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Age-related differences in influenza B lineage detection 
were explored in the community-based Canadian Sentinel 
Practitioner Surveillance Network (SPSN) from 2010–2011 to 
2015–2016. Whereas >80% of B(Victoria) cases were <40 years 
old, B(Yamagata) cases showed a bimodal age distribution with 
27% who were <20 years old and 61% who were 30–64 years 
old, but with a notable gap in cases between 20 and 29 years old 
(4%). Overall, the median age was 20 years lower for B(Victoria) 
vs B(Yamagata) cases (20 vs 40 years; P < .01). Additional phy-
lodynamic and immuno-epidemiological research is needed to 
understand age-related variation in influenza B risk by lineage, 
with potential implications for prevention and control across 
the lifespan.
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Influenza B viruses exist as 2 antigenically distinct lineages, 
represented by B/Victoria/2/1987 [“B(Victoria)”] and B/
Yamagata/16/1988 [“B(Yamagata)”]. B(Yamagata) virus was 
first identified as a new antigenic variant in 1988 and the early 
winter of 1988–1989, associated with sporadic outbreaks in 
Asia [1]. The B(Yamagata) variant was not detected in North 
America during the 1988–1989 season, but became the pre-
dominant type B influenza virus circulating globally for most 
of the 1990s [1–3]. During that period, B(Victoria)–lineage 

viruses were detected almost exclusively in eastern Asia, but 
reemerged in North America in 2001 and have since co-circu-
lated with B(Yamagata) viruses [4].

Trivalent influenza vaccines (TIVs) include 2 influenza A anti-
gens but only a single influenza B antigen—representative since 
the 2001–2002 season of either the B(Victoria) or B(Yamagata) 
lineage—depending on which lineage/strain is predicted to 
contribute most to the annual influenza epidemic. Quadrivalent 
influenza vaccines (QIVs) containing both B(Victoria)– and 
B(Yamagata)–lineage antigens have been available in Canada 
since the 2014–2015 season but have represented <15% of the 
national influenza vaccine allotment up to and including the 
2015–2016 season. Canada’s National Advisory Committee 
on Immunization recommends influenza vaccine for everyone 
≥6 months of age but also that immunization programs focus 
on individuals at high risk for influenza-related complications 
[5]. Accordingly, about one-third of the Canadian population 
overall receives influenza vaccine annually, but rates are highest 
in older adults, particularly elderly people ≥65 years old, and 
those with chronic comorbidities [6].

B(Victoria) and B(Yamagata) lineages are considered genet-
ically and antigenically distinct based on their surface hem-
agglutinin (HA) antigens [1, 4], although some cross-lineage 
interaction, including cross-protection, has been suggested 
[7–9]. Influenza B viruses evolve at a slower rate compared 
to influenza A  [10, 11], but have adopted other evolutionary 
mechanisms to evade the human immune system, including 
nucleotide insertion/deletion mutations and frequent inter- 
and intralineage re-assortment events with the co-circulation of 
multiple lineages and antigenic variants [10–12].

These evolutionary mechanisms combined with variability 
in historic prime-boost (infection or immunization) exposures 
over time have likely created a complex immuno-epidemiolog-
ical patchwork in the population, potentially corresponding 
with variable age-related risk for influenza B illness. Drawing 
on existing virological and epidemiological data sets of the 
community-based Canadian Sentinel Practitioner Surveillance 
Network (SPSN) [13–18], we explored age-related differences 
in influenza B infection by lineage during the 2010–2011 to 
2015–2016 seasons.

METHODS

As detailed in previously published analyses [13–18], respira-
tory specimens were systematically collected from consenting 
outpatients presenting to the Canadian SPSN alongside epide-
miological information, including patient age at time of spec-
imen collection and self-reported vaccine status for current 
and prior season(s). All patients included in the analysis met 
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a standardized case definition for influenza-like illness (ILI): 
fever and cough and at least 1 other symptom (arthralgia, myal-
gia, sore throat, or prostration). Fever was not a requirement for 
elderly patients after the 2010–2011 season. Vaccination status 
was defined as per usual by the receipt of current season’s influ-
enza vaccine ≥2 weeks before ILI onset. Ethics approval was 
obtained from institutional review boards in each participating 
province.

