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Background. The most common clinical manifestation of early Lyme disease is the erythema migrans (EM) skin lesion that 
develops at the tick bite site typically between 7 and 14 days after infection with Borreliella burgdorferi. The host-pathogen interac-
tions that occur in the skin may have a critical role in determining outcome of infection.

Methods. Gene arrays were used to characterize the global transcriptional alterations in skin biopsy samples of EM lesions from 
untreated adult patients with Lyme disease in comparison to controls.

Results. The transcriptional pattern in EM biopsies consisted of 254 differentially regulated genes (180 induced and 74 repressed) 
characterized by the induction of chemokines, cytokines, Toll-like receptors, antimicrobial peptides, monocytoid cell activation 
markers, and numerous genes annotated as interferon (IFN)-inducible. The IFN-inducible genes included 3 transcripts involved in 
tryptophan catabolism (IDO1, KMO, KYNU) that play a pivotal role in immune evasion by certain other microbial pathogens by 
driving the differentiation of regulatory T cells.

Conclusions. This is the first study to globally assess the human skin transcriptional response during early Lyme disease. 
Borreliella burgdorferi elicits a predominant IFN signature in the EM lesion, suggesting a potential mechanism for spirochetal dis-
semination via IDO1-mediated localized immunosuppression.
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Lyme disease, the most common tick-borne disease in the 
United States and Europe, is caused by Borreliella (Borrelia) 
burgdorferi [1]. Borreliella burgdorferi is transmitted during the 
feeding of ticks of the Ixodes ricinus complex. Infection initiates 
when the bacterium enters the skin at the bite site, multiplying 
locally and causing a centrifugally spreading annular rash called 
erythema migrans (EM). Erythema migrans typically develops 
7 to 14  days after the bite and results from the migration of 
spirochetes in an outward direction from the inoculation site. 
If untreated, hematogenous dissemination of spirochetes may 
occur, and patients can present with additional skin lesions and/
or neurologic, cardiac, and rheumatologic manifestations [2].

The first steps of the immune response against B burgdorferi 
occur in the skin, and this initial interaction between host and 
pathogen is likely to play a pivotal role in determining the out-
come of infection [3]. Histological examination of EM lesions 
reveals patchy perivascular infiltrates composed mostly of T 
lymphocytes, with lesser numbers of histiocytes and B cells [3]. 
Erythema migrans lesions express messenger ribonucleic acid 
(RNA) for both inflammatory and anti-inflammatory cyto-
kines, particularly interferon (IFN)-γ and interleukin (IL)-10, 
but also tumor necrosis factor (TNF) α, IL-1β, and IL-6 [4]. In a 
study examining fluid from blisters raised over EM lesions, the 
aspirates were enriched for T cells, monocytes/macrophages, 
and dendritic cells (DCs); IL-6 and IFN-γ were the predomi-
nant cytokines [5].

In this study, we used gene array analysis to globally assess 
the human response associated with B burgdorferi infection 
in EM skin lesions in adult patients with untreated early Lyme 
disease. Our results show that many different mechanisms are 
involved in the host response against B burgdorferi in the skin, 
some well recognized, others representing novel observations, 
suggesting opportunities for future research.
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METHODS

Ethics Statement

Individuals providing written informed consent were enrolled 
in studies approved by the institutional review boards at the 
National Institute of Allergy and Infectious Diseases (National 
Institutes of Health [NIH]; NCT00132327) or at New York 
Medical College (NYMC).

Skin Biopsy Collection and Characterization

Skin specimens from 18 EM patients [6] and 11 healthy vol-
unteers (HV) were obtained by punch biopsy (2–4 mm), after 
local anesthesia with 2% lidocaine with epinephrine. Specimens 
were obtained from the advancing border of EM lesions before 
initiation of antibiotic therapy. Healthy volunteers had no 
history or serologic evidence of Lyme disease. Surgical con-
trol (SC) skin samples were obtained from specimens of 16 
anonymous patients undergoing surgery for other purposes. 
All skin specimens were stored at −80°C in RNAlater solution 
(Ambion) before RNA isolation. Cultivation of B burgdorferi 
from skin and blood samples was performed as described pre-
viously [7, 8].

