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Abstract

Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. 
Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require 
laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, 
such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming 
gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350–2500 nm) 
can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas 
exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels 
and/or in the field under yield potential conditions. Models were developed using half of the observed data with the re-
mainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 
for LMA, and 0.93 for Narea, with bias <0.7%. The models were tested on elite lines and landraces that had not been 
used to create the models. The bias varied between −2.3% and −5.5% while relative error of prediction was similar for 
SPAD but slightly greater for LMA and Narea.

Keywords:  Electron transport rate, hyperspectral reflectance, leaf dry mass per area, leaf nitrogen, partial least squares, 
photosynthesis, Rubisco, Triticum aestivum, velocity of carboxylation.

Introduction

Global population is predicted to reach 9.7 billion by 2050 
(UN Department of Economic and Social Affairs, 2015). To 
satisfy projected demand for cereal grain, wheat yields need 
to increase at rates far exceeding the current annual genetic 
gains being made in most parts of the world by plant breeders 
(Reynolds et al., 2012). Further improvements in yield require 

increases in biomass, derived from improvements in radiation 
use efficiency and photosynthetic traits (Parry et  al., 2011; 
Reynolds et al., 2012). Despite its importance, selection based 
on physiological and biochemical characteristics of wheat 
genotypes in a breeding programme is uncommon due to 
cost and the time required for testing at a breeding scale. The 
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development of tools that improve speed and accuracy of 
estimating biomass and photosynthesis-related traits would 
allow screening of a large number of lines, making these traits 
more amenable to incorporation into breeding programmes. 
This would also facilitate identification of molecular mark-
ers and candidate genes underpinning genetic variation for 
the traits of interest. Spectral reflectance is associated with 
specific plant characteristics and has been proposed as a fast 
and non-destructive technique that can be efficiently used in 
breeding programmes where thousands of individuals must 
be screened every year (Babar et al., 2006).

Prediction of photosynthesis-related traits through simple 
leaf reflectance parameters is well established. Reflectance in 
the visible/near infrared part of the electromagnetic spectrum 
has been related to xanthophylls, chlorophylls, and water in 
plants, and the red edge in the derivative of reflectance is com-
monly related to photosynthesis (Peñuelas and Filella, 1998). 
One of the first and most widely used optical instruments is 
the SPAD chlorophyll meter. This measures transmittance 
of red (650 nm) versus infrared (940 nm) light to estimate 
leaf chlorophyll content (Benedict and Swidler, 1961; Inada, 
1963; Mullan and Mullan, 2012). Numerous indices based 
on wavelengths in the visible and infrared part of the elec-
tromagnetic spectrum have been used in remote sensing to 
predict vegetation biomass, biochemical leaf components 
and some physiological traits. For example, the normalized 
difference vegetative index is used to monitor vegetation 
using red, infrared and near-infrared wavelengths to measure 
relative greenness, foliage development, senescence, biomass, 
and chlorophyll content (Tucker, 1979; Goward et al., 1985; 
Gamon et al., 1995; Cabrera-Bosquet et al., 2011; Lopes and 
Reynolds, 2012; Pinto et al., 2016). The water index is used to 
infer water content from reflectance ratios between 900 and 
970 nm (Peñuelas et al., 1997) while the photochemical re-
flectance index at 531 and 570 nm has been used to estimate 
radiation-use efficiency and photoprotective pigment pools in 
leaves (Gamon et al., 1992; Peñuelas et al., 2011).

The infrared (IR) part of  the spectrum is commonly 
divided in to three regions: near infrared (770–1300), short 
wave infrared 1 (SWIR1; 1300–1900 nm), and short wave in-
frared 2 (SWIR2; 1900–2500  nm). Research in the IR has 
increased because hyperspectral cameras and field spectro-
radiometers are increasingly able to accurately measure the 
full spectrum (i.e. 350–2500 nm) and because the incorpor-
ation of  information from the entire visible to SWIR2 re-
gion has proven useful for a range of  plant traits (e.g. Singh 
et  al., 2015; Yang et  al., 2016). IR spectra measured from 
leaves have been correlated with photosynthetic parameters 
(maximum Rubisco activity, Vcmax, and electron transport 
rate, J; Serbin et al., 2012; Ainsworth et al., 2014), and have 
been used to predict carbon, nitrogen, and phosphorus con-
tent of  leaves (Gillon et al., 1999). Successful predictions of 
photosynthetic parameters have been obtained for tropical 
trees, aspen, cotton, soybean, and maize (Doughty et  al., 
2011; Serbin et  al., 2012; Ainsworth et  al., 2014; Yendrek 
et  al., 2017), and nitrogen content and leaf  dry mass per 
area (LMA) in wheat (Ecarnot et al., 2013). In wheat at the 
canopy level, predictions from hyperspectral reflectance for 

biomass, nitrogen, and water content have been demon-
strated (Hansen and Schjoerring, 2003; Pimstein et al., 2007; 
Yao et al., 2015). These examples show the potential of  using 
hyperspectral reflectance to screen wheat for photosynthetic 
parameters (Garriga et al., 2017).

The main objective of this study was to develop statistical 
models linking leaf-level hyperspectral reflectance to photo-
synthetic traits, thereby establishing a high throughput al-
ternative to the traditional time-consuming methods. Leaf 
reflectance spectra are correlated with photosynthetic traits 
derived from the response of CO2 assimilation to CO2 con-
centration using the model of Farquhar et al. (1980) consid-
ering the new parameters for wheat (Silva-Pérez et al., 2017). 
The method is validated for Vcmax, J, and with LMA, Narea 
and SPAD (a surrogate for chlorophyll content). Examples 
are given where the derived models are used to predict SPAD, 
LMA and Narea in two previously unseen sets of elite and 
landrace wheat genotypes.