Specimens were tested for influenza B viruses by reverse-tran-
scription polymerase chain reaction (RT-PCR) assay according 
to standard protocols at public health reference laboratories in 
each participating province (British Columbia, Alberta, Ontario, 
and Quebec) [13–18]. During the first season of this analy-
sis (2010–2011), lineage-level characterization was based on 
hemagglutination inhibition (HI) assay performed at Canada’s 
National Microbiology Laboratory (NML) alone. Thereafter, 
influenza B lineage determination was based on a combination 
of HI assay at the NML or hemagglutinin gene sequencing and/
or an influenza B lineage–specific RT-PCR assay conducted at 
provincial public health reference laboratories.

Analyses were restricted to specimens collected from patients 
presenting within 7 days of ILI onset during the typical period 
for seasonal influenza circulation in the northern hemisphere (1 
November to 30 April). Patients with unknown age or indeter-
minate laboratory results were excluded. Median age (in years) 
was derived overall and by influenza B lineage and compared 
across lineages and seasons using the nonparametric Wilcoxon 
rank-sum test. The proportion of patients by age group was 
compared across lineages and seasons using the χ2 test. Analyses 
were performed using SAS version 9.4 (SAS Institute, Cary, 
North Carolina).

RESULTS

Influenza B viruses comprised about one-third of all influenza 
detections across included study seasons (range,  25%−51% 
by season). The influenza B detection (ie, test positivity) rate 
among ILI specimens ranged from 11% in 2010–2011 and 
2012–2013 to 18% in 2015–2016 (Supplementary Table 1).

Influenza B(Victoria)–lineage viruses were dominant in 
2010–2011 (98% of influenza B detections with known lineage) 
and 2015–2016 (78%), whereas B(Yamagata)–lineage viruses 
were dominant in 2013–2014 (98%) and 2014–2015 (97%) 
(Figure 1). Co-circulation of both lineages occurred in 2011–
2012 (51% Victoria vs 49% Yamagata) and 2012–2013 with 
B(Yamagata) slightly more dominant in the latter mixed season 
(32% Victoria vs 68% Yamagata).

Overall, the median age of influenza B cases was 30  years 
(compared to 35 years among test-negative controls; P <  .01). 
However, the median age of influenza B cases varied signifi-
cantly by season and lineage—lowest during B(Victoria)–
dominant seasons in 2010–2011 (17  years) and 2015–2016 
(23 years) but highest during B(Yamagata)–dominant seasons 

in 2013–2014 (43.5 years) and 2014–2015 (43 years) (P < .01) 
(Figure  1). Across seasons combined (2010–2011 to 2015–
2016), the median age of B(Victoria) cases was 20 years lower 
than the median age of B(Yamagata) cases (20 vs 40  years, 
respectively; P < .01).

As shown by the proportionate distribution of cases by sin-
gle year of age, B(Victoria)–lineage infections were skewed 
toward younger individuals with the majority (>80%) of cases 
<40 years old, including half (50%) who were children <20 years 
old (Figure 2). Conversely, B(Yamagata)–lineage infections dis-
played a bimodal age distribution with about one-quarter (27%) 
of cases <20 years old and a substantial proportion (61%) who 
were 30–64 years old, but with a notable gap in the distribution 
of cases between 20 and 29 years of age (4%) (Figure 2). The 
highest B(Victoria) detection rates were in children 5–19 years 
old followed by those 20–29 years old (Supplementary Table 2). 
Children 5–19  years old also had among the highest rates of 
detection of B(Yamagata), but these rates were more compara-
ble to adults 30–64 years old (Supplementary Table 2).

