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Abstract

Grain yield (GY) of bread wheat (Triticum aestivum L.) is quantitatively inherited. Correlated GY-syndrome traits such 
as plant height (PH), heading date (HD), thousand grain weight (TGW), test weight (TW), grains per ear (GPE), and ear 
weight (EW) influence GY. Most quantitative genetics studies assessed the multiple-trait (MT) complex of GY-syndrome 
using single-trait approaches, and little is known about its underlying pleiotropic architecture. We investigated the 
pleiotropic architecture of wheat GY-syndrome through MT association mapping (MT-GWAS) using 372 varieties phe-
notyped in up to eight environments and genotyped with 18 832 single nucleotide polymorphisms plus 24 polymorphic 
functional markers. MT-GWAS revealed a total of 345 significant markers spread genome wide, representing 8, 40, 11, 
40, 34, and 35 effective GY–PH, GY–HD, GY–TGW, GY–TW, GY–GPE, and GY–EW associations, respectively. Among 
them, pleiotropic roles of Rht-B1 and TaGW2-6B loci were corroborated. Only one marker presented simultaneous 
associations for three traits (i.e. GY–TGW–TW). Close linkage was difficult to differentiate from pleiotropy; thus, the 
pleiotropic architecture of GY-syndrome was dissected more as a cause of pleiotropy rather than close linkage. 
Simulations showed that minor allele frequencies, along with sizes and distances between quantitative trait loci for 
two traits, influenced the ability to distinguish close linkage from pleiotropy.
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Introduction

Grain yield (GY) of bread wheat (Triticum aestivum L.) has 
been continuously increased due to the interactions between 
technological advances in agronomical practices and genetic 

improvement (Borlaug, 1968; Austin et al., 1980; Brancourt-
Hulmel et al., 2003; Laidig et al., 2014). GY is a quantita-
tively inherited trait, and a substantial part of its variation is 
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attributed to the environmental component and its interac-
tion with genotypic variation (e.g. Crossa et al., 2007; Kuchel 
et al., 2007; Rattey et al., 2009; Reif  et al., 2011). The genetic 
architecture of GY is very complex, and linkage (Huang et 
al., 2006; Kuchel et al., 2007; Kumar et al., 2007; Cuthbert et 
al., 2008; Bennett et al., 2012; Simmonds et al., 2014; Zhang 
et al., 2014) and genome-wide association studies (GWAS; 
Crossa et al., 2007; Neumann et al., 2011; Reif  et al., 2011; 
Bordes et al., 2014; Sukumaran et al., 2015) have mostly 
reported minor quantitative trait loci (QTLs) influencing GY 
across the 21 chromosomes of bread wheat. Additionally, 
several loci underlying GY interact epistatically (e.g. Crossa 
et al., 2007; Kumar et al., 2007; Reif  et al., 2011; Zhang et al., 
2014), which can be explained by component traits that mul-
tiplicatively determine GY. These component traits include 
crop plant density, ears per plant, grains per ear (GPE), thou-
sand grains weight (TGW), among others. Also, morpho-
physiological traits such as plant height (PH), heading date 
(HD), grain filling period length, plant sink:source ratios, 
and photosynthetic rate have direct or indirect effects on GY 
(Slafer et al., 1996). We denote this group of traits influenc-
ing GY hereafter as GY-syndrome traits. Higher plot-based 
heritabilities have been reported for GY-syndrome traits 
than for GY itself  (e.g. Rattey et al., 2009; Reif  et al., 2011; 
Sukumaran et al., 2015). Thus, wheat breeders are interested 
in GY-syndrome traits because of their possible use in indi-
rect selection, potentially improving GY selection gain and 
accuracy (Falconer and Mackay, 1996).

Most quantitative genetic studies of the GY-syndrome 
in wheat have so far relied on single-trait (ST) methods 
(Huang et al., 2006; Kuchel et al., 2007; Cuthbert et al., 2008; 
Neumann et al., 2011; Bennett et al., 2012; Bordes et al., 2014; 
Zhang et al., 2014; Sukumaran et al., 2015). Nevertheless, ST 
approaches ignore the information from associations among 
traits. In contrast, this information is considered in multiple-
trait (MT) models (Henderson and Quaas, 1976). Simulation 
and theoretical studies have shown the advantages of MT 
over ST models. For instance, a more precise estimation of 
QTL effects, an increased power of QTL detection, and a 
lower rate of false-positive MT associations are expected for 
MT approaches (Jiang and Zeng, 1995; Almasy et al., 1997; 
Allison et al., 1998; Mangin et al., 1998; Williams et al., 1999; 
Calinski et  al., 2000; Knott and Haley, 2000; Cheng et  al., 
2013). In consequence, the interest in MT methods has mark-
edly increased over the last years in the field of linkage studies 
(Lebreton et  al., 1998; Mangin et  al., 1998; Calinski et  al., 
2000; Kumar et al., 2007; Malosetti et al., 2008; Deng et al., 
2011; Balestre et  al., 2012; Cheng et  al., 2013; Simmonds 
et  al., 2014) and, more recently, in the context of GWAS 
(Stich et al., 2008; Jaiswal et al., 2016; Thoen et al., 2017).

MT methods can formally test if  the co-location of QTLs 
for more than one trait is due to pleiotropy (i.e. a single genetic 
factor simultaneously controls several traits) or because of 
close linkage between more than one genetic factor influenc-
ing each trait separately (Jiang and Zeng, 1995; Almasy et al., 
1997; Williams et al., 1999; Knott and Haley, 2000; Calinski 
et al., 2000; Varona et al., 2004; Da Costa E Silva et al., 2012). 
Pleiotropy and linkage are the basis of genetic correlations 

(Falconer and Mackay, 1996), and the ability to differentiate 
between them will determine the optimum breeding strategy 
(Chen and Lübberstedt, 2010). For instance, if  undesired trait 
correlations are caused by linkage, breeders have to put effort 
into breaking this correlation by means of recombination. 
Some linkage studies aiming to disentangle linkage from plei-
otropy in crop plants can be found, for instance on GY and 
GY-syndrome traits in maize (Calinski et al., 2000; Balestre 
et al., 2012) and on average ear and leaf lengths under saline 
stress in wheat (Lebreton et  al., 1998). Nevertheless, to the 
best of our knowledge, this kind of study is lacking so far in 
the context of GWAS in crop plants.

The main goal of our study was to dissect the pleiotropic 
architecture of GY-syndrome by means of GWAS using MT 
statistical approaches in a bread wheat population of varieties 
adapted to European environments. The specific objectives 
were: first, to find genomic regions simultaneously associated 
with GY and GY-syndrome traits using MT-GWAS; secondly, 
to elucidate if the existence of these regions is a consequence of 
pleiotropy or due to closely linked non-pleiotropic QTLs; and, 
thirdly, to understand by means of simulations some factors 
that could have driven the ability to distinguish between these 
two phenomena in the current study. Our findings bring a better 
understanding of the pleiotropic architecture of GY-syndrome 
and its implications in applied MT wheat breeding.

Materials and methods

Plant material and phenotypic data

Our study is based on the GABI-WHEAT population which is 
composed of 358 European winter plus 14 spring wheat varieties. 
A detailed description of the varieties can be found in Kollers et al. 
(2013a). The GABI-WHEAT population was tested in up to eight 
environments throughout Germany (Seligenstadt 2009 and 2010, 
Wohlde 2009 and 2010) and France (Andelu 2009 and 2010, Saultain 
and Janville 2010). The experimental design for field trials was an 
alpha-lattice design with two replications. Plot sizes ranged from 5 
m2 to 6.8 m2. Sowing rates and dates were according to local agricul-
tural practices. PH (cm), HD (days since 1 January), and TGW (g) 
data from these experiments were already available from past studies 
(Zanke et al., 2014a, b, 2015). Moreover, a sample of 10 ears was 
taken from each plot and then used to calculate GPE and EW (g). 
Plots were combine-harvested and grains were dried to reach 14% 
humidity. Later, GY was calculated in Mg ha−1. TW was measured 
from a clean grain sample using a 250 ml cylinder and subsequently 
expressed in kg hl−1. After a quality check, data for GY, PH, and 
HD remained available for all environments, while TGW and TW 
were unavailable for Saultain, and only one of two replicates was 
considered for these two traits in Andelu 2010 and Janville 2010. 
GPE was available for Andelu 2010 and Wohlde 2009, whereas EW 
from Wohlde 2009 and 2010 was taken into consideration for further 
phenotypic analyses.