Microarray Analysis

Total RNA was extracted from skin biopsies using a modi-
fied RNeasy Fibrous Tissue Mini kit (QIAGEN, Germantown, 
MD). Ribonucleic acid was quantitated and qualified with 
Nanodrop 1000 and Agilent Bioanalyzer RNA Nano 6000 
chip. Complementary RNA (cRNA) synthesis, labeling, and 
hybridization to the GeneChip Human Genome U133A 2.0 or 
U133Plus 2.0 Array (Affymetrix, St. Clara, CA) were performed 
according to the manufacturer’s protocol. Microarrays were 
scanned at 570  nm using Affymetrix Genechip Scanner 3000 
7G. The resulting CEL files were analyzed using Affymetrix 
Expression Console and the MAS5 algorithm. Resulting Signal 
Intensity values and Present-Absent calls for each of the probe-
sets were processed in JMP statistical package (SAS, Cary, NC) 
using the Mathematical and Statistical Computing Laboratory 
(MSCL) Analyst’s Toolbox, written by and freely available 
(http://abs.cit.nih.gov/MSCLtoolbox/) from one of the authors 
(P.J.M.). The 22 277 probe sets in common between HG-U133A 
2.0 and HG-U133 plus 2.0 chips were used for further analysis. 
The quantile-normalizing, variance-stabilizing “S10” transform 
was applied to the Signal Intensity data. Principle component 
analysis was performed to identify global variance and poten-
tial outliers in the data. One-way analysis of variance (ANOVA) 
was performed on each of the low-order principle components 
to test whether the components can be explained by either block 
effect or group effect (EM vs control). Functional enrichment 
analysis was performed using DAVID (https://david.ncifcrf.
gov/home.jsp) [9] and Ingenuity Pathway Analysis (Ingenuity 
Systems, www.ingenuity.com).

Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction

Transcriptional expression was measured by reverse-transcrip-
tion polymerase chain reaction (RT-PCR) using the remaining 
cRNA from 10 HV and 10 EM biopsies (5 NIH, 5 NYMC) that 
had been included in the microarray analysis. The list of probe 
and primer sets is available as Supplementary Methods. A ΔΔCT 
method was used to calculate the differential expression of each 
GAPDH-normalized gene in EM relative to healthy controls 
(HCs).

Immunohistochemical Staining

Skin biopsies were fixed in 10% neutral buffered formalin and 
embedded in paraffin blocks. Tissue sections (5 μm) were pre-
pared and placed on poly-l-lysine-coated glass slides. After 
antigen retrieval, tissue sections were incubated with primary 
antibodies (see Supplementary Methods). Staining was per-
formed on the Roche Ventana Medical Systems BenchMark 
ULTRA automated immunohistochemistry (IHC) platform 
using the ultraView Universal DAB Detection Kit (Ventana 
Medical Systems), after standard protocols of the histology sec-
tion of the Laboratory of Pathology at NIH. Three areas were 
visually scored by a dermatopathologist (C.-C.R.L.), and the cell 
counts were averaged to give the number of cells per high-pow-
ered field, defined as 4.5-mm2 field of view at ×40 objective 
magnification. The superficial (papillary) and deep (reticular) 
dermis were scored separately.

Statistics

Statistical significance of differences between the mean RT-PCR 
fold-change values of experimental groups was determined 
using a 2-tailed, unpaired t test, assuming either equal or 
unequal variance, as determined by Fisher’s F-test (Microsoft 
Excel, Microsoft, Inc.). Correlation between fold-change values 
obtained either by microarray or by RT-PCR was assessed using 
linear regression analysis (Excel). The IHC data were analyzed 
by the nonparametric Mann-Whitney test using GraphPad 
Prism, version 7.0b (GraphPad Software, San Diego, CA). Two-
tailed P values of less than .05 were considered significant.