Materials and methods

Plant material
Six sets of diverse wheat (Triticum aestivum, T. turgidum) and triti-
cale germplasm were used in these experiments as follows: (i) Early 
Vigour (EV): 16 wheat genotypes from CSIRO in Australia, most of 
which have a larger embryo, fast leaf area development, and low leaf 
mass per unit area; (ii) a subset of the Best and Unreleased Yield 
Potential (BYP): 21 wheat genotypes and nine triticale genotypes 
with high yield in Australia; (iii) CIMMYT Core Germplasm Subset 
II (C): 30 wheat genotypes selected at CIMMYT (International 
Maize and Wheat Improvement Center) for high yield (González-
Navarro et al., 2015); (iv) Candidates of C (CC): 216 elite wheat gen-
otypes plus seven wheat genotypes from C, in total giving 223 wheat 
genotypes; (v) wheat landraces (L) obtained from CIMMYT’s gene 
bank: 230 wheat landraces plus five elite wheat genotypes including 
two from CC, giving 235 wheat genotypes in total; and (vi) a subset 
of L (LS): 23 genotypes with similar phenology. An additional letter 
added to each abbreviation indicates whether the measurements 
were made before anthesis (B) or at anthesis (A).

Experimental conditions
The Zadoks scale was used to describe the growth stages (GS) of 
wheat (Zadoks et  al., 1974). The first day after emergence (DAE) 
is considered at GS10, when at least 50% of the first leaves emerg-
ing through coleoptile are visible. Five experiments were conducted: 
Aus1, Aus2, Aus3, Mex1, Mex2 (Table1), as follows. 

The first glasshouse experiment, Aus1, was set up at CSIRO 
Black Mountain, Canberra, Australia (−35.271875, 149.113982). 
Two seeds of the EVA set were sown in cylindrical pots of 1.06 litres 
(15 × 5 cm) with 75:25 loam:vermiculite containing basal fertilizer, 
and one plant per pot was kept for the experiment. Plant emergence 
was on 8 April 2012; artificial light was used in June to extend the 
photoperiod to 16 h; and temperature was controlled to 25/15  °C 
(day/night). Aus1 was designed to achieve a range in leaf colour 
with nitrogen deficiency in one treatment (−N) and high fertilizer 
in the other treatment (+N), and the experiment was organized in a 
randomized block design, three blocks representing each repetition 
for +N and other three blocks −N. Extra fertilizer (Thrive, ~300 ml 
per pot of 1.77 g l−1; 27% N, 5.5% P, 9% K) was applied each week 
for the +N treatment until 83 DAE. A  severe low nitrogen treat-
ment was obtained irrigating the pots with water without fertilizer 
1.5 months before measurements. The flag leaf was measured at the 
end of booting and during anthesis (GS58–69) from 73 to 83 DAE.
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The second glasshouse experiment, Aus2, was carried out at 
CSIRO Black Mountain, Canberra, Australia. Three seeds of the 
BYPB set were sown in pots of 5 litres with 75:25 loam:vermiculite 
soil mix containing basal fertilizer, and two plants per pot were 
kept for the experiment. Plant emergence was on 17 October 2012 
and temperature was controlled to 25/15 °C (day/night). Aus2 was 
organized in a randomized block design, two blocks representing 
each repetition for the high nitrogen treatment (+N) and one block 
for the low nitrogen treatment (−N). For the +N treatments extra 
fertilizer (Aquasol, ~300  ml per pot of 1.77  g l−1; 23% N, 4% P, 
18% K) was applied every 3 d from 41 to 56 DAE. Treatment −N 
was obtained irrigating the plants with water without fertilizer 10 
d before measurements. Treatment −N was applied over a shorter 
duration than Aus1, resulting in smaller differences in leaf nitrogen 
content per unit leaf area and photosynthetic parameters. The flag 
leaf was measured before anthesis (GS49–57) from 48 to 56 DAE.

Experiment Aus3 was carried out in the field at CSIRO 
Experimental Station at Ginninderra, Australia (−35.199837, 
149.090898). The emergence of plants was on 4 October 2013. 
From 1 to 75 DAE the average maximum for daily temperature (see 
Supplementary Fig. S1 at JXB online) was 22.4  °C and the min-
imum 7.7  °C, with in total 142  mm of rain and an accumulative 
thermal time of 1126.8 °C d (base temperature 0 °C). Average solar 
radiation was 24 MJ m−2 (Supplementary Fig. S1). Due to late sow-
ing and long days (~11 h) the wheat cycle was short. The CA and 
EVA subsets of wheat genotypes were sown in the same experi-
mental design of two randomized blocks. Each block was subdi-
vided into 30 plots (5 × 6). Next to this experimental design, another 
experimental design of two randomized blocks for the BYPB col-
lection was sown. In this case, each block was subdivided into 42 
plots (7 × 6). Each plot for both experimental designs was 5 m×1.8 
m. It contained a single genotype sown in 10 rows, 18 cm apart, and 
approximately 200 plants m−2. Plots were fertilized and irrigated op-
timally in all conditions. For the BYPB subset of wheat genotypes, 
the flag leaf was measured before anthesis (GS40–55, 46–54 DAE) 
where the maximum and minimum temperatures were 28.3 and 
5.4 °C, respectively. The maximum and minimum temperatures dur-
ing measurement of EVA (GS69, 62–67 DAE) and CA (GS56-69, 
60–67 DAE) were 32.2 and 4.3 °C, respectively. Measurements and 
sampling were done twice in two plots, resulting in four repetitions 
for four to five genotypes per day that were at similar plant stage. 
Due to the close phenology among the lines studied, the number of 
genotypes measured was reduced: two wheat genotypes from EVA, 
20 wheat genotypes and six triticale genotypes from BYPB, and 22 
wheat genotypes from CA.