With stratification, a similar 20-year difference in median age 
for B(Victoria) vs B(Yamagata) cases was observed for unvac-
cinated (18  years vs 38  years, respectively; P  <  .01) or vacci-
nated (29 years vs 52 years, respectively; P < .01) participants. 
Patterns evident in the lineage-specific age distributions overall 
were driven by the preponderance of unvaccinated cases, but 
the notable paucity of B(Yamagata) cases among participants 
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Figure  1.  Median age by influenza B lineage (A) and percentage distribution 
of influenza B cases by lineage and season (B), Canadian Sentinel Practitioner 
Surveillance Network, 2010–2011 to 2015–2016. *Sequencing and lineage-specific 
reverse-transcription polymerase chain reaction assay were not conducted on influ-
enza B detections during the 2010–2011 season; lineage-level characterization was 
based only upon hemagglutination inhibition assay among isolates submitted to 
Canada’s National Microbiology Laboratory, accounting for a greater proportion of 
viruses with unknown lineage that season.
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20–29  years old was also evident among vaccinated cases 
(Supplementary Figure 1). The reduced sample size included in 
the distribution of vaccinated cases by age otherwise requires 
cautious interpretation (Supplementary Table 3). Among par-
ticipants vaccinated in the current season (>80% of whom were 
also vaccinated the prior season), a greater proportion of both 
B(Victoria) and B(Yamagata) cases were older adults, notably 
elderly people ≥65 years old. This skew was also evident among 
vaccinated test-negative controls, consistent with vaccination 
program recommendations in Canada that preferentially target 
adults ≥65  years old and those with chronic comorbidities—
resulting in higher influenza vaccine coverage rates in these 
older groups more generally [5, 6].

DISCUSSION

In this community-based study of patients presenting with ILI 
to an outpatient sentinel practitioner, we observed significant 
age-related differences in influenza B infection by lineage during 
the 2010–2011 to 2015–2016 seasons. Patients infected with 
B(Victoria)–lineage viruses were on average 20  years younger 
than those infected with B(Yamagata)–lineage viruses. While 
both lineages affected pediatric patients, with detection rates nota-
bly highest in school-aged children 5–19 years old, B(Yamagata) 
infections showed a bimodal age distribution skewed toward a 
greater number of cases in adults 30–64 years old.

Epidemiological studies of influenza B conducted elsewhere 
have also consistently found a younger age of infection asso-
ciated with B(Victoria)–lineage compared with B(Yamagata)–
lineage viruses, including studies in both the northern and 
southern hemispheres [10, 19–23]. Findings of higher detection 
rates associated with B(Victoria) in pediatric age groups, as 
reported in the current study, suggests that QIV products con-
taining an additional B(Victoria) antigen might be preferentially 
targeted toward children during seasons where TIV would oth-
erwise contain only the B(Yamagata) antigen. Conversely, both 
children and adults might benefit from TIV products contain-
ing B(Victoria) antigen or QIV with an additional B(Yamagata) 
antigen. Ultimately, however, given cross-lineage immunologi-
cal interactions, including evidence of substantial cross-protec-
tion [7–9], the incremental value of QIV vs TIV may be limited 
and will depend upon other factors not assessed here.

Since the emergence of B(Yamagata) viruses in the mid-
1980s, the varying contributions of both lineages (predomi-
nately Yamagata during the 1990s, followed by co-circulation 
of both lineages after 2001–2002 in North America) have likely 
created complex immuno-epidemiological landscapes across 
birth cohorts. In our data, the paucity of B(Yamagata) infec-
tions in young adults 20–29  years old—and correspondingly 
higher B(Victoria) detection rates—is consistent with the birth 
cohort that was likely primed during the 1990s with a related 
B(Yamagata)–like virus, which may have afforded some degree 
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Figure 2.  Percentage distribution of influenza B(Victoria) cases (A) and influenza B(Yamagata) cases (B) and test-negative controls by single-year age group, Canadian 
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of preexisting cross-protection to contemporary B(Yamagata) 
strains [1–3]. The lower median age and smaller number of 
infections associated with B(Victoria)–lineage viruses in adults 
30–64 years old may also be explained by birth (immunolog-
ical) cohort effects reflecting protection conferred by more 
distant childhood exposure to a common B(Victoria)–like 
ancestral virus. Social mixing patterns alone are unlikely to 
explain differential age-related risk for B(Victoria) given the 
pattern of B(Yamagata) detection prominently involving the 
adult (30–64 years old) age group.