RESULTS

Patient Characteristics

Eighteen subjects with EM were evaluated (Table  1). These 
included 8 subjects enrolled at the NIH Clinical Center in 
Bethesda, Maryland, and 10 subjects enrolled at the Lyme 
Disease Diagnostic Center at NYMC. Subjects at the NIH site 
were enrolled consecutively without regard to age, gender, or 
number of EM skin lesions. The NYMC samples were selected 
from a repository of stored biopsies from patients known to 
have had a positive blood culture for B burgdorferi, and there-
fore all are classified as having disseminated infection. There 
were 15 females and 3 males. The majority of Lyme subjects 
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(70%) were between 40 and 69 years of age. The mean age of the 
11 HCs was 36 years; and 7 were female. All 16 SCs were female.

Five patients recalled a tick bite at the site of the EM skin 
lesion. Erythema migrans lesions varied in size, with a median 
area of 84.5 cm2 (range, 34 to 352 cm2) (for the 6 patients with 
multiple EM skin lesions, the size is that of the largest lesion). 
The median duration of EM before the lesion was biopsied was 
4  days (range, 1 to 15  days). Lyme subjects were questioned 
regarding the presence of appetite loss, arthralgia, cough, diz-
ziness, fatigue, fever, headache, myalgia, nausea and vomiting, 
paresthesias, stiff neck, and concentration or memory difficul-
ties. Fourteen Lyme subjects had at least 1 symptom at evalua-
tion, with a median of 2 symptoms present. The most common 
symptoms were fatigue (9 of 18), headache (7 of 18), and 
arthralgias (7 of 18).

Culture of the skin biopsy was positive in 13 patients, neg-
ative in 1 individual, contaminated in 2 individuals, and not 
performed in 2 individuals. Blood culture for B burgdorferi was 
performed for 7 patients at the NIH site; the test was positive for 

3 patients. Blood culture was not done in 1 patient with multi-
ple EM lesions. A B burgdorferi enzyme-linked immunosorbent 
assay ([ELISA] C6 ELISA at the NIH, and whole cell sonicate 
ELISA at NYMC) was positive at the initial visit in 11 of the 
18 Lyme subjects, and it was positive at the 1-month visit in all 
17 of the Lyme subjects tested. Overall, 14 Lyme subjects were 
classified as having disseminated infection by either presenting 
with multiple EM lesions and/or having a positive blood culture 
for B burgdorferi.

Gene Expression Profiles of Erythema Migrans Lesions

To characterize the host response to B burgdorferi infection in 
EM lesions, we compared gene expression in EM skin biopsies 
from 18 Lyme subjects with skin samples from 27 controls. The 
study samples were processed in 2 batches. Batch 1 included 31 
samples (16 skin specimens from SC, 5 NIH EM biopsies, and 
10 NYMC EM biopsies). Batch 2 included 14 samples (11 skin 
biopsies from HV and 3 NIH EM biopsies). A principal com-
ponents analysis was run on all 45 samples. Figure 1 shows that 
the first principal component explains 23.7% of the variation in 
the data, and it clearly separates controls from EM. The second 
principal component separated the 2 groups of controls (SC and 
HV). A separate analysis (data not shown) demonstrated that 
the batch effect explained more of the variation in the second 
principal component than did the differences between the col-
lection methodologies (surgical vs punch biopsy) used for the 
2 control groups. Therefore, batch was included as a factor in 
the subsequent analysis. A  one-way, 2-level blocked ANOVA 
was performed, using batch as a blocking factor and the group 
(EM or controls [SC and HV combined]) as the factor of inter-
est. Probe sets that were defined as significantly differentially 
expressed met a false discovery rate ≤10%, had a minimum 
3-fold change in expression between EM and controls, and were 
present in at least 50% of the samples in 1 of the 2 groups. Using 
these criteria, 327 probe sets (254 genes) were differentially 
expressed; 180 genes were upregulated and 74 genes downreg-
ulated in EM lesions when compared with controls. Complete 
lists of all significantly differentially regulated genes are pro-
vided in Supplementary Tables 1 and 2; a selected list of induced 
genes with fold change values is presented in Table 2.