Experiment Mex1 was carried out in the field at Centro 
Experimental Norman E.  Borlaug (CENEB) research sta-
tion, located in the Yaqui Valley, Sonora, Mexico (27.370837, 
−109.930362) for a winter–spring cycle. Plant emergence was on 
2 December 2012. From the 1 to 138 DAE, the average maximum 
and minimum daily temperatures were 26 and 8.3 °C, respectively 
(see Supplementary Fig. S1). In total, 15.4 mm of rain was supple-
mented with 500  mm of irrigation delivered over five events. The 
cumulative thermal time was 2364.6  °C d and average daily solar 
radiation was 17 MJ m−2 (see Supplementary Fig. S1). Plants were 
organized in a randomized 5 × 6 lattice experimental design with 
three repetitions. Each repetition (10 × 3 plots) enclosed two subdi-
visions of 5 × 3 plots. Each plot (2.4 m×8.5 m) contained a single 
genotype sown in six rows, two beds in the middle with two rows 
each and two beds in the edges with one row of the same genotype, 
the second row in the edges corresponded to the next genotype or 
a filling genotype to avoid border effect. Beds followed the system 
56–24, where 56 cm is the furrow width and 24 cm is the raised bed 
width. Plants were grown under optimal management in the field. 
First fertilization was at soil preparation with 50 kg ha−1 of N and 
50 kg ha−1 of P and a second fertilization in the first irrigation of 
150 kg ha−1 of N. For the CB subset of wheat genotypes, the flag leaf 
was measured before anthesis (GS49–57, 67–82 DAE), with max-
imum and minimum temperatures of 29.7 and 1.5 °C, respectively. 

For the CA subset, flag leaves were measured at anthesis (GS65 + 7, 
88–103 DAE), with maximum and minimum temperatures of 32.1 
and 2.5 °C, respectively. Measurements and sampling were from one 
plant per plot; three to six genotypes per day were measured at a 
similar plant stage with three repetitions.

Field experiment Mex2 was used to test the reflectance method 
developed in this study with a larger, diverse group of  wheat geno-
types. CC and L genotypes were sown at the same time and near the 
plots from the Mex1 experiment at CENEB during the same season 
with the same sowing and plant emergence dates and crop manage-
ment and weather (see Supplementary Fig. S1). Plots in both sets 
of  wheat genotypes were 2 m long×1.6 m, and each one contained 
two beds arranged in the 56–24 system. CC plants were arranged 
in the field in 20 × 22 plots plus six plots in the 23rd row of plots 
to give 446 plots in total, and the whole experiment comprised two 
randomized blocks. L plants were sown in a band of  5 × 54 plots. 
From these 270 plots, 230 plots contained single landrace wheat 
genotypes and 40 plots contained elite wheats (checks), placed after 
every tenth landrace plot. The measurements were done in two 
main steps as follows. (i) Survey: CC and L flag leaves were meas-
ured for reflectance and SPAD on all plots including repetitions and 
checks. CC (n=446) plants were measured from 101 to 103 DAE, 
which was 15 d after anthesis on average. L plants (n=270) were 
measured from 110 to 111 DAE, which varied from 1 to 36 d after 
anthesis (Supplementary Fig. S2). (ii) Second measurement: a se-
lection of  23 L genotypes that were 5–10 d after anthesis were iden-
tified (Supplementary Fig. S2) and measured a second time (LS). 
Reflectance and SPAD were measured and leaves were sampled for 
determination of  LMA and Narea.

Measured traits
Gas exchange was measured using a LI-COR LI-6400XT infrared 
gas analyser (LI-COR Inc., Lincoln, NE, USA); the 6  cm2 rect-
angular head was used for the experiments Aus1, Aus2, and Aus3, 
and the 2 cm2 circular fluorescence head (Li-6400–40; LI-COR Inc.)  
for the Mex1 experiments. The flow rate into the leaf CO2 chamber 
of the Li-COR was set at 500  μmol s−1 for the 6  cm2 head and 
350 μmol s−1 for the 2 cm2 head, irradiance was 1800 μmol quanta 
m−2 s−1, and block temperature was 25 °C. Gas exchange was used to 
measure the rate of CO2 assimilation (A) and stomatal conductance 
(gs) at 400 inlet μmol CO2 mol−1 initially followed by a CO2 response 
curve (inlet CO2 concentrations are shown in Supplementary Table 
S1). The maximum Rubisco activity normalized to 25 °C, Vcmax25, 
and electron transport rate, J, were calculated using the leaf bio-
chemical model of photosynthesis (Farquhar et al., 1980) with kin-
etic constants derived for wheat (Silva-Pérez et al., 2017).

Flag leaves were measured with a SPAD-502 chlorophyll meter 
(Minolta Camera Co., Ltd, Japan) to provide a non-destructive sur-
rogate for chlorophyll content (Mullan and Mullan, 2012). In all 
experiments, three SPAD readings taken from the same region of 
the leaf used for leaf reflectance and gas exchange measurements 
were averaged per leaf.

Following gas exchange experiments in Aus1, Aus2, and Aus3, 
leaf material was sampled 3 cm up and down the leaf from where 
the chamber was clipped on in order to determine leaf mass per 
unit area (LMA) and nitrogen concentration. Area of the leaf sam-
ples was calculated from a digital photo using the program ImageJ 
v1.47. Samples were then dried for 48 h at 70 °C to achieve constant 
mass and weighed on an analytical balance (Mettler Toledo, AT201, 
0.01 mg) to obtain LMA (g m−2). Leaf nitrogen concentration (Nmass; 
mg g−1) and phosphorus concentration (Pmass; mg g−1), were deter-
mined on the same samples by flow injection analysis (QuikChem® 
method, Lachat Instruments, CO, USA) after Kjeldahl digestion of 
leaves. For Mex1 and LS-Mex2 experiments, a complete flag leaf 
was measured using a leaf area meter (LI3050A/4; LI-COR), fol-
lowed by drying for 48 h at 70 °C and weighing on a precision bal-
ance (Ohaus Adventurer, AR1530, 0.001 g) to obtain LMA. Nmass 
was determined at CIMMYT Batan, Mexico with the Technicon 



486 | Silva-Perez et al.

