Skip to main content
. 2018 Jan 25;8(2):65. doi: 10.3390/nano8020065

Table 1.

Application examples of nanoporous membranes for water purification a.

Membrane Synthesis Method Target and Efficiency Water Flux Ref.
PVDF Electrospinning NaCl (<280 ppm) 5–28 Kg m−2 h−1 [79]
Aquaporin reconstituted Vacuum suction and amine-catrchol adduct formation NaCl (66.2%), MgCl2 (88.1%) [81]
Zr-MOF Solvothermal synthesis Al3+ (99.3%), Mg2+ (98.0%), Ca2+ (86.3%) 0.28 L m−2 h−1 bar−1 [83]
CNT-PcH Electrospinning NaCl (˃99.99%) 24–29 L m−2 h−1 [82]
MCM41-PA-TFN Interfacial polymerization NaCl (97.9% ± 0.3%), Na2SO4 (98.5% ± 0.2%) 46.6 ± 1.1 L m−2 h−1 [68]
GO-PA-TFN Interfacial polymerization NaCl (93.8% ± 0.6%), Na2SO4 (97.3% ± 0.3%) 59.4 ± 0.4 L m−2 h−1 [69]
K+-controlled GO Drop-casting Mg2+, Ca2+, Na+ (~100%) 0.36 L m−2 h−1 [84]
Sigle-layer graphene oxygen plasma etching K+, Na+, Li+, Cl (~100%) 106 g m−2 s−1 [20]
Ti3C2Tx Mxene Electrospinning metal cations and dye cations (diameter ≥ 6 Å) 37.4 L m−2 h−1 bar−1 [80]
GO Impregnation Salt cations (6–46%), Methylene blue (46–66%), Raodamine-WT (93–95%) 27.6 L m−2 h−1 bar−1 [85]
GO@PAN Vacuum suction Na2SO4 (56.7%), Congo red 8.2 L m−2 h−1 bar−1 [86]
rGO hydriodic acid vapor, water-assisted delamination Cu2+, Na+, orange 7 (~100%) 12.0 L m−2 h−1 bar−1 [87]
GO-based Shear-induced alignment organic probe molecules (˃90%), salt cations (30–40%) 71 ± 5 L m−2 h−1 bar−1 [88]
bicontinous cubic Self-assembly Br (83%), Cl (59%), SO42 (33%), NO3 (81%) 2.8–5.7 L m−2 h−1 bar−1 [89]
NPN Track-etching Au nanoparticles (˃80%) [71]
Cellulose Freeze-extraction technique Nanoparticles with diameter ˃10 nm 1.14 × 104 L m−2 h−1 bar−1 [21]
CNT Chemical vapor deposition CdS (80%), Au (100%), TiO2 (100%) nanoparticles [91]
CNCs Freeze-drying process Victoria Blue 2B (98%), Methyl Violet 2B (84%), Rhodamine 6G (70%) 6.4 L m−2 h−1 bar−1 [16]
VAMWNTs Chemical vapor deposition Lubricating oil 1580 L m−2 h−1 [92]
Ag-APAN Electroless plating, surface modification 1,2-dibromoethane [94]
CNs-SA Thermal oxidation etching Ethanol 2469 g m−2 h−1 [95]
PAA-g-PVDF Phase inversion hexadecane, toluene, diesel (˃99.99%) 15,500–23,200 L m−2 h−1 bar−1 [57]
PSF nanofibers Electrospinning, interfacial polymerization Soybean oil (~100%) 5.5 m3 m−2 day [96]
uGNM filtration-assisted assembly 99.8% of methyl blue and 99.9% of direct red 81 21.8 L m−2 h−1 bar−1 [34]
GO Vacuum suction dimethyl carbonate (95.2%) 1702 g m−2 h−1 [97]
GO Pressurized ultrafiltration Ethanol (~100%) [98]
GO-TiO2 Self-assembly rhodamine B, acid orange 7, humic acid (˃90%) 60 L m−2 h−1 [99]
MoS2 Vacuum filtration Evans blue (89%) 245 L m−2 h−1 bar−1 [100]
WS2 Vacuum filtration Evans blue (˃90%) 730 L m−2 h−1 bar−1 [101]
TiO2 nanowire Hydrothermal synthesis, hot-press process polyethylene glycol, polyethylene oxide, HA, E. coli [21]
rGO-CNT Vacuum-assisted filtration nanoparticles, dyes, BSA, sugars, and humic acid (˃99%) 20–30 L m−2 h−1 bar−1 [103]
PMMA Ultraviolet irradiation, acid rinsing human rhinovirus type 14 (~100%) [104]
MCCNs-PEI Electrospinning MS2 bacteriophage virus (99.99%), E. coli (99.9999%) 85 L m−2 h−1 bar−1 [105]

a PVDF: polyvinylidene fluoride; Zr-MOF: zirconium(IV)-based metal-organic framework membrane; CNT-PcH: carbon nanotube incorporated polyvinylidene fluoride-co-hexafluoropropylene nanofiber membrane; MCM41-PA-TFN: MCM-41 silica nanoparticles enhanced polyamide thin-film nanocomposite membrane; GO: graphene oxide; GO-PA-TFN: graphene oxide enhanced polyamide thin-film nanocomposite membrane; PAN: polyacrylonitrile; rGO: reduced graphene oxide; NPN: nanoporous silicon nitride; CNT: carbon nanotube; CNCs: cellulose nanocrystals; VAMWNTs: vertically-aligned multi-walled carbon nanotubes; APAN: polyacrylonitrile; CNs-SA: g-C3N4 nanosheets incorporated into sodium alginate matrix; PAA-g-PVDF: poly(acrylic acid)-grafted PVDF; PSF: polysulfone; uGNM: ultrathin graphene nanofiltration membrane; PMMA: polystyrene-block-poly(methyl methacrylate); MCCNs: microcrystalline cellulose nanofibers; PEI: polyethylenimine.