Molecular data

In a previous study (Zanke et al., 2014a), the GABI-WHEAT pop-
ulation was genotyped by using a 90K Infinium single nucleotide 
polymorphism (SNP) chip (Wang et al., 2014). Quality control of 
SNP markers was assessed as stated by Jiang et al. (2015), making 
a total of 18 832 SNP markers available for GWAS. In addition, the 
GABI-WHEAT population was genotyped using a set of 24 func-
tional markers (Kollers et al., 2013a, b; Zanke et al., 2015) associated 
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in past studies with agronomic traits, disease resistance, or grain 
quality (Supplementary Table S1 at JXB online). Missing values for 
functional markers with <10% missing data were imputed according 
to allele frequencies.

Phenotypic analyses

Best linear unbiased estimators (BLUEs) and variance compo-
nents were computed based on an unweighted two-stage univariate 
mixed model analysis approach (Möhring and Piepho, 2009). First, 
BLUEs of genotypes were separately computed for each trait-by-
environment combination by considering the following model:

Trait Genotypes Replicates Blocks Replicates Error~ µ + + + ( ) +  
 (1)

where µ (i.e. the common mean), and genotypes were considered as 
fixed factors, whereas replicates, blocks nested within replicates, and 
error effects were considered as random. After this stage, BLUEs 
of all environments and unreplicated data were combined together. 
During the second stage, BLUEs of genotypes across environments 
for each single trait were computed using the following model:

 Trait Genotypes Environments Error~ µ + + +  (2)

where µ and genotype effects were assumed as fixed factors, whereas 
environments and error terms were considered as random. In par-
allel, a model considering genotypes as random factor was fit-
ted for estimation of variance components during the first and 
second stages. The genotypic variance (σ2

G) was estimated during 
the second step, whereas the error (σ2

e) and genotype×environment 
interaction (σ2

G×E) variance components are mixed at this stage. 
Therefore, an error variance (σ2

Error), namely the average of σ2
e in 

single environments with replications, was derived during the first 
step and subsequently subtracted from σ2

e during the second step 
for σ2

G×E estimation. Estimates of variance components were later 
considered for the computation of heritability (h2) on a plot basis 
as: hPlot
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No.Env. and No.Rep. denote the number of environments and the 

number of replications, respectively. Phenotypic correlations among 
the different traits considered in this study were calculated as the 
Pearson product–moment correlation coefficient between genotypic 
BLUEs of different traits across environments. Significance of pheno-
typic correlations was assessed by a t-test.

For the estimation of genetic correlations among traits, we con-
sidered an MT model according to Henderson and Quaas (1976):

 y l g ekji k kj ki kji= + + +µ  (3)

where ykji is the phenotype of the ith genotype at the jth environment 
for the kth trait (i.e. each ST BLUE or unreplicated data after the first 
stage of phenotypic analysis), μk corresponds to the overall mean of 
the kth trait, lkj denotes the effect of the jth environment on the kth 
trait, gki represents the breeding value of the ith genotype for the kth 
trait, and ekji is the error term for the ykji observation according to 
the model. Terms μk and lkj were designated as fixed, while gki and 
ekji were considered random. In matrix nomenclature, the random 
terms gki and ekji are assumed to be normally distributed in the way 
g~N(0(t×n)×1, G) and e~N(0N×1, R), respectively, where 0(t×n)×1 and 0N×1 
are null vectors of length t×n and N, respectively, with t and n being 

the number of traits and genotypes, respectively, whereas N=t×No.
Env.×n. In addition, G denotes the variance–covariance structure 
between the t×n MT breeding values included within g, while R rep-
resents the variance–covariance matrix for the N error terms con-
tained in e. Provided that Y is the vector containing the N different 
ykji values and that these elements are conveniently sorted so that 
genotypes and environments are nested within traits, G and R can be 
further decomposed as G=G0⊗A and R=R0⊗I, respectively, where 
G0 is the t×t additive genetic variance–covariance matrix among 
traits, ⊗ denotes the Kronecker product operator between matrices 
(Searle, 2006), A represents a relationship matrix between genotypes, 
R0 corresponds to the t×t error variance–covariance matrix among 
traits, and I is an identity matrix of order No.Env.×n. The A matrix 
was estimated by 2×(J–RD), where J denotes an n×n matrix whose 
every element is 1 and RD is a matrix containing the Rogers’ dis-
tances (Rogers, 1972) among n genotypes previously calculated from 
the SNP profiles in Jiang et al. (2015). As shown by Melchinger et al. 
(1991), these measurements of genetic similarity between homozy-
gous inbred lines are, under simplifying assumptions, linearly related 
to the Mallecots’ (1948) coefficient of co-ancestry calculated from 
pedigree records. The pre-specification of the A matrix allowed the 
estimation of G0 by means of the restricted maximum likelihood 
algorithm. During analyses, t was fixed to 2 so that a bivariate model 
was fitted for each pair of traits. Denoting each element of G0 as 
skk', the genetic correlation between any pair of traits k and k' was 
calculated as s

s s
kk

kk k k

′

′ ′×
. Significance of skk' was tested by a like-

lihood ratio (LR) test comparing a model in which skk'=0 with a 
model without this restriction. The LR under H0 (skk'=0) follows a 
χ2

1 distribution and its significance was interpreted as evidence for a 
significant genetic correlation.

Multiple-trait genome-wide association mapping

We firstly considered a bivariate GWAS approach for each of the 
six GY plus one GY-syndrome trait combinations following the 
suggestion of Stich et  al. (2008). In principle, the model underly-
ing this approach is an extension of Equation 3, allowing now the 
inclusion of a marker with pleiotropic effects on k traits. Then, the 
MT-GWAS model corresponds to:

 y m g l l m ekji k k i ki kj kj i kji= + × + + + × +µ α α( )  (4)

where αk represents the effect of a particular marker on the kth trait, 
mi is a scalar taking values 0, 1, or 2 for individuals homozygous for 
the most frequent allele, heterozygous and homozygous for the sec-
ond allele at the tested marker, respectively, whereas (αl)kj denotes 
the interaction of this marker with the jth environment for the kth 
trait. Both, αk and (αl)kj were assumed as fixed effects within the lin-
ear mixed model. In the case of multi-allelic functional markers, we 
treated each allele as a bi-allelic marker for simplicity. The genetic 
diversity of the GABI-WHEAT population has been extensively stud-
ied using different molecular marker platforms (Kollers et al., 2013a; 
Jiang et al., 2015; Zanke et al., 2015), and it was jointly concluded 
that there is no recognizable population structure in it. Therefore, only 
family structure correction using the relationship matrix between gen-
otypes was considered in Equation 4. After estimation of effects and 
variance components, different Wald statistics were considered for 
significance test of αk and (αl)kj. A general Wald statistic is defined 
as ˆ ’ ( ˆ ) ˆθ θ θVar −1 , where θ̂  is a vector containing the estimates for the 
p fixed effects being tested and Var(θ̂)–1 corresponds to the inverse 
of the variance–covariance matrix among tested effects estimators. 
The Var( θ̂ ) matrix is a submatrix obtained by extracting the p cor-
responding elements from the upper-left quadrant (C11) of the gen-
eralized inverse for the left-hand-side coefficient matrix in the mixed 
model equations (Henderson, 1975). For trait combinations with an 
unequal number of environments, R as well as the design matrices for 
fixed and random effects were modified as suggested by Henderson 
and Quaas (1976). Wald statistics follow a χ2

p distribution. We 
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performed a global Wald test for the αk effects (H0: αk1=αk2=0), fol-
lowed by an individual test for each αk in the bivariate model. Markers 
were declared as potentially pleiotropic for two traits only when the αk 
effects were significant at the global and at the two post-hoc individual 
tests. R2 values were computed by fitting all significant markers for 
each trait combination using a multiple-regression model with one of 
the traits as dependent variable. Markers with the lowest global Wald 
test P-values entered first in the model. Subsequently, R2 values were 
divided by the respective entry mean-based heritability; thus, they 
measure the proportion of genetic variance explained by a marker. 
This last procedure allowed direct comparisons among R2 values for 
different traits. A global Wald test for the (αl)kj effects of both traits 
together and one test for each trait separately were performed to study 
marker×environment interactions. In addition to false discovery rate 
(FDR; Benjamini and Hochberg, 1995) and Bonferroni methods, 
we considered the effective number of independent markers (Meff) 
approach proposed by Gao et al. (2008) for genome-wide multiple-
test correction. Basically, this method is similar to the Bonferroni 
approach, but the whole number of markers is replaced by the Meff 
when correcting the nominal level of significance of tests. For this 
purpose, pairwise linkage disequilibrium (LD) matrices in the form of 
r2 were computed for each of the 21 wheat chromosomes using SNPs 
with unique genetic map positions (Wang et al., 2014) along with 
functional markers. Later, principal component analysis was applied 
to each matrix and the number of eigenvalues needed to explain 95% 
of matrix variation was recorded. By adding these 21 values together, 
an Meff=3257 was obtained. Furthermore, because of the high col-
linearity between associated markers mapping in the same region, the 
effective number of bivariate associations was computed using the 
same principle as for Meff.