AutoAnalyzer II (Galicia et al., 2008). Nmass or Pmass and LMA were 
used to calculate nitrogen content per unit leaf area (Narea; g m−2) 
and phosphorous content per unit leaf area (Parea; g m−2).

Reflectance measurements
Reflectance spectra were measured with a FieldSpec®3 (Analytical 
Spectral Devices, Boulder, CO, USA) full range spectroradiometer 
(350–2500 nm) coupled via the fibre optic cable to a leaf clip with an 
internal calibrated light source and with two panels, a white panel 
used for instrument calibration and a black panel used for meas-
urements (Analytical Spectral Devices, Boulder, CO, USA). The 
calibration (i.e. white reference) of 100 reflectance spectra took 20 s 
and the leaf measurement took a maximum of 30 s in the Aus1 ex-
periment. At this stage, reflectance was measured using two pieces 
of leaf measured in the horizontal position (Supplementary Fig. 
S3A). The technique was improved in the Aus2, Aus3, Mex1, and 
Mex2 experiments, where the calibration of 30 reflectance spectra 
took 6 s and the leaf measurement took 9 s, with each leaf placed 
vertically, which helped to speed up the measurements in the field 
(Supplementary Fig. S3B). In these experiments a mask was used 
to reduce the leaf-clip aperture to an elliptic area of 1.264  cm2 
(1.15 × 1.4 cm) suitable for wheat leaves, a black circular gasket of 
2.2 cm inner diameter and 3 mm thickness was pasted to the mask 
to avoid leaf damage and to eliminate potential entry of external 
light through the edges (Supplementary Fig. S3C). In experiments 
Aus1, Mex1, and Mex2, one reflectance measurement was made per 
leaf lamina, two in Aus2, and three in Aus3, which were averaged. 
The leaf lamina repetitions are independent from the experimental 
design repetitions.

Analysis of leaf reflectance spectra
Leaf spectra required pre-treatment to correct for the ‘jump’ 
observed in apparent reflectance when changing between the detec-
tors. First, two different jump corrections were applied to the re-
flectance measurements because two different ASD FieldSpec®3 
spectroradiometers were used, one in Australia and the other in 
Mexico. Reflectance measured with the FieldSpec3 in Australia 
was corrected at 1000 and 1800 nm. Reflectance measured with the 
FieldSpec3 in Mexico was corrected at 1000 and 1830 nm using the 
software Spectral Analysis and Management System (SAMS®), ver-
sion 3.2. Spectra with reflectance lower than 0.35 and higher than 
0.6 at 800 nm were removed because an earlier analysis had shown 
these to be outliers. Finally, only the spectrum from 400 to 2400 nm 
was used in the analysis.

Analysis of the reflectance data was performed using the pls pack-
age Principal Component and Partial Least Squares Regression in 
R (Mevik and Wehrens, 2007) under R software version 2.15.0. One 
or two repetitions from experiments Aus1, Aus2, Aus3, and Mex1 
were used as training data (about 55% of the total observed data) 
to ensure that the complete set of genotypes were present in both 
training and test data (see Supplementary Table S2). The remaining 
repetitions from experiments Aus1, Aus2, Aus3, and Mex1 were used 
only as test data (about 45% of the observed data) to validate the par-
tial least squares regression (PLSR) models. The number of compo-
nents used in the regression model fitted to the reflectance data was 
based on the smallest root mean square error of the cross validation 
(RMSEP-CV) and the smallest predicted residual sum of squares 
(PRESS) from the training data. PLSR generates loadings and scores 
that are used to generate a group of regression coefficients for each 
wavelength and an intercept, which we call the PLSR model. The 
PLSR model is different for each trait (Supplementary Fig. S4). An 
example of the reflectance measurements, loadings and regression 
coefficients for 18 components obtained for Vcmax25 is shown in Fig. 1.

Evaluation of the model accuracy included the coefficient of de-
termination (R2), the model bias:

 Bias (%) ( ˆ ) /= × −100 y y y  (1)

to represent the percentage of the difference between the mean of 
the predicted trait, ŷ , and the mean of the observed trait, y , and 
the relative error of prediction (REP) (Nguyen and Lee, 2006):
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to represent the percentage of the root mean square error in prediction, 
where yi and y̆i are observed and predicted traits, n is the number of 
sample in data set and y  is the mean of the observed values of traits.

Applying the PLSR models
One objective of this study was to assess whether leaf-level hyper-
spectral reflectance could be used as a high throughput alternative to 
traditional and time-consuming measurements of destructive analy-
ses for biomass-related and photosynthetic traits. Experiment Mex2 
included 458 elite wheat genotypes (CC-Mex2) and landraces (L-
Mex2) (Table 1) that were independent from the genotypes used to 
train and validate the models. They were surveyed with hyperspec-
tral leaf reflectance and SPAD. At the time the wheat landraces were 
surveyed for leaf reflectance, their phenological development ranged 
from 7 d before to 36 d after anthesis (see Supplementary Fig. S4). 
Consequently, 21 wheat landraces and two elite wheats (checks) be-
tween 6 and 9 d after anthesis were selected for the LS-Mex2 experi-
ment, where hyperspectral leaf reflectance was measured and leaves 
were sampled to obtain LMA and Narea.

Results

Predictions and validation of traits

Predictions for Narea, LMA, and SPAD had higher coeffi-
cients of determination than for the photosynthetic param-
eters and observations followed the 1:1 line (Fig.  2; bias 
<0.7%, Table 2). For these traits, the residuals were smaller 
and showed no underlying trends. Nmass had a smaller coef-
ficient of determination than Narea (R

2=0.7 vs 0.93; Table 2).
Two predictions are shown for the Rubisco-related trait 

Vcmax: (i) Vcmax without leaf temperature correction and (ii) 
Vcmax25 corrected to a common leaf temperature of 25  °C 
using in vivo Rubisco kinetics derived for wheat (Silva-Pérez 
et al., 2017). Both predictions fell approximately on the 1:1 
line (Fig.  3; bias <0.2%). The residuals between observed 
data and predictions were larger for Vcmax than Vcmax25.