Validation of Microarray Results

Twenty genes were selected from the microarray data set and 
validated by real-time RT-PCR. Although the absolute values 
obtained by gene array and RT-PCR varied, an excellent linear 
correlation was observed between the 2 data sets (r2  =  0.87) 
(Supplementary Table 3 and Supplementary Figure).

Genes Related to Different Branches of the Immune System Are Induced 

in Erythema Migrans Lesions

Gene ontology enrichment analysis was performed using the 
DAVID Gene Functional Classification Tool [9], with an EASE Score 
Threshold (a modified Fisher exact P value of .001). The biological 

Table 1. Clinical Characteristics of Lyme Disease Subjects

Total n = 18

Gender

 Male  3 (17%)

 Female 15 (83%)

Age

 <60 years 12 (67%)

 ≥60 years  6 (33%)

Erythema migrans (EM) rash

 Size, cm2, median (range) 84.5 (34–352)

 Duration, days, median (range)  4 (1–15)

 Multiple EM (MEM)  6 (33%)

Seropositive, B burgdorferi enzyme-linked immunosorbent assay

 Initial visit 11 (61%)

 1-month return visita 17 of 17 (100%)

Skin culture for B burgdorferi

 Positive 13 (72%)

 Negative  1 (6%)

 Contaminated  2 (11%)

 Not done  2 (11%)

Blood culture for B burgdorferi

 Positive 13 (72%)

 Negative  4 (22%)

 Not done  1 (6%)

Disseminated infection

 MEM and/or positive blood culture 14 (78%)

Systemic symptoms

 Present 14 (78%)

 Number, median (range)  2 (0–8)

 Fatigue  9 (50%)

 Headache  7 (39%)

 Arthralgias  7 (39%)

 Fever  6 (33%)

 Local adenopathy  2 (11%)

aSerology was not repeated in 1 subject, who was seropositive at the initial visit.
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processes associated with genes that were induced in EM lesions 
included innate immune response, cell migration and chemotaxis, 
and defense responses to both bacteria and viruses (Supplementary 
Table  4). Biological processes significantly represented among 
repressed genes in EM consisted of functions involved in tissue 
development and remodeling (Supplementary Table 4).

Ingenuity Pathway Analysis (www.ingenuity.com) was used 
to help identify relationships, mechanisms, functions, and 
pathways relevant to a dataset. The top 10 canonical pathways, 
upstream regulators, and disease and biological functions regu-
lated in EM are shown in Figure 2. Interferon signaling was the 
top canonical pathway (P = 3.15 × 10–18) that showed significant 
activation, followed by pattern recognition receptors in recog-
nition of bacteria and viruses, and DC maturation. The top 5 
upstream regulators included IFN-γ, lipopolysaccharide, IFN-
α, Poly rI:rC-RNA, and TNF.

Interferon Signaling Is Predominant Transcriptional Profile in 

Erythema Migrans 

We used Interferome [10] (http://interferome.its.monash.edu.
au/interferome/home.jspx) to analyze the gene list for IFN 

Table 2. Selected Transcripts Induced in EM Skin Biopsies Relative to Controls (HV and SC)

