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The emergence and spread of human immunodeficiency virus (HIV) drug resistance from antiretroviral roll-out programs remain 
a threat to long-term control of the HIV-AIDS epidemic in low- and middle-income countries (LMICs). The patterns of drug resis-
tance and factors driving emergence of resistance are complex and multifactorial. The key drivers of drug resistance in LMICs are 
reviewed here, and recommendations are made to limit their influence on antiretroviral therapy efficacy.
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The last 20 years has seen a rapid expansion of antiretroviral (ARV) 
access, with approximately 18 million people receiving antiretro-
viral therapy (ART) as of 2016 [1]. In low- and middle-income 
countries (LMICs), first-line treatment regimens generally include 
1 nonnucleoside reverse transcriptase inhibitor (NNRTI) and 2 
nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), 
with second-line regimens substituting a boosted protease inhib-
itor (PI) for the NNRTI and alternate NRTIs [2]. Factors related 
to specific ART regimens, prior drug exposure, the timing of 
ART initiation, and viral subtypes in LMICs are important for the 
development of resistance to commonly used drugs. This article 
reviews these factors with special emphasis on viral subtypes.

PRETREATMENT HUMAN IMMUNODEFICIENCY 
VIRUS DRUG RESISTANCE

In LMICs, pretreatment drug resistance is rising and ranges 
1%–12.3% in different regions [3]. A meta-analysis of sequences 
from 50 870 individuals initiating therapy found that pretreat-
ment, especially NNRTI, resistance is increasing in sub-Saharan 
Africa [4]. There were 4 NNRTI mutations—K101E, K103N, 
Y181C, and G190A—that accounted for >80% of the pretreat-
ment resistance across all HIV subtypes. In addition, 16 NRTI 
mutations accounted for >69% of the pretreatment resistance, 
but pretreatment resistance linked to PIs was low [3]. Similarly, 
in the Pan African Studies to Evaluate Resistance cohort, 
5% of individuals starting standard first-line treatment had 

pretreatment resistance [5]. Importantly, individuals with pre-
treatment resistance to the regimen prescribed were more likely 
to fail therapy compared with those with no resistance (odds 
ratio [OR], 2.13; 95% CI, 1.44–3.14; P < .0001). Single-dose nevi-
rapine (sdNVP) for prevention of mother-to-child transmission 
of HIV may result in pretreatment drug resistance. The Optimal 
Combination Therapy after Nevirapine Exposure study examined 
outcomes following first-line treatment in women with or with-
out sdNVP exposure before starting a nevirapine (NVP)–based 
first-line regimen [6, 7]. The frequency of NNRTI resistance 
prior to treatment initiation was 45% in the sdNVP-exposed 
group and 18% in the group that had no prior sdNVP exposure, 
and ART failure was more likely in the women with NNRTI 
resistance and prior sdNVP exposure. Similarly, prior exposure 
to RTV or indinavir increases PI cross-resistance and probability 
of failure and drug resistance from lopinavir/ritonavir (LPV/r) 
in both children and adults [8], and prior exposure to integrase 
strand transfer inhibitor exposure increases the chance of failure 
and drug resistance to dolutegravir [9]. Pretreatment resistance 
can fade over time and form minority variants, which can have 
an impact on outcome (covered in separate articles in this sup-
plement). These findings highlight the need for cost-effective 
strategies to assess drug resistance prior to treatment initiation 
[10] or to change the initial treatment strategy [11].

TIMING OF TREATMENT INITIATION AND 
TREATMENT MONITORING

Individuals who initiate treatment with CD4 cell counts >500 
cells/mm3 have better first-line outcomes compared with those 
with CD4 cell counts <350 cells/mm3 [12]. Several lines of evi-
dence support the notion that delayed therapy is associated 
with higher viral diversity and increased viral failure [13, 14]. 
Cohen et al [14, 15] found that there was an increased chance 
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of experiencing viral failure on rilpivirine (RPV) and efavirenz 
(EFV) when starting treatment with a viral load >100 000 RNA 
copies/mL. A combined analysis of the TMC278 against HIV, in 
a once-daily regimen versusefavirenz and efficacy comparison in 
treatment-naive, HIV-infected subjects of TMC278 and efavirenz 
studies found that there was a 4.4% difference in response rate 
in individuals with a starting viral load of 100 000 RNA copies/
mL versus 500 000 RNA copies/mL and an 8% increase when the 
starting viral load was >500 000 RNA copies/mL [16]. The World 
Health Organization (WHO) has recommended treatment for all 
HIV-infected individuals, but uptake of this recommendation is 
incomplete, resulting in delayed initiation of ART [17].