In the case of J, predictions fell about the 1:1 line with the 
coefficient of determination (R2=0.71) slightly less than for 
Vcmax (R

2=0.74; Fig. 2). The trends of J predictions and resid-
uals are similar to Vcmax25.

When Kjeldahl digestion was used to determine leaf nitro-
gen, we also obtained a measure of phosphorus. Predictions 
of leaf phosphorus from hyperspectral reflectance were not as 
good as for nitrogen (Pmass, R

2=0.65; Parea, R
2=0.42; Table 2).

Predicting Vcmax25/Narea

Given the fact that CO2 assimilation rate, A, and stomatal 
conductance, gs, are variable for a given leaf and depend on 
environmental conditions, it was not surprising that their pre-
diction was generally low (A, R2=0.49; gs, R

2=0.34; Table 2). 
Instead, we targeted underlying photosynthetic capacity nor-
malized per unit leaf nitrogen, Vcmax25/Narea. For this trait, 
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which represents photosynthetic efficiency (Rubisco capacity 
per unit leaf N), the model predictions fell about the 1:1 line 
(R2=0.49; bias 1.9%; Fig. 4). Interestingly, the coefficient of 

determination for Vcmax25/Narea predicted as a ratio was greater 
than when the trait was calculated from the ratio of values of 
Vcmax25 and Narea predicted separately (R2=0.13).

Fig. 1. (A) Reflectance from Aus1, Aus2, Aus3, and Mex1 experiments (n=565) from 400 to 2400 nm. The bold line is the mean and the range is given 
by the upper and lower lines. (B) Loadings and (C) regression coefficients of the model for Vcmax25 with 18 components.

Table 1. Summary of experiments

Aus1, glasshouse experiment, CSIRO Black Mountain, Australia (2012); Aus2, glasshouse experiment, CSIRO Black Mountain, Australia (2012); 
Aus3, field experiment, GES-CSIRO, Australia (2013); Mex1, field experiment, CENEB-CIMMYT, Mexico (2012–2013); Mex2, field experiment, 
CENEB-CIMMYT, Mexico (2012–2013); stage A, anthesis; stage B, booting (before anthesis); DAE: days after emergence.

Expt Set of genotypes Genotypes (repetitions) Stage (DAE) Traits

Aus1 EVA(−N), (+N) 16 (3) A (73–83) Vcmax25, J
SPAD, Nmass, Narea, LMA, Pmass, Parea

Aus2 BYPB (−N), (+N) 30 (2) B (48–56) Vcmax25, J
SPAD, Nmass, Narea, LMA, Pmass, Parea

Aus3 BYPB 28 (4) B (46–54) Vcmax25, J
SPAD, Nmass, Narea, LMA, Pmass, Parea

EVA 2 (4) A (62–67) Vcmax25, J
SPAD, Nmass, Narea, LMA, Pmass, Parea

CA 21 (4) A (60–67) Vcmax25, J
SPAD, Narea, LMA

Mex1 CB 30 (3) B (67–82) SPAD, Nmass

CA 30 (3) A (88–103) Vcmax25, J
SPAD, Narea, LMA

Mex2 CC 223 (2) A (101–103) SPAD
L 230 landraces

40 elite wheat
A (110–111) SPAD

LS 23 landraces
2 elite wheat

A (117) Narea, LMA
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In general, the residuals showed no underlying trends 
when plotted against the predicted data (Figs 2–4). However, 
there was a positive trend within each experimental group 
when residuals were plotted against observed data (see 
Supplementary Fig. S5).

Predicting traits for novel wheat genotypes that were 
not used for PLSR model derivation

To assess the use of hyperspectral reflectance as a high 
throughput tool in the field, 458 elite wheat genotypes and 

landraces (Mex2) were surveyed. The predicted values of 
SPAD fell about the 1:1 line and the relative error of predic-
tion for SPAD compared favourably to that observed for the 
validation data (CC-Mex2 7.4% and L-Mex2 6.6%; Table 3; 
cf. 6.8%, Table 2). The distribution of the residuals showed 
no underlying trend (Fig. 5B, D) and it was similar to that 
observed with the validation data (see Supplementary Fig. 
S6A, B).

A subset of 21 wheat landraces and two elite wheats at a 
similar phenological stage were selected for a second meas-
urement along with sampling to determine LMA and Narea 

Fig. 2. Validation of predictions (A, C, E) and residuals (B, D, F) for Narea (21 components), LMA (21 components), and SPAD (16 components). Symbols 
show only the validation data, i.e. those that were not used to construct the models. See Table 2 for details. (This figure is available in color at JXB online.)
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(LS-Mex2). The model bias was −3.3% for LMA and −5.5% 
for Narea. The relative error of prediction was 11.3% for LMA 
and 18.2% for Narea, compared with 7% and 7.6%, respec-
tively, observed for the validation data (Table 3). The residu-
als showed no underlying trend (Fig. 6B, D), but the ranges 
in the LS residuals were wider than the ranges in residuals 
observed for the original validation data (see Supplementary 
Fig. S6C, D).

Prediction models using a narrower waveband

As not all spectrometers are able to measure both the visible 
and SWIR wavebands, we assessed the power of PLSR to 
predict parameters using only 400–900  nm reflectance val-
ues. Their performance was generally lower with the excep-
tion of SPAD (cf. Table 2). The R2 values for validation data 
were: Narea, 0.83; LMA, 0.79; SPAD, 0.8; Vcmax, 0.57; J, 0.56; 
Vcmax25, 0.48; Vcmax25/Narea, 0.33. This indicates that signifi-
cant information would be lost for the photosynthetic traits 
by omitting the SWIR1 and -2 bands, which would reduce the 
predictive power of the PLSR models.