Gene Symbol Gene Name Entrez Gene Fold Changea Cluster ID

GBP1 Guanylate binding protein 1, interferon-inducible, 67kDa 2633 22.76 1

IFI44L Interferon-induced protein 44-like 10964 14.45 1

CCL8 Chemokine (C-C motif) ligand 8 6355 12.36 1

IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 3437 10.14 1

OAS2 2’-5’-oligoadenylate synthetase 2, 69/71kDa 4939 8.87 1

MX1 Myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) 4599 8.32 1

STAT1 Signal transducer and activator of transcription 1, 91kDa 6772 6.96 1

JAK2 Janus kinase 2 3717 3.59 1

IRF7 Interferon regulatory factor 7 3665 3.36 1

IL1B Interleukin 1, beta 3553 3.17 1

S100A8 S100 calcium binding protein A8 6279 18.56 2

S100A9 S100 calcium binding protein A9 6280 10.87 2

S100A7 S100 calcium binding protein A7 6278 5.14 2

CXCL10 Chemokine (C-X-C motif) ligand 10 3627 357.27 3

CXCL9 Chemokine (C-X-C motif) ligand 9 4283 134.45 3

CXCL11 Chemokine (C-X-C motif) ligand 11 6373 95.54 3

FCGR1B Fc fragment of IgG, high affinity Ib, receptor (CD64) 2210 14.97 4

LILRB2 Leukocyte immunoglobulin-like receptor, subfamily B, member 2 10288 14.95 4

FCGR1A Fc fragment of IgG, high affinity Ia, Ic receptor (CD64) 100132417 12.26 4

IDO1 Indoleamine 2,3-dioxygenase 1 3620 9.05 4

CCL19 Chemokine (C-C motif) ligand 19 6363 8.92 4

CXCL13 Chemokine (C-X-C motif) ligand 13 10563 5.65 4

TLR2 Toll-like receptor 2 7097 4.33 4

KYNU Kynureninase (L-kynurenine hydrolase) 8942 4.17 4

CCR5 Chemokine (C-C motif) receptor 5 1234 3.75 4

KMO Kynurenine 3-monooxygenase (kynurenine 3-hydroxylase) 8564 3.43 4

IL15 Interleukin 15 3600 3.36 4

TLR1 Toll-like receptor 1 7096 3.25 4

IFNG Interferon gamma 3458 3.2 4

Abbreviations: EM, erythema migrans; HV, healthy volunteers; ID, identification; SC, surgical control.
aTranscripts within each cluster are organized by fold change. For genes detected by multiple probe sets, the fold-change values of all probe sets were averaged.
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Figure  1. Principal components analysis distinguishes patients with early 
untreated Lyme disease from healthy donors. Abbreviations: EM, skin punch biop-
sies from erythema migrans lesion; HV,   skin punch biopsies from healthy volun-
teers; SC, breast skin tissue from healthy patients undergoing elective surgery.
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regulation. Analysis of the current data set was restricted to 
human species and with a fold change of ≥5. Of the 254 dif-
ferentially expressed genes, 109 (43%) were identified as IFN-
regulated genes (IRGs). Of these 109 IRGs, 74 genes were 
regulated by both IFN types I  and II: 19 genes by IFN type 
I alone, and 16 genes by IFN type II only. The IRGs with differ-
ential expression in EM lesions included IFNG, IFIT3, OAS1, 
MX1, IFI35, PSMB8, JAK2, TAP1, IRF1, ISG15, IFIT1, IFI6, 
STAT1, and IFITM1.

Hierarchical Clustering Analysis

To investigate the relationships between the differentially 
expressed genes, the list of probe sets was used for hierarchi-
cal clustering to generate a heat map (Figure  3). As with the 
principal components analysis, EM and controls clustered sepa-
rately. Upregulated genes in EM separated into 4 clusters: 2 large 
(Cluster 1 [89 probe sets] and Cluster 4 [81 probe sets]) and 2 
small (Cluster 2 [7 probe sets] and Cluster 3 [3 probe sets]). 
Downregulated genes separated into 2 clusters (Cluster 5 [7 
probe sets] and Cluster 6 [67 probe sets]) (Figure 3).