Similar immuno-epidemiological rationale has been hypoth-
esized to explain the lower risk of infection among older adults 
during the 2009 influenza A(H1N1)pdm09 pandemic owing 
to childhood exposures to related ancestral A(H1N1) viruses 
decades earlier [24]. According to the underlying theory, indi-
viduals will preferentially recall cross-reactive, memory anti-
bodies toward epitopes shared with ancestral viruses to which 
they were originally exposed in childhood, including potentially 
positive or negative effects on protection against contempo-
rary viruses. Whether original childhood priming to a com-
mon B(Victoria)–like ancestral virus may explain lower risk 
of B(Victoria) illness in adults 30–64 years old—or conversely 
contribute to the bimodal wave of heightened B(Yamagata) risk 
in that age band—remains speculative but warrants further 
evaluation.

Sequence data for historical influenza B viruses are limited 
to inform priming epochs and potential birth (immunologi-
cal) cohort effects over space or time. Between approximately 
1973 and 1979, ancestral influenza B viruses began to diverge 
into 2 antigenically distinct lineages [1, 3]. However, ances-
tral influenza B viruses share properties of both contempo-
rary B(Victoria)–like and B(Yamagata)–like lineages, whose 
relative influence is difficult to disentangle [1–3, 11]. Both 
B(Victoria) and B(Yamagata) lineages also undergo frequent 
reassortment events, including within and across lineages, 
as well as insertion–deletion mutations that further compli-
cate our understanding of the effects of historical influenza B 
exposures on contemporary influenza B risk profiles by age 
[4, 10–12].

An alternative explanation for the observed age-related dif-
ferences by influenza B lineage is that B(Victoria) viruses may 
induce a broader immune response and confer better protec-
tion in older age groups [10]. In their report, Vijaykrishna et al 
demonstrate that B(Victoria) viruses undergo stronger posi-
tive selection and have a higher effective reproductive number 
(Re) than B(Yamagata) viruses [10]. Like influenza A(H3N2) 
subtype viruses, B(Victoria) viruses may experience selective 
“bottlenecks” between seasons, followed by serial replace-
ment with a new dominant antigenic variant [10]. In contrast, 
B(Yamagata) viruses, which have less seasonal fluctuation in 
their relative genetic diversity, tend to have slower and shorter 
transmission chains compared to B(Victoria), with multiple 

genetic clades co-circulating for longer periods of time [10]. 
This phenomenon can be seen in the Canadian sentinel sur-
veillance data for the 2010–2011 to 2015–2016 seasons, with 
a single B(Victoria) strain, represented by B/Brisbane/60/2008 
(clade 1A), dominant in certain seasons, but 2 genetic clades 
of B(Yamagata), represented by B/Massachusetts/2/2012 (clade 
2) and B/Wisconsin/1/2010 (clade 3), co-circulating in varying 
proportions within the same season or across consecutive sea-
sons (Supplementary Table 1).

In conclusion, our systematically collected community-based 
surveillance data show a younger profile for B(Victoria) com-
pared to B(Yamagata) cases, with the latter instead showing 
a bimodal age distribution, with peaks in pediatric and adult 
age groups. Epidemiological differences between cases of 
B(Victoria) and B(Yamagata) likely reflect a combination of 
birth (immunological) cohort effects defined by variability in 
historic influenza B prime-boost epochs, as well as differences 
in influenza B phylodynamics, by lineage. Further research is 
needed to identify the immuno-epidemiological determinants 
of influenza B risk by lineage and age, with potential implica-
tions for prevention and control across the lifespan.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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