Discussion

The main objective of this experiment was to test if  hyperspec-
tral reflectance could be used to predict leaf nitrogen, LMA, 
and photosynthetic attributes in wheat. As hyperspectral re-
flectance can be measured relatively quickly, could this tech-
nique be used to screen for multiple traits and enable selection 
of wheat genotypes for photosynthetic traits? We based this 
work on a previous study conducted on aspen leaves (Serbin 
et al., 2012). While the models developed to predict photo-
synthetic attributes for aspen were unsuccessful in wheat, we 
were able to develop new models for a variety of leaf traits. 
Narea, LMA and SPAD were the traits with the highest co-
efficient of determination in the predictions. To assess their 
robustness, models were tested with previously unseen wheat 
genotypes. We also discuss the possibility of using calibration 
from other species to predict these traits.

Predicting Vcmax and J

Vcmax and J are underlying biochemical traits that can be 
derived from CO2 response curves measured using gas 
exchange instruments. The two traits are usually estimated 
from the analysis of multiple measurements taken at differ-
ent CO2 concentrations. The appeal of estimating Vcmax and 
J is that they are independent of stomatal conductance and 
represent the amount of Rubisco and components of the thy-
lakoid electron transport chain, respectively (von Caemmerer, 
2000). Measuring A–Ci curves to estimate Vcmax and J is slow. 
Each day the gas exchange system needs to be calibrated. 
Each leaf needs some time under the conditions imposed 
in the chamber of the gas exchange system before measure-
ments begin, to allow stomata to open and metabolism to sta-
bilize. Each A–Ci curve takes from 15 to 40 min, depending 
on the number of CO2 concentrations measured. Although 
faster approaches have been proposed, such as a rapid A–Ci 
curve (Stinziano et al., 2017) or calculations using just one 
CO2 concentration (De Kauwe et al., 2016), these methods 
have not been proven in high throughput screening of genetic 
material under field conditions.

By comparison with gas exchange measurements, hyper-
spectral reflectance using the ASD Field Spec is quick to cali-
brate before starting and it took from 15 to 50 s to measure a 
wheat leaf, depending on the settings. We found that a white 
reference calibration was not required before every measure-
ment. From our experience in the field, a hyperspectral reflect-
ance measurement was quicker to make than gas exchange 
measurements at a single CO2 concentration. Importantly, 
hyperspectral reflectance has the potential to predict as many 
parameters as there are calibrated models and can be used to 
measure hundreds of genotypes a day, as has been shown for 
maize (Yendrek et al., 2017).

Vcmax for a leaf varies with temperature. To enable com-
parison between studies and because we were unable to main-
tain a constant leaf temperature over a day due to the natural 
fluctuations in ambient temperature (see Supplementary Fig. 
S1), we normalized Vcmax to 25 °C using revised Rubisco kin-
etics for wheat (Vcmax25, Silva-Pérez et  al., 2017). A  similar 

Table 2. Statistical parameters of the PLSR model validation data set

The lowest RMSEP-CV was used to choose the number of components in the model. NC, number of components; REP, relative error of 
prediction; RMSEP CV, root mean square error of prediction from cross validation with PLSR; Tr, training set; Val, validation or test data.

Traits N Tr N Val RMSEP CV NC R2 Tr R2 Val REP Val (%) Bias Val (%)

Narea 282 243 0.22 21 0.92 0.93 7.6 0.73
LMA 282 243 4.50 21 0.86 0.89 7.0 -0.23
SPAD 342 272 3.16 16 0.87 0.81 6.8 -0.34
Vcmax 262 226 31.53 23 0.79 0.74 18.7 0.20
J 262 226 25.44 18 0.82 0.70 13.0 -0.73
Nmass 342 273 3.30 24 0.86 0.70 10.5 1.3
Pmass 219 212 0.93 19 0.54 0.65 25.8 3.3
Vcmax25 262 226 20.68 18 0.76 0.62 15.9 0.17
A 307 253 3.93 15 0.64 0.49 17.7 0.49
Vcmax25/Narea 262 226 10.62 14 0.40 0.48 17.5 1.9
Parea 219 212 0.04 19 0.40 0.42 23.5 4.2
gs 307 253 0.15 11 0.50 0.34 33.5 3.3
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approach was used by Ainsworth et al. (2014) who measured 
leaf temperature immediately before reflectance measure-
ments. When comparing observed parameter values derived 
from gas exchange measurements against those predicted 
from leaf reflectance, Vcmax and J both had a higher coef-
ficient of determination than Vcmax25 (R2=0.74 and 0.71, 
respectively, vs 0.62) (Fig. 3). This probably reflects the fact 
that the range in Vcmax (25–400 μmol CO2 m

−2 s−1) was greater 
than for Vcmax25 (23–280  μmol CO2 m−2 s−1). While the R2 
value was lower for Vcmax25 compared with Vcmax, the relative 

error of prediction was also smaller (Table  2), suggesting 
that using Vcmax25 is more accurate. The reflectance spectrum 
should be representative of the leaf composition, and hence 
the ‘capacity’ of the leaf, rather than the rate of the reaction 
per se. Another factor that could contribute to the disparity 
between Vcmax and Vcmax25 models is if  the temperature of the 
leaf during reflectance measurements affects the spectra. The 
leaf clip assembled as the factory default warms up due to 
the high photon flux from the internal lamp and this in turn 
warms the leaf during measurement. We did not observe a 

Fig. 3. Validation of predictions (A, C, E) and residuals (B, D, F) for Vcmax (23 components), Vcmax25 (18 components) and J (18 components). Symbols 
show only the validation data, i.e. those that were not used to construct the models. See Table 2 for details. (This figure is available in color at JXB online.)
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drift in spectral properties with sequential groups of scans 
that would have been associated with warming of the leaf. In 
most of our experiments, we used a mask with a gasket and 
measured the spectra within 9 s to reduce the impact of the 
high photon flux on leaf temperature. However, additional 
experiments to specifically look at the influence of leaf tem-
perature on reflectance spectra are needed to assess this.