A major driver of the development of HIV drug resistance is 
the way treatment is monitored. Plasma HIV RNA (viral load) 
monitoring scale-up is incomplete (reviewed in this issue), and 
clinical and immunological indicators are often used to deter-
mine treatment success. Multiple studies show that the longer 
an individual is left on a failing regimen the more complex the 
resistance profile [18], with 1 study showing accumulation of 
drug-resistance mutations at a rate of 1.45 per year after first 
virologic failure, resulting in declining drug susceptibility after 
continued failure [19]. Table 1 shows the progression of resis-
tance as viral load monitoring thresholds are made less strin-
gent or not used at all and the time to switching increases.

ANTIRETROVIRAL THERAPY ADHERENCE

Adherence to ART is a key contributor to treatment success, and 
the “partially” adherent individual is the most vulnerable to devel-
oping resistance [20]. Inadequate medication exposure leads to 
selection pressure, which increases the chance of developing resis-
tance. Intermittent adherence of ARVs with different half-lives 

results in periods of monotherapy and consequent development 
of resistance. Suboptimal dosing in growing children and poor 
tolerance of specific ARVs are important factors in inadequate 
exposure [21, 22]. There is no consensus on the optimal way to 
measure adherence and ARV exposure. Self-reported and clin-
ic-based pill counts are poor indicators of adherence compared 
with electronic drug monitoring, therapeutic drug monitoring, 
and pharmacy-based calculations [23]. Measures to improve 
adherence have focused on both patient and ARV factors. Sex and 
age have been closely linked to treatment success, with females 
and those of increased age having better adherence and less 
resistance. Studies of specific adherence support measures have 
yielded conflicting results, and studies are ongoing to test a variety 
of electronic interventions [24, 25]. In studies of second-line ART 
regimens, participants entering with a high level of resistance to 
first-line treatment had better outcome compared with those with 
no resistance, possibly indicating that better adherence to first-
line treatment was a marker of second-line treatment adherence 
and success [26–28]. Fixed-dose, single tablet regimens have been 
shown to improve adherence over multipill regimens and also 
reduce the development of resistance [29], and long-acting formu-
lations may provide an added advantage in the future. Developing 
tools that monitor and aid adherence is an active area of research, 
clearly needed to control HIV drug resistance levels in LMICs.

ANTIRETROVIRAL THERAPY REGIMEN

Certain medication combinations rather than their individ-
ual components may also increase the risk of failure and drug 
resistance. Tang et al [30] provided interesting evidence that the 
risk sum of a regimen is more than its parts. Specifically, K65R 
emerged frequently with tenofovir (TDF)/lamivudine (3TC)/

Table  1.  Comparison of Large Resistance Datasets Showing Higher Resistance Mutation Frequency and Complex Resistance Mutations Profiles as 
Individuals Are Left on a Failing Regimen for Longer Time

Site
Malawi  

Lilongwe  [60]
South Africa  

Cape Town  [61]
South Africa  

Johannesburg  [31]
South Africa  
Durban  [62]

South Africa  
CIPRA-SA [63]

Sample size 96 110 226 115 67

Clinical sites 1 1 2 2 2

Switch criteria Clinical or 
immunological

HIV RNA >5000  
copies/mL

HIV RNA >5000 or  
1000 copies/mL

HIV RNA >1000  
copies/mL

HIV RNA >1000  
copies/mL

Frequency of monitoring Not applicable 6 monthly HIV RNA and 
CD4+ T cell

6 monthly HIV RNA and 
CD4+ T cell

6 monthly HIV RNA 
and CD4+ T cell

3 monthly HIV RNA 
and CD4+ T cell

% with failure and 
resistance

95% 85% 83% 83.5% 82%

M184V/I 81% 78% 72% 64.3% 67.2%

NNRTI 93% 86% 78% Unknown 75%

K103N 28% 55% 38% 51% 50%

V106M 7% 31% 17% 19% 14%

>3 TAMS 44% 23% 11% 32.2% 1.5%

K65R 19% 9% 4.5% 2.6% 3%

Q151M 19% Not reported 2.5% 0.9% 0%

NRTI+NNRTI 91% 83% 73% 64.3% 63%

Abbreviations: 3TC, lamivudine; AZT, zidovudine; d4T, stavudine; EFV, efavirenz; FTC, emtricitabine; NNRTI, nonnucleoside reverse transcriptase inhibitor; NVP, nevirapine; TAMs, thymidine 
analog mutations; TDF, tenofovir.
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NVP, less frequently with TDF/emtricitabine (FTC)/NVP or 
TDF/3TC/EFV, and rarely with TDF/FTC/EFV. Thus, all first-
line regimens, despite consisting of ARVs from the same drug 
classes, are not equal, and important drug–drug and muta-
tional interactions that drive success or failure need to be bet-
ter understood. Monitoring the virologic outcomes following 
roll-out of related but different regimens should be performed 
at the population level to identify subtler differences in regimen 
efficacy that may be missed in smaller clinical trials.