The T-cell chemoattractants CXCL9, CXCL10, and CXCL11, 
the most highly induced genes in our dataset, comprised Cluster 
3. Cluster 2 included genes related to damage-associated molec-
ular patterns or alarmins. Genes in this cluster include S100A8 
(myeloid-related protein [MRP] 8, calgranulin A), S100A9 
(MRP14, calgranulin B), and S100A7 (psoriasin). Also in this 
cluster are the genes for type I keratin 16 (KRT16) and type II 
keratin 6 (KRT6a, KRT6b), which are involved in skin barrier 
maintenance and innate immunity.

Cluster 1 included the majority (88 of 109) of IRGs. Pathway 
analysis identified IFN signaling, role of pattern recognition 
receptors in recognition of bacteria and viruses, and activation 

of IRF (IFN response factor) by cytosolic pattern recognition 
receptors as the top canonical pathways. Interferon-γ, IFN-α2, 
and IRF7 were the top upstream regulators.

In contrast, Cluster 4 contained transcripts primarily related 
to innate immune cell functions, including phagocytosis, 
pathogen recognition, and cytokine secretion. Phagosome 
formation was the top canonical pathway associated with this 
cluster. Transcripts included the Fc gamma receptors FCGR1A, 
FCGR1B, and FCGR3A/ FCGR3B; Toll-like receptors TLR1 
and TLR2; and B-cell chemoattractants CXCL13 and CCL19. 
Cluster 4 also contained the gene for IFN-γ (IFNG), the sole 
IFN found to be induced in EM biopsies. Cluster 4 featured 
3 genes that encode key enzymes in tryptophan catabolism: 
IDO1 (indoleamine 2,3-dioxygenase 1; 9.05-fold), kynurenine 
3-monooxygenase (KMO; 3.43-fold), and kynureninase 
(KYNU; 4.17-fold).

Clusters 5 and 6 comprised genes downregulated in EM 
lesions. Biological functions associated with these clusters 
included adhesion of connective tissue cells and cell viability, 
with transforming growth factor beta being the top upstream 
regulator.

Erythema Migrans Lesions Are Enriched for T Lymphocytes, Including 

Regulatory T Cells

Indoleamine 2,3-dioxygenase 1 expression has been shown to 
induce immune tolerance by promoting the development of 
regulatory T cells (Tregs) [11]. Therefore, we analyzed the EM 
inflammatory infiltrate for the presence of Tregs and DCs in 
8 EM lesions and compared this with 4 controls (2 HV and 2 
SC). Histopathological features of EM lesions showed that the 
number of cells expressing forkhead box P3 (FOXP3), a marker 
of Tregs, and CD123, the IL-3 receptor α chain, a marker of 
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plasmacytoid DCs, were significantly increased in EM lesions 
(Figure 4).

DISCUSSION

The skin is the portal of entry for B burgdorferi and a critical 
interface between the spirochete and its human host. However, 
few studies have interrogated the host response in the EM 
lesion, and prior studies focused on a limited number of genes 
and proteins [4, 5, 12–14]. To our knowledge, this study is 
the first to use global expression profiling to characterize the 
human skin transcriptome during early B burgdorferi infection. 
Our findings are particularly relevant to patients with evidence 
of dissemination of B burgdorferi to the blood and/or to other 
skin sites.

Detection by pattern recognition molecules (PRMs) of the 
innate immune response is the first line of defense against 
invading microbes. Our data show upregulation of TLR1 and 
TLR2, which are known to be necessary for optimal recogni-
tion of the spirochete by phagocytes [15, 16]. Also upregulated 
were PTX3 (pentraxin 3), C1QB (complement component 1, 
q subcomponent, B chain), and FCN1 (ficolin-1), which are 
part of the humoral arm of innate immunity [17]. Pentraxin 
3 binds the complement component C1q, influences comple-
ment activation, and has opsonic activity [18]. Ficolin-1 is also 

involved in opsonophagocytosis and complement activation 
via the lectin pathway, and it interacts with PTX3 [19]. The role 
of these PRMs in Lyme disease is unknown at this point. Also 
upregulated was CLEC7A (dectin-1), a C-type lectin receptor 
that recognizes β-glucans. This is interesting, because a study 
investigating dectin-1 in B burgdorferi infection in mice found 
no major role for this receptor [20].