A complete genome scan using Equation 4 and performing Wald 
tests with more than two traits would imply a very high computa-
tional load. Therefore, in cases where markers with significant asso-
ciations for more than one two-trait combination, hereafter called 
higher order GY-syndrome markers, were found, only this subset 
of markers was subsequently evaluated for more than two traits. 
Since genome-wide distributions of P-values for the Wald test were 
unknown in these cases, only Meff and the Bonferroni correction 
methods were considered for higher order GY-syndrome markers.

A bivariate two-dimensional scan based on the method originally 
proposed by Jiang and Zeng (1995) for linkage studies was imple-
mented in the context of GWAS. Briefly, this method contrasts H0: 
p(1)=p(2), stating that the QTLs for two different traits are located at 
the same m locus, with H1: p(1)≠p(2), in which these two QTLs have 
different positions, i.e. m1 and m2. In principle, a pleiotropic model 
and a linkage model are compared in terms of their likelihoods. Since 
BLUEs across environments were considered as phenotypic data for 
the bivariate two-dimensional scan, Equation 4 is reduced to:

 y m g eki k k i ki ki= + × + +µ α  (5)

in the case of the pleiotropic model, whereas:

 y k m k m g eki k i i ki ki= + ( ) × + ( ) × + +µ 2 11 1 2 2– –α α  (6)

corresponds to the linkage model, with k=1 or 2 for the first and sec-
ond traits included in the model, respectively. Provided that Y=(y11, 
y12, ..., y1n, y21, y22,..., y2n)

T, the likelihood functions of pleiotropy 
and linkage models [i.e. f0(Y) and f1(Y)] are multivariate normal 

density functions with means 
1
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respectively, where 1n is an n-size vector containing only ones, 
whereas m, m1, and m2 denote n-size vectors of marker profiles. In 
both f0(Y) and f1(Y), the covariance matrix is G0⊗A+R0⊗In. The LR 

test is denoted as LR = −






2 0

1

ln
L
L

, where L1 is the maximum of 

the likelihoods for a linkage model in the two-dimensional space 
(H1), and L0 is the maximum of the likelihoods on the diagonal of 
the two-dimensional space that corresponds to H0. Then, the test 
statistic under H0 follows a χ2

1 distribution for which a nominal sig-
nificance level of 0.05 was applied (Jiang and Zeng, 1995). The two-
dimensional space was defined by considering an r2 window with 
values >0.5 between the surrounding markers and each potential 
pleiotropic marker. Only markers with unique genetic map positions 
were taken into account for this purpose. Moreover, two traits were 
simulated under close linkage or pleiotropy scenarios to investigate 
the influence of minor allele frequencies (MAFs) along with bal-
anced and unbalanced percentages of genetic variance explained by 
QTLs (QTL size) on the power and Type I error of close linkage 
detection in the GABI-WHEAT population. In balanced scenarios, 
QTL sizes were the same for both simulated traits, whereas QTL 
sizes were larger (or smaller) for one of the traits under the unbal-
anced scenario. The influence of r2 values between QTL positions 
was considered as an additional factor in linkage scenarios. Marker 
information (Supplementary Table S2) and some general statis-
tics from phenotypic analyses of the GABI-WHEAT population 
were considered during simulations. Methods for simulations are 
described in detail in the Supplementary data. Linear mixed models 
were solved using the ASReml-R package (Butler et al., 2009), and 
all computational methods were implemented within R environment 
(R Core Team, 2016).

Results

Grain yield was significantly associated with various 
yield-syndrome traits

On a plot basis, GY was moderately heritable (h2
Plot=0.44), 

while most GY-syndrome traits, except EW, had higher her-
itabilities than GY (Table 1). A broad phenotypic variation 
was observed for all traits (Supplementary Table S3), and GY 
ranged from 7.4 Mg ha−1 to 11.1 Mg ha−1. Phenotypically, GY 
was positively correlated (P-value <0.0001) with GPE and 
EW but was negatively associated (P-value <0.0001) with PH 
and TW (Table 1). Almost all phenotypic correlations among 
GY-syndrome traits were significant (P-value <0.05), except 
between EW and the two traits PH and HD. At the genetic 
level, GY–PH and GY–TW correlations shifted towards zero 
(Table 1), whereas GY–TGW, GY–GPE, and GY–EW cor-
relations were positive (P-value <0.05).

Bivariate genome-wide association mapping revealed 
several marker–trait–trait associations

Among all available markers, a total of 345 had significant 
(FDR <0.05) bivariate associations with GY and at least one 
of the GY-syndrome traits (Fig.  1; Supplementary Tables 
S4–S9). With the exception of GY–GPE associations of SNP 
markers Ku_c12191_1123, Tdurum_contig13646_225, wsnp_
Ex_c22913_32130617, and wsnp_Ex_rep_c66274_64426834, 
all the remaining bivariate associations presented signifi-
cant marker×environment interactions for at least one trait. 
Marker–trait–trait associations were found on all wheat 
chromosomes (Fig.  1; Supplementary Fig. S1). Genome 
A concentrated a great proportion of them, with 144 mark-
ers presenting a total of 188 bivariate associations, whereas 
106 and 37 associations were observed for B and D genomes, 
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respectively, which were attributed to 87 and 28 markers for 
each genome, respectively. The minimum number of bivariate 
associations per chromosome was presented by chromosome 
2D, with only one joint association for GY and TW, while 
3A showed the maximum number of associations per chro-
mosome, with up to 56 associations attributed to 29 mark-
ers. Depending on the trait pair, associated markers fitted in a 
multiple-regression model explained together 12.2–58.1% of 
GY phenotypic variation, while accounting for between 9.3% 
and 60.4% of GY-syndrome trait variation (Supplementary 
Table S10). Nonetheless, all distributions of single marker R2 
values were L-shaped (Supplementary Fig. S2) and, in most 
cases, associated markers explained <1% of genetic variation 
for at least one of the traits (Supplementary Tables S4–S9).

A total of 18 significant SNP markers (FDR <0.05) were 
jointly associated with GY and PH (Supplementary Table 
S4). These markers represented a total of eight effective GY–
PH associations (Supplementry Fig. S1) and half  of them 
induced negative GY–PH co-variation (Fig.  2). Marker–
trait–trait associations explained on average almost a three 
times larger proportion of genetic variation for PH than for 
GY (2.1% versus 0.8%), with the highest R2 for PH attrib-
uted to marker RAC875_rep_c105718_304. This marker 
accounted for 15.3% and 1.2% of PH and GY variation, 
respectively (Supplementary Table S4).

For GY and HD, 93 SNP markers were jointly associated 
with both traits at FDR <0.05 (Supplementary Table S5), 
which depicted an estimated total of 40 GY–HD effective asso-
ciations (Supplementary Fig. S1). Most GY–HD associations 
(89% of effective associations) induced negative co-variation 
between these two traits (Fig. 2). Markers with GY–HD asso-
ciations explained on average a comparable percentage of vari-
ation for GY and HD (0.9% of genetic variation in both cases). 
Nevertheless, effect sizes on each trait were often unbalanced 
at the individual marker level (Supplementary Table S5). For 
example, marker wsnp_Ku_c16432_25320146 explained 9.2% 
of variation in GY but only 0.6% of HD variation.

Significant (FDR <0.05) bivariate associations for GY and 
TGW were observed for 28 SNP markers (Supplementary 
Table S6), representing an estimated total of 11 effective 
GY–TGW associations (Supplementary Fig. S1). All these 

bivariate associations induced positive co-variation between 
GY and TGW (Fig.  2). Interestingly, significant markers 
explained on average three times as much of the genetic vari-
ance for GY (1.4%) than for TGW (0.5%), with the high-
est GY R2 attributed to SNP BS00028033_51. This marker 
explained 4.6% of variation in GY but accounted for 0.1% of 
TGW variation (Supplementary Table S6).