When the residuals from the PLS analysis of Vcmax 
and J were plotted against predicted values, no trends 
were apparent. However, when the residuals were plotted 
against observed values, positive trends were evident (see 
Supplementary Fig. S5), which indicates that factors not 
accounted for in the models are driving variation in the traits 
(Fox and Weisberg, 2011). A similar trend was evident in the 
prediction of Vcmax in maize (Yendrek et al., 2017). Despite 
this limitation, the results show that leaf reflectance could be 
used to rank genotypes and select tails for Vcmax25 from large 
populations. It would then be feasible to measure the smaller 
numbers of genotypes in the tails using gas exchange or other 
more laborious approaches for confirmation. As reflectance 
measurements are non-destructive, this facilitates making 
more measurements during the plant life cycle and on more 
leaves within plants, which could reduce error associated with 
variation in plant phenology and environmental effects when 
assessing genotypic variation of Vcmax25 and J. In addition, 

reflectance using imaging spectroscopy has also shown prom-
ise for predicting Vcmax at the canopy level (Serbin et  al., 
2015), which would provide an opportunity for canopy level 
high throughput estimation of photosynthetic parameters.

As with Vcmax, J varies with temperature (June et al., 2004; 
Silva-Pérez et  al., 2017). However, because the temperature 
response is known to vary as plants acclimate to their growth 
temperature (Bernacchi et al., 2003), we chose not to assume 
a single temperature function across experiments to derive 
values for J at a common temperature. Caution is needed 
if  using the current model for J when phenotyping. An 
improved model could be created if  one had access to more 
calibration data collected at a single temperature.

Vcmax25/Narea was calculated from the data obtained here 
as a possible estimate of photosynthetic efficiency (i.e. 
photosynthetic capacity per unit N invested at a leaf level). 
Interestingly, Vcmax25/Narea when treated as a trait was pre-
dicted with a higher coefficient of determination directly than 
by predicting each component trait separately and then cal-
culating the ratio. It may be that the Narea and Vcmax25 had an 
additive effect in training the model more accurately. While 
the coefficient of determination was at the lower end of the 
traits examined, Vcmax25 was normalized for temperature and 
then for leaf nitrogen, the R2 of 0.49 (Fig. 4) would still pre-
sent an opportunity to explore genetic variation in this par-
ameter. It presumably reflects variation in Rubisco kinetic 
properties and activation state (assumed to be constant), 
mesophyll conductance (as we assumed a common function 
for all genotypes) and N allocation at the leaf level.

Predicting A and gs

A and gs have been positively co-related with wheat yield (Fischer 
et al., 1998) and are traits that need to be considered in selection 
of high yielding wheat genotypes. However, spot measurements 
of these parameters are sensitive to environmental effects.

Although light-saturated photosynthesis at ambient CO2 
has previously been predicted in trees using leaf reflectance 

Fig. 4. (A) Validation of predictions and (B) residuals for Vcmax25/Narea (13 components). Symbols show only the validation data, i.e. those that were not 
used to construct the models. See Table 2 for details. (This figure is available in color at JXB online.)

Table 3. Statistical parameters assessing further the models 
obtained in Table 2, using an independent set of wheat genotypes 
(elite and landraces)

n, number of observations; NC, number of components; REP, relative 
error of prediction.

Experiment Trait NC n R2 REP (%) Bias (%)

CC-Mex2 SPAD 16 448 0.34 7.4 −3.5
L-Mex2 SPAD 16 270 0.44 6.6 −2.3
LS-Mex2 LMA 21 52 0.14 11.3 −3.3
LS-Mex2 Narea 21 52 0.05 18.2 −5.5
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and transmittance (R2=0.74) (Doughty et  al., 2011), this is 
surprising since gs can vary dynamically and its impact on 
the reflectance spectrum is unknown. When we examined 
our data, models predicting A and particularly gs were weak 
(A, R2=0.49; gs, R

2=0.34), with gs having the greatest relative 
error of prediction (Table 2). Both traits can change quickly 
in response to clouds, fluctuating temperatures or in windy 
conditions, but the extent that this alters reflectance spectra 
has not yet been determined in wheat.

Other methods, such as infrared thermography, offer a bet-
ter alternative to assess stomatal conductance in the canopy, 
as shown under water stress and salinity tolerance (Jones, 
2007; Jones et  al., 2009; Sirault et  al., 2009; Munns et  al., 
2010). Hand-held IR thermometry predicted gs under irri-
gated field conditions (Amani et al., 1996) and IR imaging 
increased accuracy and throughput (Tattaris et al., 2016). The 
advantage of thermography is that many plots can be com-
pared simultaneously when imaged from above. However, 
variation in canopy height can confound the interpretation 
(Rebetzke et al., 2013). At the leaf level, the hand-held air-
flow porometer (Fischer et  al., 1998; Rebetzke et  al., 2001) 
has been demonstrated to be a rapid and effective instrument 
to estimate gs.

Predicting Narea, LMA, and SPAD

Higher coefficients of determination and lower relative error 
of predictions were observed in the validation data for Narea 
and LMA compared with photosynthetic traits (Table 2). This 
agrees with measurements collected from multiple environ-
ments, nitrogen levels and different wheat species by Ecarnot 
et al., (2013). The results from the current study are important 
since the plants evaluated were high yielding wheat and triticale, 
many of which are currently used by farmers around the world.

SPAD was used in this study as a ‘trait’ because it is quick and 
easy to deploy in the field and could be compared with predic-
tions derived from hyperspectral reflectance. During the data val-
idation (Fig. 2E; R2=0.82) and in experiments with different wheat 
populations (Fig. 5), strong positive correlations were observed 
between measured and predicted SPAD values, in agreement with 
biochemical extraction (Doughty et al., 2011) or from the chloro-
phyll normalized difference index (Dillen et al., 2012).