Monocytes/macrophages and neutrophils are among the first 
innate cells encountered during early infection. Both cell types 
are able to phagocytose B burgdorferi [21], and mononuclear 
phagocytes are important in reducing the number of spiro-
chetes in tissues [22]. Our data reveal that many components 
involved in phagocytosis of B burgdorferi are induced in the EM 
skin lesion, including genes important for the recognition of the 
spirochete as a phagocytic target (TLR2, TLR1, CR3, FCGR1A, 
FCGR1B, FCGR3A/FCGR3B). Also upregulated was CYBB 
(cytochrome b-245, beta polypeptide), encoding the catalytic 
subunit gp91phox of the superoxide-generating NADPH oxidase, 
which is considered essential for killing of phagocytosed patho-
gens [23].

The most upregulated genes in our dataset were those 
encoding CXCL9, CXCL10, and CXCL11. These chemok-
ines are ligands for the CXCR3 receptor, expressed in CD4+ 
type-1 helper (Th1) and CD8+ cytotoxic lymphocytes, and are 
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controls and healthy volunteers). The values shown are normalized intensities relative to the mean. Red or green color indicates high or low expression, respectively. The heat 
map displays 6 distinct clusters, 4 containing induced genes and 2 containing repressed genes. A list of selected significantly induced genes, together with corresponding fold 
change values, is presented in Table 2. Lists of all differentially regulated probe sets organized by cluster are provided in Supplementary Tables 1 and 2.
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important for migration of these cells into inflammatory sites 
[24]. CXCL9 and CXCL10 induce polarization of CD4+ T cells 
into effector Th1/Th17 cells, whereas CXCL11 drives T-cell 
polarization into T regulatory 1 cell subset [25]. Multiple studies 
have documented a correlation between elevated expression of 
these chemokines and Lyme disease pathogenesis [12, 26–28]; 
and levels of CXCL9, CXCL10, and CXCL11 were higher in EM 
caused by B burgdorferi compared with Borreliella afzelii [14].

The transcriptional profile in EM biopsies showed a domi-
nant IFN signature, strongly characterized by the expression 
of an array of IFN-responsive genes. Although pathway anal-
ysis predicted both IFN-γ and IFN-α as upstream regulators, 
we found only IFNG to be increased in the EM biopsy samples, 
both by microarray and by RT-PCR. The presence of IFN-γ 
in EM lesions has been well established. High levels of IFN-γ 

were detected in the blister fluids raised over EM lesions [5]. 
In another study, patients who had lower levels of IFN-γ in the 
EM skin biopsy were more likely to report persisting symptoms 
at 6 months posttreatment [13], suggesting that a strong IFN-γ 
response at the site of spirochete inoculation has host-protec-
tive effects.

