% reference range, 1.4–∞] years for 3D7 and 
IT4var19 IEs, respectively).

Collectively, these results show that while total levels of anti-
bodies to individual merozoite antigens are sensitive to changes 
in malaria transmission, specific antibody functional activity is 
better maintained, especially their capacity to fix complement. 
Antibodies to IEs expressing PfEMP1 variants associated with 
disease pathogenesis also appear to be better maintained.

DISCUSSION

There is concern that recent reductions in malaria transmission 
in many endemic countries [6, 32–35] may lead to rapid declines 
in naturally acquired immunity, leaving many at increased risk of 
malaria and severe complications. Declining P. falciparum preva-
lence in our cohort was accompanied by decreasing antibodies to 
2 key merozoite antigens, AMA1 and MSP2; this was consistent 
across different alleles of MSP2 and AMA1. In the context of low 
parasite prevalence and absence of clinical malaria, most chil-
dren maintained seropositivity to AMA1, whereas fewer children 
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Figure 2.  Decline in levels of functional antibodies to merozoites and antibodies to infected erythrocyte (IE) surface antigens over the study period. In a subset of 70 sam-
ples, antibody function was measured at 3 time-points (October 2003, May 2004, and October 2004). The predicted mean antibody levels (and 95% confidence intervals [CIs] 
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Table  5.  Maintenance of Antibodies to AMA1 and MSP2 Between 
October 2003 and October 2004

Seropositive, % (No.)a

Allele October 2003 October 2004
Maintained 

Seropositivityb

AMA1(W2mef) 45.3% (124) 36.5% (100) 73.4% (91)

AMA1(HB3) 44.5% (122) 36.1% (99) 73.8% (90)

AMA1(3D7) 43.8% (120) 34.7% (95) 69.2% (83)

MSP2(3D7) 15.3% (42) 9.1% (25) 52.4% (22)

MSP2(FC27) 19.0% (52) 9.5% (26) 42.3% (22)

aAll children present at October 2003 and October 2004 cross-sectional bleeds (n = 274).
bPercentage of seropositive individuals in October 2003 who maintained their seropositive 
status in October 2004.
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retained seropositivity for MSP2. The broad similarity in esti-
mated half-lives of antibodies to AMA1 and MSP2 (approximately 
9 months and 1–3 years, respectively, with overlapping confidence 
intervals) suggests that differences in maintenance of seropositiv-
ity could be related to lower starting levels of antibodies to MSP2.

Different kinetics of antibody responses specific for different 
alleles might give some indication of the relative prevalence 
and dynamics of circulating parasite strains [13, 14]. Antibody 
responses to AMA1-W2mef increased from May 2002 before 
declining and reaching levels comparable to the other 2 AMA1 
alleles by October 2003. This coincided with an increase in the 
incidence of parasitemia (of any density) and clinical malaria 
between May 2002 and May 2003; P.  falciparum strains car-
rying a W2mef-like AMA1 allele may have been more preva-
lent during that time. The higher prevalence of antibodies to 
MSP2-3D7 is consistent with infections with this genotype 
being moderately more prevalent.

Rather than determining absolute decay rates of antibodies 
in the absence of any exposure, we estimated antibody main-
tenance in a practical setting where malaria transmission had 
dramatically reduced, an increasingly common situation glob-
ally. Maintenance of antibodies was highly variable among 
individuals, from rapid decay to no decline. Overall estimated 
half-lives of 1–3 years for antibodies to AMA1 or MSP2 indicate 
that antibodies to merozoite antigens decline relatively quickly; 
however, such decay rates and the wide variation in antibody 
maintenance among individuals imply that detectable levels 
of these antibodies could be maintained for several years. Our 
findings are largely consistent with studies in pregnant women 
[21] and a small study of adults in Southeast Asia [36]. In con-
trast, some studies in African children reported rapid declines 
in antibodies to merozoite antigens when measured immedi-
ately after treatment for acute malaria [37, 38]. Given antibodies 
initially decay rapidly following an acute infection, estimates of 
antibody half-lives will be much shorter if measured following 
an acute episode than measured in uninfected subjects as we 
have done [3, 39, 40]. Published evidence suggests impairment 
in the induction of B-cell memory to malaria [41], which may 
partly explain the lack of sustained responses.