Predicting traits from reflectance measured in diverse 
sets of wheat genotypes

Models derived from aspen and cotton leaves were able to pre-
dict leaf nitrogen concentration and LMA from reflectance 

Fig. 5. Comparison of SPAD predicted from reflectance using the model developed in this study (Supplementary Fig. S4) and actual SPAD 
measurements for elite wheat (CC-Mex2, open diamonds, A, B) or the wheat landraces set (L-Mex2, open squares, C, D) and with their respective 
residuals (B, D). The dashed line represents the 1:1. CC, n=448, L, n=270 and Val data, n=272. Closed circles are the validation data from Fig. 2E.
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measurements on soybean (Ainsworth et al., 2014), suggest-
ing that these models are robust across a range of species. 
However, the model predicting LMA with 22 wavelengths 
and an intercept for aspen trees (Serbin et  al., 2012) gave 
variable results for wheat (see Supplementary Fig. S7). While 
most of the experiments could be predicted with the aspen 
LMA model, data measured in the field in Mexico could not. 
The possibility of developing a robust model to predict LMA 
across diverse species is appealing and published results 
show some promise (Heckmann et al., 2017). Here we tested 
our models with wheat genotypes that had not been used to 
develop the models for SPAD, LMA and Narea (Figs 5 and 
6). The relative error of prediction increased for this mater-
ial, but as more calibration data become available, one would 
expect that the predictive ability for LMA would improve.

Models for leaf nitrogen concentration and Vcmax (see 
Supplementary Fig. S7) from aspen (Serbin et  al., 2012) 
did not predict these traits in wheat. In this study, a mask 
(Supplementary Fig. S3) was used in the leaf-clip of the ASD 
Field Spec to narrow the aperture so that all the wheat leaves 
filled the field of view. It is possible that this change in meas-
urement geometry affected the comparison. Transferability of 
carbon:nitrogen ratio models between two Brassicaceae genera 

was poor and the performance of photosynthetic trait models 
was less accurate when applied to a species that had not been 
used to construct the model (Heckmann et al., 2017). Thus, 
each model needs to be validated for the species of interest.

In general, the predictions obtained in this study for wheat 
were higher or within the range of R2 for predictions of 
similar traits that have been reported for other species using 
hyperspectral leaf reflectance (Table 4). Validations for differ-
ent species shown in Table 4 indicate which traits can be well 
predicted using hyperspectral leaf reflectance and whether 
they apply across species or not. Variation in kinetic param-
eters for Vcmax between species may not be evident in the re-
flectance spectra. In contrast, LMA or leaf nitrogen might be 
more robust traits that can be predicted from a single reflect-
ance model applied to different species.

Training set size and source of variation

Each hyperspectral reflectance generates 2000 values that 
are used to calculate each trait. PLSR solves the problem of 
dimensionality and multicolinearity and the issue of overfit-
ting is dealt with by using the lowest PRESS or RMSE to 
determine the number of components to be used (Geladi and 

Fig. 6. Comparison of predictions using the reflectance models for LMA (A) and Narea (C) against observed data for wheat landraces (LS-Mex2, open 
squares). The respective residuals are shown in (B) and (D). LS, n=52 and Val data, n=243. Closed circles are the validation data from Fig. 2A for Narea 
and Fig. 2B for LMA.
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Kowalski, 1986). However, the question of how many obser-
vations are needed to train the model remains. In maize, 80% 
of the observations were used to train the model (Yendrek 
et  al., 2017). In Brassica a subset size of 90 observations 
and in maize 30 observations resulted in the lowest RMSE 
(Heckmann et al., 2017). With wheat, we used about 55% of 
the observed data for training: 282 measurements were used 
to build the model to predict LMA, Narea and SPAD. Ecarnot 
et al., (2013) used reflectance to predict LMA and Narea, using 
a calibration obtained from a diverse collection of wheats 
measured under multiple conditions and environments (176–
601 leaves). The calibration for aspen required 78 observations 
(Serbin et al., 2012). In both of these studies, environmental 
treatment was a stronger driver of variation than genetic vari-
ation and the wide range of values improved the fit. Further 
analyses comparing the impact of training set size and range 
in the spectral data used to construct the models are required.

Advantages of using hyperspectral reflectance

The data presented here suggest that the models we obtained 
provide robust estimates for six different traits from a sin-
gle hyperspectral reflectance measurement. Approximately 
100 plants could be measured per hour in the field using the 
hyperspectral reflectance technique described in this study 
(two people measuring one plant per 6 m-long plot in the 
field). Screening leaf physiological and biochemical param-
eters using this approach will enable larger populations to 
be analysed for photosynthetic characters that can be com-
bined with molecular markers and genomic sequences to find 
regions in the plant genome related to variation in photosyn-
thetic performance (quantitative trait loci).

Concluding remarks

We have demonstrated the utility of leaf hyperspectral reflec-
tance modelling to screen large wheat germplasm sets for 

Vcmax25, J, SPAD, LMA, Narea, and Vcmax25/Narea, a range of 
photosynthetic traits not easily derived in high throughput 
from other methodologies. This will enable wheat research-
ers and breeders to rapidly identify genetic variation in germ-
plasm for crossing, genetic mapping and identification of 
material for more detailed mechanistic analysis.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Meteorological conditions in Obregon, Mexico 

and Ginninderra, Australia.
Fig. S2. Histogram of the days after flowering (DAF) when 

the landraces were surveyed for reflectance.
Fig. S3. Measuring reflectance with the leaf clip, showing 

leaf orientation and mask.
Fig. S4. Regression coefficients for PLSR models.
Fig. S5. Residuals from Figs 2–4 plotted against 

observed data.
Fig. S6. Density plots of residuals of the predictions.
Fig. S7. Validation of predictions using reflectance with 

the coefficients from Serbin et al., 2012 against observed data 
for wheat.

Table S1. Inlet CO2 concentrations used in each experiment 
to measure CO2 response curves.

Table S2. Training data and test data from experiments 
used in the PLSR model.
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