Bivariate GWAS for GY and TW revealed 116 SNP 
markers simultaneously associated with these traits at FDR 
<0.05 (Supplementary Table S7). GY–TW-associated mark-
ers showed an estimated total of 40 effective associations 
(Supplementary Fig. S1), with the majority of them (80% of 
effective associations) inducing positive trait–trait co-varia-
tion (Fig. 2). Regarding R2 values, markers explained on aver-
age a comparable proportion of GY and TW variation (0.6% 
and 0.7% of genetic variation, respectively). Nonetheless, R2 
values for GY and TW were again often asymmetric at the 
single SNP level (Supplementary Table S7).

GY–GPE associations were found to be significant (FDR 
<0.05) for 70 markers (Supplementary Table S8), which rep-
resented an estimated total of  34 effective bivariate asso-
ciations (Supplementary Fig. S1). Most of  these effective 
associations (88%) induced positive GY–GPE co-variation 
(Fig. 2). Although the percentages of  variation explained 
by these markers were on average comparable between GY 
and GPE (1.1% and 0.8% of  genetic variation, respectively), 
effect sizes on each trait were again often asymmetric at 
the single marker level (Supplementary Table S8). The GY–
GPE association found on chromosome 4B corresponded 
to the Rht-B1 locus (Ellis et al., 2002). Rht-B1 explained 
0.3% and 0.1% of  GY and GPE variation, respectively, and 
the dwarfing allele presented positive effects on both traits.

The number of markers with significant (FDR <0.05) 
GY–EW joint associations amounted to 114 (Supplementary 
Table S9), which showed an estimated total of 35 effective 
associations (Supplementary Fig. S1). More than a half  of 
them (67% of effective associations) induced positive co-
variation between GY and EW (Fig. 2). Similar to previous 
cases, even though average R2 values were comparable for GY 
and EW (0.7 and 0.8% of genetic variance, respectively), R2 
values for each trait were often unequal at a single marker 

Table 1. Matrix of plot-based heritabilities (h2
Plot, underlined diagonal values), genetic (corg) and phenotypic (corp) correlations (lower 

and upper triangle values, respectively) for grain yield (GY, Mg ha−1), plant height (PH, cm), heading date (HD, days since 1 January), 
thousand grain weight (TGW, g), test weight (TW, kg hl−1), grains per ear (GPE), and ear weight (EW, g) in the population of 358 
European winter plus 15 spring wheat varieties (GABI-WHEAT population) phenotyped in up to eight environments

corg/h2
Plot/corp GY PH HD TGW TW GPE EW

GY 0.44 –0.24*** 0.07 0.09 –0.37*** 0.26*** 0.21***
PH 0.08 0.87 0.16** 0.21*** 0.64*** –0.18** –0.03
HD –0.05 0.00 0.85 –0.42*** -0.26*** 0.37*** 0.07
TGW 0.15* 0.29*** –0.45*** 0.70 0.23*** –0.51*** 0.22***
TW 0.00 0.41*** –0.42*** 0.17** 0.71 –0.32*** –0.14**
GPE 0.29** –0.08 0.36*** –0.60*** –0.18* 0.59 0.56***
EW 0.25** 0.16 0.00 0.42*** –0.09 0.63*** 0.35

*Significantly different from zero with a P-value <0.05.
**Significantly different from zero with a P-value <0.01.
***Significantly different from zero with a P-value <0.0001.
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level (Supplementary Table S9). The unique GY–EW asso-
ciation found on chromosome 6B corresponded to a marker 
developed for the TaGW2-6B locus (Qin et  al., 2014). This 
particular marker explained 0.3% and 0.2% of GY and EW 
variation, respectively, with the Hap-6B-1 haplotype having 
positive effects on both traits.

Simulation study on the power to distinguish close 
linkage from pleiotropy

The power to distinguish close linkage from pleiotropy ranged 
in our simulation study from 3% to 58% and increased with 
larger QTL sizes and more intermediate allele frequencies, but 

Fig. 1. Genomic regions simultaneously associated with grain yield (GY) and at least one GY-syndrome trait as revealed by genome-wide association 
scans (GWAS) using bivariate models in the population of 358 European winter plus 15 spring wheat varieties (GABI-WHEAT population) phenotyped in 
up to eight environments and genotyped with 18 856 polymorphic markers. GY-syndrome traits corresponded to plant height (PH), heading date (HD), 
thousand grain weight (TGW), test weight (TW), grains per ear (GPE), and ear weight (EW). Significant associations of single nucleotide polymorphism 
(SNP) markers were positioned according to the reference genetic map of Wang et al. (2014), grouping them by genome: (A) A, (B) B, and (C) 
D. Functional markers for Rht-B1b (Ellis et al., 2002) and TaGW2-6B (Qin et al., 2014) were placed for convenience at the end of linkage groups 4B and 
6B, respectively.
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was hampered by tight LD between QTL positions (Table 2). 
Similar trends were found when simulating two QTLs with 
asymmetric sizes (Supplementary Table S11). Some exceptions 
to these main effects, such as power increments observed when 

the LD increased from r2 ~0.55 to 0.70 at MAF ~0.13 with 
QTLs explaining 10% of genetic variation for both traits, could 
be attributed to interactions among these factors along with 
other variables ignored during simulations. Regarding Type 
I error; that is, wrongly rejecting pleiotropy, no clear trends 
related to the different levels of MAF and QTL sizes were 
observed (Supplementary Table S12). Across all tested con-
ditions, the average Type I error was 0.07, with an standard 
deviation of 0.04.

Two-dimensional scan to distinguish close linkage from 
pleiotropy

From the total of 345 markers with significant bivariate asso-
ciations, a subsample of 251 markers had unique genetic map 
positions (Fig.  3A). A  further 27 markers were discarded 
because of the lack of surrounding linked markers (r2>0.5). 
Thus, 224 markers were considered for the tests of close link-
age versus pleiotropy (Fig.  3B; Supplementary Tables S4–
S9). For these targeted markers, the number of surrounding 
linked markers ranged from 1 to 283, with an average of 13.6. 
According to the pairwise LD decay (Supplementary Fig. 
S3), surrounding markers are expected to map between 0 cM 
and 2 cM away from each targeted marker.

From all two-dimensional scans performed, we selected 
two extreme examples to illustrate the landscape of 
likelihoods for close linkage versus pleiotropy (Fig. 4; 
Supplementary Fig. S4). The two-dimensional scan for 
the GY–GPE-associated marker Tdurum_contig10194_765 
revealed that the maximum bivariate likelihood is clearly 
placed outside of  the diagonal and, thus, the hypothesis of 
pleiotropy can be rejected (P-value <0.05). In contrast, for 
marker IACX8108 jointly associated with GY and HD, the 
maximum bivariate likelihood was found on the diagonal; 
therefore, the hypothesis of  pleiotropy cannot be rejected 
(Supplementary Fig. S4). Interestingly, the two-dimensional 

Fig. 2. Sign distributions for locus-induced co-variation on traits (positive 
or negative) of the effective number of genetic factors simultaneously 
associated with grain yield (GY) and at least one GY-syndrome trait as 
revealed by genome-wide association scans (GWAS) using bivariate 
models in the population of 358 European winter plus 15 spring wheat 
varieties (GABI-WHEAT population). GY-syndrome traits corresponded to 
plant height (PH), heading date (HD), thousand grain weight (TGW), test 
weight (TW), grains per ear (GPE), and ear weight (EW).

Table 2. Power of the test developed by Jiang and Zeng (1995) to differentiate close linkage from pleiotropy in linkage-simulated 
scenarios considering different levels of minor allele frequency (MAF), balanced percentage of explained genetic variation (QTL size) for 
each of the two simulated traits, linkage disequilibrium (r2), and marker profiles of the 358 European winter plus 15 spring wheat varieties 
(GABI-WHEAT population). Each value corresponds to the proportion of times in which H0: p(1)=p(2) was rejected in 100 simulated 
replicates

MAF QTL size r2

~0.55 (0.53–0.56) ~0.70 (0.68–0.72) ~0.91 (0.90–0.93)

~0.06 (0.06–0.07) 15 0.23 0.17 0.12
10 0.17 0.09 0.07

5 0.04 0.05 0.03
~0.13 (0.11–0.14) 15 0.37 0.36 0.09

10 0.26 0.36 0.15
5 0.12 0.15 0.09

~0.22 (0.20–0.24) 15 0.40 0.40 0.18
10 0.36 0.31 0.13

5 0.35 0.21 0.09
~0.46 (0.44–0.48) 15 0.58 0.41 0.31

10 0.37 0.38 0.21
5 0.23 0.20 0.11
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scan distinguished only three cases of  close linkage from 
pleiotropy (Table 3). Besides the illustrative example of 
Tdurum_contig10194_765, the hypothesis of  pleiotropy was 

rejected for BS00003586_51 and Tdurum_contig30930_184 
corresponding to markers with significant GY–TGW and 
GY–EW bivariate associations, respectively.

