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Enterotoxigenic Escherichia coli (ETEC) 
are ubiquitous contributors to the esti-
mated 1.7 billion annual episodes of 
diarrheal illness in low-income countries 
lacking access to clean water and fun-
damental sanitation. In the developing 
world, these pathogens are among the 
most frequent causes of moderate-to-se-
vere diarrheal illness and, consequently, 
deaths after diarrhea among young chil-
dren [1]. Although the overall death rate 
from acute diarrheal illness has declined 
dramatically in the past few decades [2], 
ETEC appear to contribute substan-
tially to postdiarrheal sequelae that fol-
low repeated enteric infections. More 
than 100 million children are currently 
thought to suffer from gut dysfunction 
and associated morbidities of stunted 
growth, malnutrition, poor response to 
oral vaccines, and impaired cognitive 
development [3].

Consequently, ETEC and other diar-
rheal pathogens remain high priority 
targets for vaccine development [4]. 
Enterotoxigenic E.  coli vaccines have 
been in development since shortly after 
the identification of these pathogens as 

a cause of severe cholera-like diarrheal 
illness >4 decades ago [5]. Canonical vac-
cine approaches to date have targeted a 
collection of antigenically distinct, plas-
mid-encoded antigens known as coloni-
zation factors [6], which are thought to 
be critical for bacterial adhesion to small 
intestinal surfaces where ETEC deliver 
heat-stable and heat-labile toxin pay-
loads [7]. Many colonization factors are 
fimbrial structures composed of a major 
structural protein subunit that makes up 
the shaft and minor subunits, which pres-
ent the actual adhesin molecule at the tip.

The seminal studies reported by 
Savarino et al in this issue of the Journal 
of Infectious Diseases represent the cul-
mination of years of outstanding fun-
damental efforts to define the biology of 
CFA/I, the first fimbrial ETEC coloni-
zation factor to be identified. CFA/I was 
initially found to be encoded on a large 
virulence plasmid of ETEC H10407, a 
strain isolated in 1971 from a case of 
severe cholera-like diarrheal illness in 
Bangladesh [8], and early controlled 
human infection model (CHIM) stud-
ies showed that H10407-P, a strain of 
H10407 cured of the plasmid encoding 
CFA/I, was avirulent [9]. Investigators 
subsequently demonstrated protection 
against H01407 challenge following pas-
sive immunization with hyperimmune 
bovine milk immunoglobulin (bIgG) 
directed at whole CFA/I fimbriae [10], 
engendering enthusiasm for colonization 
factor–based approaches to ETEC vac-
cines. Important developments preceding 
the current vaccine studies included the 

definition of the molecular biogenesis, 
structure, and function of CFA/I [11–14]. 
A critical step was the elucidation of the 
CFA/I tip structure and the recognition 
that the major fimbrial subunit, CfaB, 
nonconvalently donates an N-terminal 
extension to the CfaE tip adhesin moiety 
during CFA/I biogenesis. Inclusion of this 
extension at the C-terminus of recombi-
nant “donor-strand complemented” CfaE 
(dscCfaE), permitted the production of 
soluble, properly folded, functionally 
active adhesin molecules [15]. This sta-
ble recombinant version of the CfaE tip 
adhesin of CFA/I was used in the studies 
by Savarino et  al to generate bIgG and 
passively immunize human volunteers.

The robust protective efficacy (approx-
imately 84%) against moderate-to-severe 
diarrhea in CfaE-vaccinated participants 
challenged with 109 colony-forming units 
of H10407 is particularly impressive in 
light of prior studies that showed that 
107 colony-forming units are sufficient to 
cause significant diarrhea in the major-
ity of naive subjects [16] in the ETEC 
controlled human infection model. 
The strong passive protection achieved 
with the anti-CfaE adhesin bIgG pro-
vides important clinical confirmation 
of the importance of CfaE and critical 
validation of the tip adhesin approach. 
Likewise, those in the positive control 
group, who were passively vaccinated 
with bIgG against whole CFA/I fimbriae, 
were equally protected. Although it is not 
possible from the study design to discern 
whether antibodies directed against the 
tip adhesin, the major fimbrial structural 
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subunit (CfaB), or both were responsible 
for protection, this arm of the study reaf-
firms the importance of colonization fac-
tors as protective antigens [10].