HUMAN IMMUNODEFICIENCY VIRUS SUBTYPE

During first-line ART, the mutational signature that develops is 
linked both to the type of ART prescribed and the HIV subtype 
(Figure 1). Each of these influences is described herein.

Stavudine and Tenofovir 

In HIV subtype C, an increase in frequency of K65R after 
stavudine (d4T) exposure [31] or TDF exposure [32] has been 
observed. Unlike subtype B, for which there was no K65R 
observed when individuals were exposed to d4T, in subtype 
C, 4.5% of individuals experiencing viral failure after first-line 
treatment in South Africa had the K65R mutation [31]. When 
d4T was replaced by TDF, very high levels of K65R (69%) were 
observed in this subtype. More frequent development of the 
K65R mutation may be a result of subtype C nucleotide sequence 
difference, and/or a delay in treatment switch, and/or combina-
tion of d4T and TDF treatment [33]. Analysis of sequences from 
the SELECT study, made up of predominantly subtypes C, D, and 
A1, found that K65R occurred in 22% (n = 107) of participants, 

and when divided by NRTI was 2% (n = 5) in those treated with 
zidovudine (AZT)/d4T; 70% (n = 63) in those treated with TDF; 
and 38% (n = 39) in those treated with both TDF and AZT/d4T 
[34]. Association of mutation by subtype in the SELECT study 
was confounded by small non-subtype C numbers; however, 
other studies have found K65R to occur significantly more in 
subtype C than in other subtypes [35, 36].

Nevirapine versus Efavirenz 

The mutational signatures of NVP and EFV differ even though 
there is a considerable amount of cross-resistance between the 
2 ARVs. Efavirenz selects a wider range of mutations compared 
with NVP, and the mutations selected by both NNRTIs are influ-
enced by subtype [31, 37]. For example, the Y181C mutation 
is more commonly selected by NVP compared with EFV, and 
the subtype C–specific V106M mutation [38, 39] is more often 
selected by EFV (34%) than NVP (2%) [31]. K103N occurs at a 
greater frequency and in higher levels in women with subtypes C 
and D rather than subtype A [40]. Sluis-Cremer et al [41] reported 
that E138A naturally occurs in subtype C compared with subtype 
B and that E138K or E138Q are more common in treatment-expe-
rienced subtype C sequences (1.0% and 1.1%, respectively) than in 
subtype B sequences (0.3% and 0.6%, respectively). Phenotyping 
showed that E138A/K/Q in subtype C decreased RPV susceptibil-
ity 2.9-, 5.8-, and 5.4-fold, respectively. These observations suggest 
that E138A could impact treatment or prevention strategies that 
contain NNRTIs in geographic areas where subtype C infection 
is prevalent; further investigation is required. The different muta-
tion profiles caused by either NVP or EFV usage and subtype may 
impact the success of second-generation NNRTIs (eg, etravirine) 
in future third-line or salvage regimens.

Phenotypic Analysis

Two studies have examined the impact of HIV-1 subtype C on 
phenotypic resistance and genotype interpretation algorithms that 
were developed based on subtype B datasets [42–44]. These results 
showed that although the phenotypic scores were concordant 
between subtype B and C for NVP, EFV, and 3TC, there were dif-
ferences in TDF, RPV, and ETR, and resistance was misclassified 
in 17%, 30%, and 30%, respectively, of isolates that showed phe-
notypic susceptibility despite resistance predicted by algorithms. 
This discrepancy may result from the presence of compensatory 
and/or epistatic mutations in reverse transcriptase that maintain 
or increase susceptibility to ETR, RPV, and TDF.