Fig. 4. Landscape of bivariate likelihoods (log-likelihoods) during the two-dimensional scan to distinguish close linkage from pleiotropy in the vicinity of 
Tdurum_contig10194_765 (indicated with an asterisk), a locus simultaneously associated with grain yield (GY) and grains per ear (GPE) on chromosome 
6A (Fig. 1A; Supplementary Table S8). Likelihoods pertaining to pleiotropy models were maximized at marker wsnp_Ku_c16432_25320146 (denoted 
with Δ), whereas likelihoods for linkage models were maximized at the combination of wsnp_Ku_c16432_25320146 and Tdurum_contig13240_523 
(highlighted in green), with these last two markers carrying the effects on GY and GPE, respectively. The log-likelihood ratio test of Jiang and Zeng (1995) 
using maximized likelihoods rejected H0: p(1)=p(2) of pleiotropy at the nominal significance level of 0.05.

Fig. 3. General statistics for markers considered during the two-dimensional scan to test close linkage versus pleiotropy in the population of 358 European 
winter plus 15 spring wheat varieties (GABI-WHEAT population). (A) Proportion of markers simultaneously associated with grain yield (GY) and at least one 
GY-syndrome trait having (shaded) or lacking unique genetic positions in wheat genomes according to past studies (Ellis et al., 2002; Qin et al., 2014; 
Wang et al., 2014). (B) Frequency distribution of the number of surrounding markers in the vicinity (with linkage disequilibrium r2>0.5) of associated markers 
with unique genetic positions. (C) Distribution of frequencies for the minimum r2 value observed between markers within each vicinity window.
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Higher order grain yield-syndrome markers

A total of 78 markers presented significant bivariate associa-
tions in more than one GY plus GY-syndrome trait combina-
tion (Fig.  1; Supplementary Tables S4–S9), suggesting that 
these markers are simultaneously influencing GY and two or 
more GY-syndrome traits. To elucidate this, marker effects 
were tested for their significance by sequentially adding more 
traits to an MT model according to bivariate results. First, 
three-trait models were considered; however, after multiple-
test corrections, only one of the 78 markers remained signifi-
cant for all traits in the model (data not shown). In detail, the 
SNP marker IACX6214, located at 33.7 cM on chromosome 
3B, was significantly and simultaneously associated with GY, 
TGW, and TW (Meff-corrected P-value <0.1). This marker 
has negative minor allele effects on each trait, and could 
explain 0.02, 0.4, and 1.8% of genetic variation in GY, TGW, 
and TW, respectively, when included alone within a regression 
model for each trait. Nonetheless, the lack of surrounding 
linked markers (r2>0.5) for IACX6214 precluded us from dis-
entangling the pleiotropic nature of its simultaneous effects 
on GY, TGW, and TW.

Discussion

The power to distinguish linkage from pleiotropy is 
driven by minor allele frequencies, QTL size, and 
linkage disequilibrium

Across all simulated close linkage scenarios, it was observed 
that increasing MAF, along with QTL sizes and decreasing 
r2 levels between QTL positions, have a positive effect on 
the power to differentiate linkage from pleiotropy (Table 2; 
Supplementary Table S11). Our findings agree with past 
simulation studies considering various QTL sizes or differ-
ent genetic distances/LD values between two QTLs (Lebreton 
et al., 1998; Knott and Haley, 2000; Varona et al., 2004; Da 
Costa E Silva et  al., 2012; David et  al., 2013). To the best 

of our knowledge, studies directly assessing the influence 
of MAF on the power and Type I  error rate to differenti-
ate close linkage from pleiotropy are lacking. Nevertheless, 
increments in MAF improve QTL detection power in GWAS 
(for a review, see Myles et al. 2009) and, from our results, this 
positive influence will also apply to the ability to distinguish 
pleiotropy from linkage.

In general, past simulation studies have shown that Type 
I error of close linkage versus pleiotropy testing is unaffected 
or, at most, only marginally influenced by balanced changes 
in QTL sizes (Lebreton et al., 1998; Knott and Haley, 2000; 
Varona et al., 2004; David et al., 2013); an observation also 
found in our study (Supplementary Table S12). In addition, 
Lebreton et al. (1998) reported that unequal QTL sizes could 
increase Type I error by using a confidence interval approach 
to test pleiotropy versus linkage; however, this was not con-
sistently observed by us. Nonetheless, since pleiotropy and 
linkage models of Jiang and Zeng (1995) are not exactly 
nested, asymptotical distributions of the LR test under H0 
may deviate from χ2

1; hence, alternative procedures have been 
suggested for significant threshold derivation in linkage stud-
ies (Almasy et al., 1997; Williams et al., 1999; Calinski et al., 
2000; Knott and Haley, 2000; Varona et al., 2004; Da Costa E 
Silva et al., 2012). Nevertheless, the average Type I error rate 
of 0.07 ± 0.04 observed during our simulations is comparable 
with the nominal level of 0.05 and also with the 0.1 value 
originally observed by Jiang and Zeng (1995), thus reflect-
ing an acceptable test performance by considering standard 
significant thresholds, at least with our simulated scenarios.

Grain yield is genetically correlated with thousand grain 
weight, grains per ear, and ear weight

Correlations at the phenotypic level would not necessarily 
resemble those at the genetic level, and vice versa. This is 
mainly because phenotypic correlations are not a direct func-
tion of genetic correlations, while being also dependent on 
the environmental correlation along with trait heritabilities 

Table 3. Marker–trait associations, chromosome location (Chr.), genetic positions (Pos., cM), number of surrounding markers (N), 
linkage disequilibrium (r2), and genetic distance (Dist., cM) pertaining to cases in which the log-likelihood ratio test of Jiang and Zeng 
(1995) rejected pleiotropy [H0: p(1)=p(2), P-value] in the population of 358 European winter plus 15 spring wheat varieties (GABI-WHEAT 
population)

Original associationa Disentangled close linkage

Marker Traitsb Chr. Pos. 
(cM)c

Nd P-value Marker 1 (M1) Pos. 
(cM)

Trait Marker 2 (M2) Pos. 
(cM)

