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Human immunodeficiency virus type 1 (HIV-1) drug resistance genotyping is recommended to help in the selection of antiretro-
viral therapy and to prevent virologic failure. There are several ultrasensitive assays able to detect HIV-1 drug-resistance minority 
variants (DRMVs) not detectable by standard population sequencing–based HIV genotyping assays. Presence of these DRMVs has 
been shown to be clinically relevant, but its impact does not appear to be uniform across drug classes. In this review, we summarize 
key evidence for the clinical impact of DRMVs across drug classes for both antiretroviral treatment–naive and antiretroviral treat-
ment–experienced patients, and highlight areas where more supporting evidence is needed.
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Human immunodeficiency virus type 1 (HIV-1) drug resis-
tance genotyping is recommended to help in the selection of 
antiretroviral therapy (ART) and to prevent virologic failure 
(VF). Genotypic tests for HIV drug resistance that are based 
on standard population sequencing fail to detect drug-resistant 
minority variants (DRMVs) present in less than 15%–25% of 
the total viral population [1, 2]. More sensitive techniques have 
been developed, such as allele-specific polymerase chain reac-
tion (ASPCR) [3], oligonucleotide ligation assay [4], SNaPshot 
assay [5], and ultra-deep sequencing (UDS) [6, 7], to detect 
and quantify DRMVs. The lower limit of detection of minority 
variants differs widely between assays, with an upper range of 
2%–5% for the HIV-SNaPshot assay [5] and certain UDS assays 
[8], and a lower range of <0.01% has been reported for ASPCR 
[9].

DRMVs have been shown to be clinically relevant, but their 
impact does not appear to be uniform across drug classes. The 
clinical relevance of DRMVs is related to the genetic barrier to 
resistance to specific drugs and can be classified based on 3 lev-
els of evidence. The best evidence that DRMVs may adversely 
affect response to ART lies in the assessment of resistance muta-
tions active against the nonnucleoside reverse transcriptase 
inhibitors (NNRTIs) and CCR5 antagonists. These drugs have 
a low genetic barrier to resistance and a single mutation can 
dramatically impact drug susceptibility. A moderate amount 
of evidence has accumulated that DRMVs against nucleoside 

reverse transcriptase inhibitors (NRTIs) and the integrase 
strand transfer inhibitor (INSTI) raltegravir may affect their 
clinical efficacy. Finally, in the case of the protease inhibitors 
(PIs), elvitegravir and dolutegravir, there is little evidence so far 
that DRMVs increase the risk of VF, although few studies have 
been performed and more research is needed. In this review, we 
review key evidence for both ART-naive and ART-experienced 
patients and highlight areas where more supporting evidence 
is needed.

NNRTIs AND NRTIs

There have been several studies evaluating the effects of baseline 
low-frequency NNRTI and NRTI resistance mutations on the 
rates of treatment failure for ART-naive individuals. A pooled 
analysis was performed of 10 studies involving 985 ART-naive 
participants and included only individuals with no detectable 
pre-ART NNRTI and NRTI resistance by standard genotyping 
[10]. The pooled analysis showed that 14% of participants har-
bored either NNRTI or NRTI DRMVs by ultrasensitive assays 
and the presence of DRMVs at baseline was associated with more 
than twice the risk of VF. The increased risk of VF was most evi-
dent early after therapy initiation (Figure 1) and was mediated 
primarily by NNRTI-resistant minority variants (hazard ratio 
[HR], 2.6). The effect of the minority variants was detectable 
even after controlling for medication adherence [11]. In addi-
tion, the risk of VF was detected in a dose-dependent manner 
and even at some of the lowest DRMV frequencies (<0.5% and 
10–99 mutant copies/mL) [10]. These results are supported 
by several subsequent studies. In a Europe-wide case-control 
study of 260 participants initiating an NNRTI-based regimen, 
DRMVs were detected by UDS in 21% of subjects and the 
presence of DRMVs was associated with an increased risk of 
VF (odds ratio [OR], 2.75) [12]. The strength of the minority 
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variant (MV) effect was similar between DRMVs to NNRTIs 
(OR, 2.41) or NRTIs (OR, 2.27), but the effect of the NRTI-
resistant MVs did not reach statistical significance, possibly due 
to the smaller numbers of NRTI MVs detected. In addition, a 
direct dose-effect relationship between the mutational load of 
NNRTI DRMVs and risk of VF was found.

There is also strong evidence that NNRTI-resistant MVs are 
commonly found in those failing an NNRTI-based ART reg-
imen and that these mutations increase in the risk of VF. In 
the AIDS Clinical Trials Group (ACTG) study 398, NNRTI-
resistant MVs were more commonly detected in treatment-ex-
perienced individuals and were associated with an increased 
risk of virologic failure [13]. In addition, a number of other 
studies have demonstrated the detection of NNRTI and NRTI 
DRMVs in treatment-experienced individuals that may affect 
downstream treatment efficacy [14–19].

NNRTIs IN AFRICAN STUDIES

Several studies have now demonstrated the selection of 
DRMVs in African patients treated with single-dose nevi-
rapine (sdNVP) [20–22]. One of the largest studies was the 
Optimal Combination Therapy After Nevirapine Exposure 
(OCTANE) Trial 1 of 232 women treated with sdNVP with 
DRMVs evaluated by ASPCR. Exposure to sdNVP was associ-
ated with an increased detection of NNRTI DRMVs and these 
MVs were associated with a significantly increased risk of VF 
(HR, 2.71) after restarting an NNRTI-based regimen [23]. 
The risk of VF appeared to be mitigated by a longer interval 
between sdNVP exposure and start of combination ART [24]. 
This finding is likely due to the continued decay of the pro-
portion of drug-resistant variants after sdNVP in light of the 
fact that DRMV frequency was associated with the extent of 
risk for the primary endpoint (VF or death) [23]. Interestingly, 

in the parallel OCTANE Trial 2 of African women without 
prior sdNVP exposure, no significant association was detected 
between NNRTI DRMV detection and risk of treatment fail-
ure [25]. A subsequent study by the ANRS team also showed 
that while an ultrasensitive assay could detect more DRMVs 
in treatment-naive African patients, these mutations were 
not associated with an increased risk of VF [26]. The differ-
ential effects of DRMVs seen in these African patients could 
be related to differences in their NRTI backbone, HIV subtype 
differences, or extent of multiple linked mutations. However, 
these hypotheses deserve further exploration.