Notably, we found that EM lesions are associated with a 
significant increase in the gene expression of 3 enzymes con-
trolling tryptophan catabolism: indoleamine 2,3-dioxygenase 
1 (IDO1), kynureninase (KYNU), and kynurenine 3-mono-
oxygenase (KMO). Indoleamine 2,3-dioxygenase 1 is pre-
dominantly expressed by antigen-presenting cells and plays 
a pivotal role in balancing the immune response during 
infections caused by a variety of pathogens, including bac-
teria [29–32]. Indoleamine 2,3-dioxygenase 1 is the first and 
rate-limiting enzyme in the degradation of tryptophan, lead-
ing to diminished tryptophan levels and increased kynurenine 
pathway metabolites. The depletion of tryptophan in the local 
microenvironment may have antimicrobial effects (B burgdor-
feri is a tryptophan auxotroph), but it also leads to inhibition 
of T-cell responses, resulting in local immunosuppression and 
tolerance [33]. Of particular relevance to Lyme disease, IDO1 
may promote pathogen invasion of epithelial tissues through 
the generation of localized immunosuppression [34]. We previ-
ously observed that B burgdorferi strains more frequently asso-
ciated with disseminated infection induced significantly higher 
levels of IFN-α in human peripheral blood mononuclear cells 
[35] and that both type I and type II IFN signaling are required 
for B burgdorferi to elicit maximal production of IDO1 in this 
system [36]. The presence of Tregs and plasmacytoid DCs in the 
inflammatory infiltrate of EM lesions adds support to a possible 
role of an IDO1-mediated tolerogenic mechanism in the host 
response to B burgdorferi.

Collectively, our data delineate host defense strategies to 
detect and eliminate B burgdorferi, as well as tolerance mecha-
nisms that promote localized immunosuppression at the site of 
inoculation, which may be exploited by the pathogen, and allow 
for disease progression. A proposed model based on our results 
is presented in Figure  5. Stimulation of dermal fibroblasts by 
migrating spirochetes leads to the production of proinflamma-
tory chemokines including CCL2, CXCL1, and CXCL10 [37]. 
The heterodimer S100A8/A9 (calprotectin), expressed by kera-
tinocytes, granulocytes, monocytes, and DCs, exerts antimicro-
bial effects against bacteria, including B burgdorferi, via metal 
sequestration [38], but may also have chemotactic effects [39]. 
Macrophages and DCs are recruited to the infection site, where 
TLR-mediated recognition of B burgdorferi results in nuclear 
factor-κB-dependent cytokine and chemokine production. 
CXCL9, CXCL10, and CXCL11 attract leukocytes to the infected 
sites where CXCL9 and CXCL10 promote the polarization of 
CD4+ T cells into effector Th1/Th17 cells. The Th1 cells pro-
duce IFN-γ, enhancing the phagocytic activity of macrophages. 
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Figure  4. Immunohistochemical identification of immune cell types present in 
erythema migrans (EM) skin lesions. (A) Thin sections of paraffin-embedded skin 
biopsies from an EM lesion (left panel) and a surgical control (right panel) were 
incubated with antibodies specific for forkhead box P3 (FoxP3), a marker of T regula-
tory cells, and the interleukin-3 receptor α chain (CD123), a marker of plasmacytoid 
dendritic cells. Photos were taken at ×60 magnification. (B) The mean cell counts 
per high-power field for cells expressing FoxP3 and CD123 were significantly dif-
ferent when comparing EM lesions (8 patients) with control skin (2 skin specimens 
from a healthy volunteer and 2 surgical controls). *, 2-tailed P value <.05, Mann-
Whitney test. Error bars show standard deviation.
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Phagosomal TLR signaling by DCs results in production of type 
I IFNs that, in combination with IFN-γ, induce IFN-responsive 
genes, including those encoding key enzymes in the tryptophan 
catabolic pathway (IDO1, KMO, KYNU) [40]. Tryptophan 
depletion suppresses CD8+ T-cell priming and drives the devel-
opment of FoxP3+ Treg cells [33] through increased expression 
of immunoglobulin-like receptors (LILRB1, LILRB2, LILRB3) 
[41], consequently generating a region of localized immune 
suppression that may facilitate spirochetal dissemination.

CONCLUSIONS

In conclusion, we demonstrate that EM lesions exhibit an IFN-
associated transcriptomic signature that features important reg-
ulatory factors involved in host defense as well as in immune 
modulation. The capacity of B burgdorferi to manipulate and 
exploit these pathways may play a pivotal role in determining 
the outcome of infection. Our data provide new insights into 
the immunopathogenesis of early cutaneous Lyme disease and 
uncover multiple targets for further research.
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