Trait r2 Dist. 
(cM)e

Tdurum_contig

10194_765

GY, GPE 6A 85.1 12 0.028 wsnp_Ku_c16432_

25320146

85.1 GY Tdurum_contig

13240_523

85.1 GPE 0.12 0.0

Tdurum_contig

30930_184

GY, EW 2B 108.0 2 0.049 Tdurum_contig

30930_184

108.0 GY wsnp_JD_rep_

c67103_42432235

104.0 EW 0.58 4.0

BS00003586_51 GY, TGW 5B 144.1 2 0.021 BS00098520_51 144.1 GY BS00003586_51 144.1 TGW 0.54 0.0

aBivariate marker–trait associations as originally found by multiple-trait genome wide association mapping (MT-GWAS) in the GABI-WHEAT 
population (Fig. 1; Supplementary Tables S6, S8, S9).
bTraits involved in bivariate associations: grain yield (GY), thousand grain weight (TGW), grains per ear (GPE), and ear weight (EW).
cGenetic positions according to the reference map published by Wang et al. (2014).
dNumber of markers in the vicinity of markers with bivariate associations (r2>0.5).
eGenetic distance as well as r2 values were calculated between M1 and M2.
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(Falconer and Mackay, 1996). Such discrepancies were also 
observed in the present study (Table 1). For instance, while 
GY and PH were negatively correlated at the phenotypic 
level, they were not genetically correlated. Positive effects of 
reduced PH by improving harvest index and lodging resist-
ance of high-yielding semi-dwarf wheat plants adapted to 
intensive agricultural practices have been long recognized 
(Borlaug, 1968; Austin et  al., 1980; Börner et  al., 1993; 
Brancourt-Hulmel et al., 2003; Kuchel et al., 2007; Casebow 
et al., 2016; Kowalski et al., 2016). The null genetic correla-
tion between GY and PH can be attributed to the fact that 
varieties in the GABI-WHEAT population were already 
adapted by wheat breeders to perform in European agro-
ecosystems. Moreover, since HD plays an important role in 
wheat adaptation as a crop (Worland, 1996), breeding efforts 
for adaptation can also explain the null correlation between 
HD and GY (Table 1). In relation to TW, this trait was nega-
tively correlated with GY at the phenotypic level, while the 
genetic correlation was not significant between these traits. 
TW is a trait related to milling yield because it gives an indi-
cation of the soundness of wheat grains (Matsuo and Dexter, 
1980). Nonetheless, its association with GY is still controver-
sial (Huang et al., 2006; Rattey et al., 2009; Kamran et al., 
2014; Bordes et al., 2014). Interestingly, despite the fact that 
GY–PH, GY–HD, and GY–TW genetic correlations were 
practically zero (Table 1), we could find pleiotropic associa-
tions for these trait pairs (Fig.  2). Since pleiotropic QTLs 
can induce positive/negative genetic co-variance among two 
traits if  QTL effects on these traits have the same/opposite 
sign, these observed null genetic correlations could be simply 
the net effect of loci whose effects cancelled each other out. 
Regarding significant genetic correlations among GY and 
traits TGW, GPE, and EW, their positive associations con-
firm their main roles as GY components (e.g. Huang et al., 
2006; Kuchel et al., 2007; Kumar et al., 2007; Cuthbert et al., 
2008; Rattey et al., 2009; Neumann et al., 2011; Bennett et al., 
2012; Simmonds et al., 2014; Sukumaran et al., 2015).

The pleiotropic architecture of wheat yield-syndrome 
was dissected more as a function of pleiotropy rather 
than close linkage

Past linkage studies on crop plants have shown that disen-
tangling linkage from pleiotropy is quite difficult and some-
times even remains unsolved (Lebreton et al., 1998; Calinski 
et al., 2000; Balestre et al., 2012). In particular, Calinski et al. 
(2000) and Balestre et al. (2012) observed that although there 
was some evidence favoring linkage, this was not enough to 
discard pleiotropy completely as the underlying mechanism 
for maize GY-syndrome. Similarly, among all bivariate asso-
ciations found in our study (Supplementary Tables S4–S9; 
Supplementary Fig. S1), only three of them were due to close 
linkage (Table 3). Nonetheless, we presume that the impor-
tance of pleiotropy could be overestimated, at least for the 
traits considered in this study. First, the majority of associated 
markers explained <1% of trait variation (Supplementary 
Tables S4–S9; Supplementary Fig. S2), which, as previously 
discussed, is expected to lead to low power to differentiate 

linkage from pleiotropy. Secondly, the distribution of r2 val-
ues between the most distant markers within each vicinity 
window showed in general values >0.5 (Fig. 3C), thus jeop-
ardizing the fitting of linkage models using pairs of more 
distant markers. Although relaxing the LD window for the 
inclusion of less linked markers would be a simple solution, 
this would increase the risk of falsely declaring linkage in the 
presence of true pleiotropy, because one main prerequisite 
underlying our methodology is that each bivariate-associated 
marker is simultaneously detecting signals of two QTLs in the 
surroundings. Alternatively, a more reliable solution would be 
to increase marker density and population size, since these 
two factors may have limited the ability to differentiate close 
linkage from pleiotropy in the current study (Lebreton et al., 
1998; Varona et al., 2004; David et al., 2013).

Rht-B1 and TaGW2-6B showed pleiotropic effects on 
yield-syndrome

From the 24 assessed functional markers (Supplementary 
Table S1), Rht-B1 and TaGW2-6B were significantly asso-
ciated with GY-syndrome. One and 66 surrounding linked 
markers (r2>0.5) were found for Rht-B1 and TaGW2-6B, 
respectively (Supplementary Tables S8, S9). Within each 
vicinity window, the LR test could not reject the hypothesis 
of pleiotropy for these loci. Therefore, we conclude that the 
pipeline of MT analyses used in the present study confirmed 
the pleiotropic nature of Rht-B1 and TaGW2-6B effects on 
GY-syndrome of wheat. The pleiotropic roles of these two 
loci are discussed in the following paragraphs.

Dwarfing loci Rht8, Rht-B1, and Rht-D1 have been exten-
sively associated with variation in GY, along with other 
GY-syndrome traits (Austin et al., 1980; Börner et al., 1993; 
Miralles and Slafer, 1995; Korzun et al., 1998; Ellis et al., 2002; 
Brancourt-Hulmel et  al., 2003; Kuchel et  al., 2007; Zanke 
et al., 2014b, 2015; Casebow et al., 2016; Kowalski et al., 2016; 
Mohler et al., 2016). Functional markers linked to these genes 
are available (Korzun et al., 1998; Ellis et al., 2002) and were 
used to characterize the GABI-WHEAT population in past 
works (Kollers et al., 2013a, b). A bivariate association was 
found for Rht-B1, with the dwarfing allele (Rht-B1b) simulta-
neously increasing GY and GPE (Supplementary Table S8). 
As jointly concluded from past studies, it seems that although 
genotypes carrying Rht-B1b can produce more GPE, its posi-
tive association with GY would highly depend on effects of 
Rht-B1b on other GY-syndrome traits, along with counter-
balancing effects of higher GPE values on grain weight per 
se and Rht-B1b interactions with environments (Börner et al., 
1993; Kuchel et al., 2007; Casebow et al., 2016). Apparently, 
increases in GPE produced by Rht-B1b in the GABI-WHEAT 
population were strong enough to compensate for any nega-
tive feedback on GY, resulting in a positive net effect on these 
two traits.

Based on 11 SNPs, Qin et al. (2014) described four differ-
ent haplotypes, Hap-6B-1 to Hap-6B-4, for locus TaGW2-6B. 
In their study Hap-6B-1 was associated with higher aver-
age TGW, this superiority being attributed to increased 
grain length, width, and/or thickness. The GABI-WHEAT 
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population was characterized in Zanke et al. (2015) using a 
marker designed by Qin et al. (2014) capable of distinguishing 
Hap-6B-1 from the other three haplotypes. As in the present 
study, Zanke et al. (2015) found no association of TaGW2-6B 
with TGW. Recently, Mohler et al. (2016) found a minor TGW 
QTL at TaGW2-6B in a biparental doubled haploid popula-
tion, but Hap-6B-2 presented a higher TGW compared with 
Hap-6B-1. Moreover, in the current study, Hap-6B-1 simul-
taneously increased GY and EW (Supplementary Table S9). 
Future studies should clarify the mechanisms that allowed 
TaGW2-6B to influence GY and EW without causing sig-
nificant changes in TGW in the GABI-WHEAT popula-
tion. Nevertheless, although a GY component different from 
TGW was involved, our findings confirm the positive role of 
Hap-6B-1 on GY-syndrome.

Pleiotropic effects are more environmentally stable for 
plant height and heading date than for grain yield

In past studies, GY QTLs have been often reported as envi-
ronmentally unstable (e.g. Kuchel et al., 2007; Kumar et al., 
2007; Cuthbert et al., 2008; Reif  et al., 2011; Bennett et al., 
2012; Zhang et al., 2014). In parallel, Kowalski et al. (2016) 
showed that while pleiotropic effects of Rht8 are highly stable 
on PH, this was not the case on GY. In contrast, Simmonds 
et  al. (2014) found two co-located QTLs on chromosome 
6A influencing GY and TGW, respectively, which presented 
different environmental instability patterns for each trait. 
We further compared the environmental stability of marker 
pleiotropic effects on traits measured in the same number 
of environments (i.e. GY, PH, and HD). For this, we fitted 
a univariate multiple regression model including main envi-
ronmental and marker effects plus their interactions consid-
ering the same data used for MT-GWAS. For GY–PH- and 
GY–HD-associated markers, the proportion of GY variation 
explained by main marker effects together corresponded to 
1.6 and 0.6 times that attributed to interactions, respectively, 
while these ratios were 29.4 and 9 for PH and HD, respec-
tively. This clearly indicates that marker×environment inter-
actions played a more important role on GY than on PH or 
HD, and points to an increased environmental stability of 
pleiotropic effects on PH or HD than on GY.