Because the incidence of ETEC infec-
tions declines with age among young 
children in developing countries, it is 
presumed that they are being naturally 
immunized with repeated infections and 
that anti-colonization factor immunity 
contributes to this apparent protection 
[17]. Nevertheless, it has been difficult 
to definitively establish mechanistic cor-
relates of protection in field studies [18, 
19]. The data reported here by Savarino 
et al highlight the distinct advantage of 
conducting well-designed CHIM studies 
in immunologically naive volunteers to 
inform ETEC translational vaccinology.

These studies have significant implica-
tions for the rational design of vaccines 
against ETEC and other pathogens that 
adhere via fimbriae (also referred to as 
pili) that assemble through similar chap-
erone-usher-pilus pathways and that ter-
minate in tip adhesins that bind directly 
to mucosal receptors with stereochemi-
cal specificity. Importantly, although the 
clinical studies reported here provide an 
important precedent for ETEC struc-
tural vaccinology, they also validate the 
concept of targeting tip adhesins in vac-
cines for therapeutic strategies to combat 
infections by ETEC and other pathogens, 
including uropathogenic E. coli [20, 21].

It is important to relate these studies 
to the current landscape for ETEC vac-
cine development and what is currently 
known regarding the target antigens. 
CFA/I is estimated to be present in <20% 
of ETEC strains worldwide [22] and is 
part of a large antigenically heteroge-
neous family of colonization factors. 
More than 25 distinct colonization fac-
tors have been reported, and novel pili 
are likely to emerge as DNA sequencing 
uncovers similar chaperone-usher-pilus 
operons in the roughly one half of all 
ETEC strains that currently lack recog-
nizable pathovar-specific pili [23]. The tip 
adhesin molecules may be more highly 
conserved than the corresponding major 

pilin subunits, and there is intriguing 
in vitro evidence that antibodies raised 
against dscCfaE can neutralize the activ-
ity of similar tip adhesins from other 
colonization factors [15]. The degree to 
which 1 colonization factor tip adhesin 
will afford heterologous cross-protection 
against ETEC expressing a panoply of 
pilus antigens, however, is not presently 
clear, and not all colonization factors 
involve pili.

There are several practical challenges 
facing ETEC vaccine development. 
Future ETEC vaccine approaches will 
need to establish the appropriate anti-
genic valency that will be required for 
broad coverage based on a global assess-
ment of antigen conservation, something 
that to date has confounded canonical 
approaches to vaccine development [22]. 
It seems likely that a combination of anti-
gens will ultimately be needed to achieve 
broad protection against these organisms 
of remarkable genetic plasticity [24–26]. 
Incorporation of emerging recombinant 
toxoids [27], including mutant forms of 
heat-labile toxin, which can also serve as 
a potent mucosal adjuvant [28], and more 
recently discovered antigens [29] from 
the ETEC pathovar could potentially 
complement the tip adhesin approach. It 
is possible that a subunit vaccine could 
combine multiple classes of antigens, 
modeling the present acellular pertussis 
vaccines [30, 31]. Moreover, from a prac-
tical perspective, future ETEC vaccines 
may need to be delivered with antigens 
from Shigella [32] and perhaps other 
E. coli diarrheal pathovars to yield a com-
bined multivalent vaccine that would 
achieve protection against the most 
common bacterial pathogens that afflict 
young children in developing countries 
[1]. Finally, a vaccination strategy that 
provides sustained mucosal protection 
will be needed for developing countries 
where oral vaccine performance in target 
populations is frequently suboptimal.

These challenges are not insurmount-
able. Recent microbial pathogene-
sis studies, the availability of multiple 
whole-genome sequences from a diverse 

global collection of ETEC isolates [29, 
33], and emerging immunoproteomic 
platforms can further inform and comple-
ment colonization factor–centered vac-
cine development. The studies reported 
by Savarino et al offer an unprecedented 
clinical proof of principle for vaccina-
tion approaches that target tip adhesins, 
providing an essential solid foundation 
on which to build rationally engineered, 
broadly protective vaccines for ETEC 
and other pathogens that rely on similar 
structures to effectively engage the host.
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