CCR5 ANTAGONIST

HIV-1 requires the use of either CCR5 or CXCR4 as a co-re-
ceptor to enter target cells. Maraviroc, a CCR5 antagonist 
that blocks HIV-1 entry, was approved for clinical use against 
R5-tropic virus. Several phenotypic and genotypic assays have 
been developed to assess HIV-1 co-receptor tropism [27]. 
Historically, a phenotypic HIV tropism assay has been used in 
the United States, but minority populations of CXCR4-using 
(R4-tropic) virus can be a cause of VF [28–31]. In a retrospec-
tive reanalysis of treatment-naive patients, UDS showed the 
same ability as an improved version of the phenotypic assay in 
predicting the response to Maraviroc [32]. A genotypic tropism 
assay with UDS is now available in the United States (HIV-1 
Coreceptor Tropism with Reflex to Ultradeep Sequencing, 
Quest Diagnostics). This test includes initial population 
sequencing followed by UDS analysis of those samples that 
showed only R5-tropic virus by population sequencing. In a ret-
rospective analysis of 327 treatment-experienced patients who 
received maraviroc in the Maraviroc versus Optimized Therapy 
in Viremic Antiretroviral Treatment-Experienced Patients and 
A4001029 trials, this test had greater sensitivity than population 
sequencing alone to detect minority non-R5 and was equivalent 
to the phenotypic test for predicting maraviroc responders from 
nonresponders [33].

INTEGRASE INHIBITORS

Integrase strand transfer inhibitors (INSTIs) have become a key 
component of ART, but the clinical impact of INSTI DRMVs 
remains understudied. The concern surrounding raltegravir 
(RAL) DRMVs is two-fold. First, there have been several case 
reports of RAL DRMVs that led to subsequent treatment failure 
[34, 35]. In addition, RAL DRMVs can be found in a large subset 
of treatment-naive patients [36] and may be found at a higher 
rate in treatment-naive individuals [37]. However, those find-
ings have not been replicated in other studies and RAL DRMVs 
have not yet been found to definitively impact VF rates in larger 
studies of treatment-naive [6, 38, 39] or treatment-experienced 
individuals [40]. The clinical impact of DRMVs on elvitegravir 
(EVG) and dolutegravir (DTG) has not been carefully studied. 
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Figure 1. Kaplan-Meier curves for the proportion of patients without virologic 
failure on first-line nonnucleoside reverse transcriptase inhibitor (NNRTI)–based 
combination antiretroviral therapy regimen by the presence of HIV-1 nucleoside 
reverse transcriptase inhibitor and NNRTI-resistant minority variants. Adapted 
from [10].
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However, there is evidence that ultrasensitive assays can detect 
EVG and DTG DRMVs that would affect the predicted suscep-
tibility profiles for these drugs, especially in INSTI-experienced 
patients [41, 42].

PROTEASE INHIBITORS

The use of more sensitive genotyping methods has significantly 
increased the number of PI DRMVs detected in treatment-na-
ive patients, but these DRMVs have not been shown to affect 
the efficacy of first-line PI therapy [43, 44]. For example, a ret-
rospective analysis of 123 baseline clinical samples from the 
ADVANZ and ADVANZ-3 studies found that NNRTI DRMVs 
increased the risk of VF for an EFV-based regimen, but PI 
DRMVs had no significant effect on VF for a PI-based regimen 
[14]. For treatment-experienced patients, PI DRMVs have been 
detected in a high proportion of individuals, but these muta-
tions have also not been clearly linked to increased risk of VF 
[43, 45]. Several factors can contribute to this lack of associ-
ation. PIs have a high genetic barrier to resistance and thus, 
multiple mutations are required to confer significant resistance 
[46, 47]. In addition, the prevalence of transmitted PI-resistance 
mutations is low and viruses with multiple PI-resistance muta-
tions are rarely transmitted [48, 49]. Of note, in an analysis of 
the CASTLE study, the presence of NRTI DRMVs was associ-
ated with virologic failure of the lopinavir-based ART regimen 
[44], although this effect was not found in other studies [50].

CONCLUSIONS

The detection of DRMVs of HIV-1 has been shown to be clin-
ically significant mainly in 3 settings: detection of NNRTI-
resistant minority variant prior to the initiation of a first-line 
NNRTI-based regimen outside of Africa, detection of NNRTI-
resistant minority variants after exposure to sdNVP, and 
detection of CXCR4-using variants prior to initiation of mar-
aviroc-containing regimens. However, there are a number of 
scenarios where the clinical impact of DRMVs remains contro-
versial and additional studies are needed. These include first-
line NNRTI-based regimens in an African setting, as well as 
DRMVs against NRTIs, PIs, and INSTIs.

During the past decade, UDS technologies have continued 
to evolve and their sequencing costs have been greatly reduced, 
making it an increasingly cost-efficient technique, especially 
in regions where demand for HIV genotyping is high [8, 51]. 
Adoption of these platforms may improve access to HIV geno-
typing worldwide, and additional studies on the clinical impact 
of DRMVs are needed to guide the interpretation of these 
minority variants in the clinical setting.
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