Disentangling close linkage from pleiotropy underlying 
yield-syndrome: implications in applied multiple-trait 
breeding

Markers Tdurum_contig10194_765, BS00003586_51, and 
Tdurum_contig30930_184, presenting bivariate GY–GPE, 
GY–TGW, and GY–EW associations, respectively, were dis-
entangled as cases of close linkage (Table 3). GY and GPE 
QTLs of Tdurum_contig10194_765 were displaced to mark-
ers having an r2 of 0.12, whereas repositioning of GY and 
EW QTLs of BS00003586_51 and Tdurum_contig30930_184, 
respectively, resulted in close linkage cases of markers having 
r2 values of 0.54 and 0.58, respectively. We further investigated 
the frequencies of the four potential haplotypes generated 
by combining different alleles at these loci (Supplementary 

Fig. S5). For GY–GPE and GY–TGW disentangled cases, 
haplotypes maximizing both GY along with GPE or TGW 
were the most frequent, representing 76.5% and 73.8% of 
the GABI-WHEAT population, respectively, and suggest-
ing that these haplotypes have been positively selected by 
wheat breeders. In contrast, the most frequent haplotype 
(52.6% in the GABI-WHEAT population) for the GY–EW 
disentangled case decreased both traits simultaneously; thus, 
efforts should be allocated to reverse this situation in MT 
improvement of these traits. In addition, blindly performing 
MT-MAS using markers BS00003586_51 and Tdurum_con-
tig30930_184 would allow the selection of undesired hap-
lotypes, corresponding to 11.6% and 7.7% of the selected 
fraction, respectively. Although these last magnitudes are 
relatively small, they illustrate the potential problems caused 
by blindly using spurious pleiotropic associations and the 
importance of disentangling close linkage from pleiotropy in 
MT-MAS. Moreover, most bivariate associations remained 
as pleiotropic in our study (Supplementary Tables S4–S9) 
and, provided they are truly pleiotropic, MT-MAS using 
markers whose trait induced co-variation (Fig. 2) agrees with 
breeding goals should be straight forward. Nonetheless, we 
also found bivariate associations for which this was not the 
case. For instance, 33% of GY–EW effective associations 
induced negative trait co-variations. For these cases, using 
additional markers that complement or mitigate undesired 
effect(s) of pleiotropic markers could be a solution (Chen and 
Lübberstedt, 2010). Modeling pleiotropic epistasis as done 
recently in humans (Zhang et al., 2016) could bring a better 
understanding of how this complementarity works.

Conclusion

We assessed the GY-syndrome of bread wheat through 
MT-GWAS approaches in a population of 372 varieties 
adapted to European environments and genotyped with 18 832 
SNPs plus 24 polymorphic functional markers. We conclude 
that distinguishing pleiotropy from close linkage underlying 
the pleiotropic architecture of GY-syndrome is very challeng-
ing, especially because of the small sizes of QTLs influencing 
this complex trait. Our results should be considered as a start-
ing point for further complementary biological validations.

Supplementary data

Supplementary data are available at JXB online. 
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marker IACX8108.
Fig. S5. Haplotype frequencies for cases disentangled as 

close linkage.

Acknowledgements
This research project was financially supported by the Plant Biotechnology 
program of the German Federal Ministry of Education and Research 
(BMBF) within the framework of projects GABI-WHEAT-Wheat and 
VALID (project numbers 0315067 and 0315947).

References
Allison DB, Thiel B, St Jean P, Elston RC, Infante MC, Schork 
NJ. 1998. Multiple phenotype modeling in gene-mapping studies of 
quantitative traits: power advantages. American Journal of Human 
Genetics 63, 1190–1201.

Almasy L, Dyer TD, Blangero J. 1997. Bivariate quantitative trait linkage 
analysis: pleiotropy versus co-incident linkages. Genetic Epidemiology 14, 
953–958.

Austin RB, Bingham J, Blackwell RD, Evans LT, Ford MA, Morgan 
CL, Taylor M. 1980. Genetic improvements in winter wheat yields since 
1900 and associated physiological changes. Journal of Agricultural 
Science 94, 675–689.

Balestre M, Von Pinho RG, Souza CL Jr, Bueno Filho JSS. 2012. 
Bayesian mapping of multiple traits in maize: the importance of pleiotropic 
effects in studying the inheritance of quantitative traits. Theoretical and 
Applied Genetics 125, 479–493.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. Journal of the Royal 
Statistical Society 57, 289–300.

Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge 
P, Schnurbusch T. 2012. Detection of two major grain yield QTL in bread 
wheat (Triticum aestivum L.) under heat, drought and high yield potential 
environments. Theoretical and Applied Genetics 125, 1473–1485.

Bordes J, Goudemand E, Duchalais L, et al. 2014. Genome-wide 
association mapping of three important traits using bread wheat elite 
breeding populations. Molecular Breeding 33, 755–768.

Borlaug NE. 1968. Wheat breeding and its impact on world food supply. 
In: Finley KW, Sheppard KW, eds. Proceedings of 3rd International Wheat 
Genetics Symposium. Canberra: Australian Academy of Sciences, 1–36.

Börner A, Worland AJ, Plaschke J, Schumann E, Law CN. 1993. 
Pleiotropic effects of genes for reduced height (Rht) and day-length 
insensitivity (Ppd) on yield and its components for wheat grown in middle 
Europe. Plant Breeding 111, 204–216.

Brancourt-Hulmel M, Doussinault G, Lecomte C, Bérard B, Le 
Buanec B, Trottet M. 2003. Genetic improvement of agronomic traits of 
winter wheat cultivars released in France from 1946 to 1992. Crop Science 
43, 37–45.

Butler DG, Cullis BR, Gilmour AR, Gogel BJ. 2009. ASReml-R 
reference manual, release 3. Brisbane: Queensland Department of Primary 
Industries. 

Caliński T, Kaczmarek Z, Krajewski P, Frova C, Sari-Gorla M. 2000. 
A multivariate approach to the problem of QTL localization. Heredity 84, 
303–310.

Casebow R, Hadley C, Uppal R, Addisu M, Loddo S, Kowalski A, 
Griffiths S, Gooding M. 2016. Reduced height (Rht) alleles affect wheat 
grain quality. PLoS One 11, e0156056.

Chen Y, Lübberstedt T. 2010. Molecular basis of trait correlations. Trends 
in Plant Science 15, 454–461.

Cheng R, Borevitz J, Doerge RW. 2013. Selecting informative traits for 
multivariate quantitative trait locus mapping helps to gain optimal power. 
Genetics 195, 683–691.

Crossa J, Burgueño J, Dreisigacker S, et al. 2007. Association 
analysis of historical bread wheat germplasm using additive genetic 
covariance of relatives and population structure. Genetics 177, 
1889–1913.

Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH. 
2008. Molecular mapping of quantitative trait loci for yield and yield 
components in spring wheat (Triticum aestivum L.). Theoretical and 
Applied Genetics 117, 595–608.

Da Costa E Silva L, Wang S, Zeng ZB. 2012. Multiple trait multiple 
interval mapping of quantitative trait loci from inbred line crosses. BMC 
Genetics 13, 67.

David I, Elsen JM, Concordet D. 2013. CLIP test: a new fast, simple 
and powerful method to distinguish between linked or pleiotropic 
quantitative trait loci in linkage disequilibria analysis. Heredity 110, 
232–238.

Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S. 2011. 
Characterization and precise mapping of a QTL increasing spike number 
with pleiotropic effects in wheat. Theoretical and Applied Genetics 122, 
281–289.

Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A. 2002. 
‘Perfect’ markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. 
Theoretical and Applied Genetics 105, 1038–1042.

Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics, 
4th edn. Harlow: Longman.

Gao X, Starmer J, Martin ER. 2008. A multiple testing correction 
method for genetic association studies using correlated single nucleotide 
polymorphisms. Genetic Epidemiology 32, 361–369.

Henderson CR. 1975. Best linear unbiased estimation and prediction 
under a selection model. Biometrics 31, 423–447.

Henderson CR, Quaas RL. 1976. Multiple trait evaluation using relatives’ 
records. Journal of Animal Science 43, 1188–1197.

Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, 
Noll JS, Somers DJ, Brown PD. 2006. Molecular detection of QTLs 
for agronomic and quality traits in a doubled haploid population derived 
from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied 
Genetics 113, 753–766.

Jaiswal V, Gahlaut V, Meher PK, Mir RR, Jaiswal JP, Rao AR, Balyan 
HS, Gupta PK. 2016. Genome wide single locus single trait, multi-locus 
and multi-trait association mapping for some important agronomic traits in 
common wheat (T. aestivum L.). PLoS One 11, e0159343.