We complemented observations on the dynamics of antibody 
levels by providing important new data on maintenance of func-
tional antibodies to merozoite antigens on which very little is 
currently known. We measured antibodies that mediate opsonic 
phagocytosis and complement fixation on merozoites as these 
have emerged as likely mechanisms of immunity and promising 
functional correlates of immunity [12, 24, 25, 29]. Functional 
complement-fixing antibodies to merozoites were better main-
tained than total antibodies to merozoite antigens. This may 
suggest that complement fixation requires only low levels of anti-
bodies and antibody levels must decline below a certain thresh-
old before functional activity is lost. Alternatively, complement 
fixation might be mediated by specific antibodies that are better 

maintained over time due to their role in immunity. Functional 
activity is dependent on multiple antibody properties, such as 
affinity, subclass, allotype, glycosylation, and epitope specificity, 
and not just total antibody levels [42]. In contrast, opsonic phago-
cytosis-promoting antibodies rapidly declined, suggesting this 
functional response is more sensitive to decrease in antibody lev-
els. However, most children remained positive for opsonic phago-
cytosis activity over the 12-month period even though overall 
activity did decline quickly. While antibody decay was estimated 
among children who had no parasitemia detected during surveil-
lance using microscopic evaluation of blood smears, it is possi-
ble that we missed some parasitemic events; data on parasitemia 
detected using more sensitive PCR methods were not available. 
Our findings indicate that some forms of immunity may be better 
maintained, and highlight the need for assessing antibody func-
tion in population studies rather than simply antibody levels. The 
sustained persistence of some key elements of immunity is con-
sistent with epidemiologic evidence suggesting that some level of 
immunity may be maintained for extended periods after decline 
or interruption malaria transmission [3].

Our previous studies showed that the prevalence of 
growth-inhibitory antibodies in this cohort was low [43]; there-
fore, these were not evaluated. However, we previously showed 
that growth-inhibitory antibodies were higher at times of higher 
malaria transmission [43]. It was not possible to investigate the 
relationship between declining immunity and subsequent risk 
of malaria in this study. Prior studies [15, 44] have suggested 
that there is a threshold magnitude of antibodies required to 
mediate immunity. Our results finding a decline in total anti-
bodies to merozoites suggest that susceptibility to malaria is 
likely to have increased in children as a result of this decline.

Antibody acquisition longevity may also vary according to 
antigen specificity and parasite life-stage [21, 38, 45]; therefore, 
we compared maintenance of antibodies to merozoite antigens 
vs IE surface antigens. For our studies, we used isolates that 
expressed PfEMP1 variants associated with disease pathogen-
esis as we reasoned that antibodies to these variants are likely 
to have a role in immunity. Levels of antibodies to IE surface 
antigens were better maintained than levels of antibodies to 
merozoite surface antigens despite a lower seropositivity at the 
beginning of the study. This may be due to their different pre-
sentation to the immune system and suggests that some individ-
uals can maintain effective antibody-mediated immunity to IE 
surface antigens. We have previously reported that the majority 
(>80%) of antibody reactivity to IEs targets PfEMP1 [30, 31]; 
however, a minor proportion of antibody reactivity may tar-
get other surface antigens. IE surface antibodies correlate with 
functional opsonic phagocytosis activity [31], a mechanism 
thought to be important in mediating IE clearance. Our results 
suggest inherent differences in maintenance of antibodies to 
antigens of IEs vs merozoites; they also suggest that generating 
long-lived immune responses to malaria is possible. Similarly, 
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we previously found antibodies to PfEMP1 had much slower 
decay rates than antibodies to merozoite antigens in pregnant 
women [21]. Relatively short-lived antibodies suggest an inher-
ent weakness in naturally acquired immunity to merozoites. 
Understanding differences in antibody maintenance between 
antibodies to merozoites and IEs may yield important insights 
to guide vaccine design. Antibodies may be valuable biomark-
ers to enhance malaria surveillance [4]. Understanding acquisi-
tion and maintenance of antibodies is crucial in assessing their 
utility in serosurveillance approaches. Our results suggest that 
antibodies to AMA1 and MSP2 are relatively sensitive biomark-
ers of changes in malaria transmission, consistent with findings 
in other populations [46, 47]. On the other hand, we found 
that antibodies to IEs expressing virulent phenotypes, isolates 
A4va19 [ 48] and 3D7 [ 49], were less affected by changes in 
malaria transmission.

In conclusion, by evaluating antibodies to merozoite antigens, 
IE surface antigens, and functional antibodies in a longitudinal 
cohort of children, we have provided significant new insights 
into the impact of declining malaria on immunity. The data pro-
vide estimates of decay rate of antibodies in a practical context 
of declining population malaria transmission. Furthermore, the 
findings indicate that certain elements of immunity may per-
sist for extended periods following reduction in transmission. 
There was a decline in the prevalence and levels of antibodies 
to merozoite antigens AMA1 and MSP2 associated with falling 
prevalence of P. falciparum among children. Opsonic phagocyto-
sis-promoting antibodies decayed more rapidly following declin-
ing transmission, whereas complement-fixing antibodies to 
merozoites or antibodies to IE surface antigens were much better 
maintained. Understanding the great variability among individ-
uals in antibody maintenance may be very valuable for inform-
ing vaccine and biomarker development and implementation. 
With upscaling of malaria control and progress toward elimina-
tion in some regions, results from this study provide important 
insights on how immunity may be affected by changes in malaria 
transmission intensity and provide information to aid selection 
of biomarkers for monitoring transmission and identifying sus-
ceptible populations or groups for targeted interventions.
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