Second-line antiretroviral therapy regimen

WHO guidelines recommend either LPV/r or atazanavir/ritona-
vir (ATV/r) with 2 NRTIs as second-line therapy. Resistance 
testing after first-line failure has been found to be cost effec-
tive [45, 46], supporting concerns about unnecessary switches 
to more expensive regimens. Cost effectiveness was achieved at 
a test cost of <$100 and was dependent on the prevalence of 
wild-type virus and timely response to test results. Three large 

M184V 3TC/FTC

EFV/NVP
Pattern
di�ers

Antagonistic
e�ect of

K65R and
TAMs

TDF/d4TK65R

AZT/d4TTAMs (≥3)

Time on a failing regimen

Subtype C:
1 every 8 mo

Subtype C:
1 every 3 mo

NNRTI
mutations

Overview of first-line failure
mutations

K103N
Y181C
H221Y

V106MA/I
G190A
K101F
E138A
A98G

Figure 1.  Overview of mutations linked to first-line failure. Generally, the first 
mutation to develop is the M184V mutation linked to 3TC/FTC exposure, followed 
concurrently by nonnucleoside reverse transcriptase inhibitor mutations at a rate of 
an additional 1 mutation for every 3 months on a failing regimen and nucleoside/
nucleotide reverse transcriptase inhibitor (NRTI) mutations. The NRTI mutation pat-
terns depends on the NRTI used. Mutations circled in red have been associated 
with subtype C. Abbreviations: 3TC, lamivudine; AZT, zidovudine; d4T, stavudine; 
EFV, efavirenz; FTC, emtricitabine; NNRTI, nonnucleoside reverse transcriptase 
inhibitor; NVP, nevirapine; TAMs, thymidine analog mutations; TDF, tenofovir.



S854  •  JID  2017:216  (Suppl 9)  •  Wallis et al

treatment studies (SELECT, SECOND-LINE, and EARNEST 
[26, 27, 47]) in both high-income countries and LMICs found 
that using 1 or 2 new ARV classes (2 NRTI + PI vs PI + inte-
grase inhibitor) had equivalent outcomes. More important, 
NRTI mutations at start of treatment initiation were strongly 
associated with better outcome versus not having NRTI muta-
tions [26, 27, 47]. Tailoring NRTI selection against baseline 
resistance data did not improve outcome [28]. Possible expla-
nations include better adherence in individuals failing first-line 
treatment with resistance. Alternatively, the current phenotyp-
ing and genotyping algorithms may not appropriately account 
for residual activity of NRTIs despite resistance mutations or 
for combination therapy and therefore overestimate resistance 
to NRTIs when used in combination with protease inhibitors.

The EARNEST study also demonstrated inferior virologic 
suppression rates for LPV/r monotherapy after 12 weeks of 
induction therapy with LPV/r and raltegravir, accompanied 
by high rates of LPV/r resistance [28]. Four small studies of 
dolutegravir (DTG) monotherapy, used for regimen simplifica-
tion after virologic suppression, have demonstrated high rates 
of DTG resistance after virologic failure [48]. These studies, as 
well as others yielding similar data after darunavir/ritonavir 
(DRV/r) monotherapy, discourage the use of monotherapy for 
second-line ART and for regimen simplification [49, 50].

Studies show that the level of protease resistance that develops 
is low after LPV/r treatment failure [51, 52]; however, the level 
of drug resistance is increasing (22%) as second-line regimens 
are rolled out on a larger scale [53, 54]. There are minimal data 
on ATV/r resistance in LMICs, but it is known that mutations 
develop more easily during ATV exposure compared with LPV 
[55]. Depending on subtype (subtype B, C, or CRF02_AG) and 
PI (nelfinavir, LPV, ATV), the effect of a polymorphism at codon 
36 of protease has been found to have a differential effect on 
both drug susceptibility and the viral replication capacity [56]. 
There are multiple other protease polymorphisms across different 
subtypes that may increase the likelihood of additional protease 
mutations and thus result in higher levels of resistance [56]. In an 
LPV/r monotherapy study, it was found that subtype AG and G 
were linked to lower PI susceptibility and subsequent response to 
treatment [57]. Overall, resistance to PIs is complex, and ongoing 
work is elucidating mutations in both the gag [58] and env gene 
[59] that may be associated with treatment failure and subtype.

CONCLUSIONS

The development of resistance is a major hindrance to success-
ful treatment programs in LMICs. Multiple factors can affect 
the emergence of resistance during therapy, including the 
presence of pretreatment resistance; the timing of treatment 
initiation; HIV subtype; ARVs used in first-and second-line 
ART; whether viral load monitoring is performed, along with 
the schedules for monitoring; and medication adherence. 
Several unanswered questions still exist, however. How will 

mutations selected by new ARVs (DTG, capsid inhibitors, and 
others) alter resistance and cross-resistance patterns? Will new 
ARVs select mutations that affect outcomes differently across 
subtypes? Can genotypic results accurately predict virologic 
outcomes in all subtypes, or will different subtype-specific 
mutations require region-specific interpretation and guide-
lines? What are the consequences of mutations that develop 
outside the gene targeted by an ARV; for example, mutations in 
gag and gp41 that may affect resistance to protease inhibitors? 
These unanswered questions highlight the need for ongoing 
research in the field of HIV drug resistance.
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