Jiang C, Zeng ZB. 1995. Multiple trait analysis of genetic mapping for 
quantitative trait loci. Genetics 140, 1111–1127.

Jiang Y, Zhao Y, Rodemann B, et al. 2015. Potential and limits to 
unravel the genetic architecture and predict the variation of Fusarium head 
blight resistance in European winter wheat (Triticum aestivum L.). Heredity 
114, 318–326.

Kamran A, Randhawa HS, Yang RC, Spaner D. 2014. The effect of 
VRN1 genes on important agronomic traits in high-yielding Canadian soft 
white spring wheat. Plant Breeding 133, 321–326.

Knott SA, Haley CS. 2000. Multitrait least squares for quantitative trait 
loci detection. Genetics 156, 899–911.



Dissecting the pleiotropic architecture of yield by association mapping in wheat | 4101

Kollers S, Rodemann B, Ling J, et al. 2013a. Whole genome 
association mapping of Fusarium head blight resistance in European 
winter wheat (Triticum aestivum L.). PLoS One 8, e57500.

Kollers S, Rodemann B, Ling J, et al. 2013b. Genetic architecture 
of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in 
European winter wheat. Molecular Breeding 32, 411–423.

Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN. 1998. Genetic 
analysis of the dwarfing gene Rht8 in wheat. Part I. Molecular mapping 
of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum 
aestivum L.). Theoretical and Applied Genetics 96, 1104–1109.

Kowalski AM, Gooding M, Ferrante A, Slafer GA, Orford S, 
Gasperini D, Griffiths S. 2016. Agronomic assessment of the wheat 
semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water 
regimes. Field Crops Research 191, 150–160.

Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP. 
2007. Genetic dissection of grain yield in bread wheat. I. QTL analysis. 
Theoretical and Applied Genetics 115, 1029–1041.

Kumar N, Kulwal PL, Balyan HS, Gupta PK. 2007. QTL mapping for 
yield and yield contributing traits in two mapping populations of bread 
wheat. Molecular Breeding 19, 163–177.

Laidig F, Piepho HP, Drobek T, Meyer U. 2014. Genetic and non-
genetic long-term trends of 12 different crops in German official variety 
performance trials and on-farm yield trends. Theoretical and Applied 
Genetics 127, 2599–2617.

Lebreton CM, Visscher PM, Haley CS, Semikhodskii A, Quarrie 
SA. 1998. A nonparametric bootstrap method for testing close linkage 
vs. pleiotropy of coincident quantitative trait loci. Genetics 150, 
931–943.

Malosetti M, Ribaut JM, Vargas M, Crossa J, Van Eeuwijk FA. 2008. 
A multi-trait multi-environment QTL mixed model with an application to 
drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161, 
241–257.

Mangin B, Thoquet P, Grimsley N. 1998. Pleiotropic QTL analysis. 
Biometrics 54, 88–99.

Matsuo RR, Dexter J. 1980. Relationship between some durum wheat 
physical characteristics and semolina milling properties. Canadian Journal 
of Plant Science 60, 49–53.

Melchinger A, Messmer M, Lee M, Woodman W, Lamkey K. 1991. 
Diversity and relationships among US maize inbreds revealed by restriction 
fragment length polymorphisms. Crop Science 31, 669–678.

Miralles DJ, Slafer GA. 1995. Individual grain weight responses to 
genetic reduction in culm length in wheat as affected by source–sink 
manipulations. Field Crops Research 43, 55–66.

Mohler V, Albrecht T, Castell A, Diethelm M, Schweizer G, Hartl L. 
2016. Considering causal genes in the genetic dissection of kernel traits in 
common wheat. Journal of Applied Genetics 57, 467–476.

Möhring J, Piepho HP. 2009. Comparison of weighting in two-stage 
analysis of plant breeding trials. Crop Science 49, 1977–1988.

Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, 
Buckler ES. 2009. Association mapping: critical considerations shift from 
genotyping to experimental design. The Plant Cell 21, 2194–2202.

Neumann K, Kobiljsdki B, Denčić S, Varshney RK, Börner A. 2011. 
Genome-association mapping—a case study in bread wheat (Triticum 
aestivum L.). Molecular Breeding 27, 37–58.

Piepho HP, Möhring J. 2007. Computing heritability and selection 
response from unbalanced plant breeding trials. Genetics 177, 
1881–1888.

Qin L, Hao C, Hou J, Wang Y, Li T, Wang L, Ma Z, Zhang X. 2014. 
Homologous haplotypes, expression, genetic effects and geographic 
distribution of the wheat yield gene TaGW2. BMC Plant Biology 14, 107.

Rattey A, Shorter R, Chapman S, Dreccer F, van Herwaarden A. 
2009. Variation for and relationships among biomass and grain yield 
component traits conferring improved yield and grain weight in an elite 
wheat population grown in variable yield environments. Crop and Pasture 
Science 60, 717–729.

R Core Team. 2016. R: a language and environment for statistical 
computing. Vienna, Austria: R Foundation for Statistical Computing.

Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T. 
2011. Mapping QTLs with main and epistatic effects underlying grain yield 
and heading time in soft winter wheat. Theoretical and Applied Genetics 
123, 283–292.

Rogers JS. 1972. Measures of genetic similarity and genetic distance. 
Studies in Genetics 7, 145–153.

Searle SR. 2006. Matrix algebra useful for statistics, 2nd edn. Hoboken: 
Wiley-Interscience.

Simmonds J, Scott P, Leverington-Waite M, Turner AS, Brinton 
J, Korzun V, Snape J, Uauy C. 2014. Identification and independent 
validation of a stable yield and thousand grain weight QTL on chromosome 
6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biology 14, 191.

Slafer GA, Calderini DF, Miralles DJ. 1996. Yield components and 
compensation in wheat: opportunities for further increasing yield potential. 
In: Reynolds MP, Rajaram S, McNab A, eds. Increasing yield potential in 
wheat: breaking the barriers. Mexico, DF: CIMMYT, 101–134.

Stich B, Piepho HP, Schulz B, Melchinger AE. 2008. Multi-trait 
association mapping in sugar beet (Beta vulgaris L.). Theoretical and 
Applied Genetics 117, 947–954.

Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds 
MP. 2015. Genome-wide association study for grain yield and related 
traits in an elite spring wheat population grown in temperate irrigated 
environments. Theoretical and Applied Genetics 128, 353–363.

Thoen MP, Davila Olivas NH, Kloth KJ, et al. 2017. Genetic 
architecture of plant stress resistance: multi-trait genome-wide association 
mapping. New Phytologist 213, 1346–1362.

Varona L, Gómez-Raya L, Rauw WM, Clop A, Ovilo C, Noguera 
JL. 2004. Derivation of a Bayes factor to distinguish between linked or 
pleiotropic quantitative trait loci. Genetics 166, 1025–1035.

Wang S, Wong D, Forrest K, et al. 2014. Characterization of polyploid 
wheat genomic diversity using a high-density 90 000 single nucleotide 
polymorphism array. Plant Biotechnology Journal 12, 787–796.

Williams JT, Van Eerdewegh P, Almasy L, Blangero J. 1999. Joint 
multipoint linkage analysis of multivariate qualitative and quantitative 
traits. I. Likelihood formulation and simulation results. American Journal of 
Human Genetics 65, 1134–1147.

Worland AJ. 1996. The influence of flowering time genes on 
environmental adaptability in European wheats. Euphytica 89, 49–57.

Zanke C, Ling J, Plieske J, et al. 2014a. Genetic architecture of main 
effect QTL for heading date in European winter wheat. Frontiers in Plant 
Science 5, 217.

Zanke CD, Ling J, Plieske J, et al. 2014b. Whole genome association 
mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One 
9, e113287.

Zanke CD, Ling J, Plieske J, et al. 2015. Analysis of main effect QTL for 
thousand grain weight in European winter wheat (Triticum aestivum L.) by 
genome-wide association mapping. Frontiers in Plant Science 6, 644.

Zhang J, Chen J, Chu Ch, Zhao W, Wheeler J, Souza E, Zemetra 
R. 2014. Genetic dissecting of QTL associated with grain yield in diverse 
environments. Agronomy 4, 556–578.

Zhang F, Xie D, Liang M, Xiong M. 2016. Functional regression models 
for epistasis analysis of multiple quantitative traits. PLoS Genetics 12, 
e1005965.




