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Background.  Rapid diagnostic tests based on Plasmodium falciparum histidine-rich protein II (PfHRP-II) and P.  falciparum 
lactate dehydrogenase (PfLDH) antigens are widely deployed for detection of P.  falciparum infection; however, these tests often 
miss cases of low-level parasitemia, and PfHRP-II tests can give false-negative results when P. falciparum strains do not express this 
antigen.

Methods.  We screened proteomic data for highly expressed P.  falciparum proteins and compared their features to those of 
PfHRP-II and PfLDH biomarkers. Search criteria included high levels of expression, conservation in all parasite strains, and good 
correlation of antigen levels with parasitemia and its clearance after drug treatment. Different assay methods were compared for 
sensitive detection of parasitemia in P. falciparum cultures.

Results.  Among potential new biomarkers, a P. falciparum homolog of insulin-degrading enzyme (PfIDEh) met our search cri-
teria. Comparative enzyme-linked immunosorbent assays with monoclonal antibodies against PfLDH or PfIDEh showed detection 
limits of 100–200 parasites/µL and 200–400 parasites/µL, respectively. Detection was dramatically improved by use of real-time 
immuno–polymerase chain reaction (PCR), to parasitemia limits of 0.02 parasite/µL and 0.78 parasite/µL in PfLDH- and PfIDEh-
based assays, respectively.

Conclusions.  The ability of PfLDH- or PfIDEh-based immuno-PCR assays to detect <1 parasite/µL suggests that improvements 
of bound antibody sensor technology may greatly increase the sensitivity of malaria rapid diagnostic tests.

Keywords.  insulin-degrading enzyme; lactate dehydrogenase enzyme; PfHRP-II; enzyme-linked immunosorbent assay; 
immuno-PCR.
 

Malaria control programs including insecticide-treated nets, 
rapid diagnostic tests (RDTs), and antimalarial prophylaxis and 
treatment have made considerable progress in recent years [1, 
2]. Malaria incidence and mortality, taking into account popu-
lation growth, are estimated to have decreased by 41% and 62% 
between 2000 and 2015 [3]. To achieve further progress in antic-
ipation of malaria eradication, the World Health Organization 
(WHO) has adopted the Global Technical Strategy for Malaria 
2016–2030. Greater sensitivity and specificity of RDTs are 
needed to support this strategy, especially by improved detec-
tion of asymptomatic low-level parasitemias that remain reser-
voirs of transmission and malaria outbreaks [4–6].

WHO sponsors a program of RDT evaluations for reliability 
and performance (http://www.who.int/malaria/areas/diagnosis/

rapid-diagnostic-tests/product-testing-round6/en/). These 
comparisons have shown that many RDTs perform compara-
bly to expert detection of Plasmodium falciparum infections by 
microscopy, with the advantage that RDTs can be performed in 
minutes by village triage staff at points of care and do not require 
the labor, time, and training necessary for examination of blood 
films in a laboratory [7]. Nevertheless, improved RDTs are 
needed as they can miss very low, asymptomatic parasitemias; 
insufficient sensitivity is thought to be among the reasons that 
recent mass screening and treatment trials failed to achieve sus-
tained reductions of parasite prevalence or disease incidence [8].

Various approaches are now being pursued for diagnos-
tic tests of greater sensitivity and specificity [9]. Among these 
are high-sensitivity P.  falciparum histidine-rich protein II 
(PfHRP-II) antigen–based RDTs with detection 8–16 times bet-
ter than conventional RDTs [10], and polymerase chain reac-
tion (PCR)–based assays that can detect very low parasitemias 
(≤1 parasite/µL), although the expertise and laboratory require-
ments for these assays remain high and samples can be prone to 
contamination or degradation [11]. To improve the practicabil-
ity of nucleic acid detection, loop-mediated isothermal amplifi-
cation (LAMP) tests have been developed for malaria diagnosis 
[12]. LAMP may prove practical for very low parasitemia 
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detection depending on the affordability and reliability it can 
achieve in routine field settings [13].

Commonly used RDTs rely on detection of antigens such 
as PfHRP-II, P.  falciparum lactate dehydrogenase (PfLDH), 
or aldolase [6]. PfHRP-II–based RDTs have greater sensitivity 
than PfLDH- or aldolase-based RDTs [14]. However, false-neg-
ative PfHRP-II tests can occur with P. falciparum strains that do 
not produce PfHRP-II antigen [15, 16] or from a prozone-like 
effect with high levels of antigen [17]. PfHRP-II antigen can 
remain in the blood for weeks after parasites are cleared by drug 
treatment, yielding persistently positive results of no use for 
assessments of clinical outcome [18].

Considering the above observations, we asked 2 questions: 
(1) Can different P. falciparum antigens be found that support 
diagnostic sensitivity levels similar to those of PfHRP-II, but 
with reliable detection of all P. falciparum strains and the rapid 
disappearance from blood after treatment that characterizes 
PfLDH—that is, can a new RDT candidate be found that has 
the advantages of both PfHRP-II and PfLDH? (2) Can the sen-
sitivity of RDTs based on PfHRP-II, PfLDH, or a new candidate 
antigen be significantly improved below the current 100–200 
parasites/µL limit [14], for better detection of asymptomatic 
infections (<1 parasite/µL) [1, 19]? Here, we describe a survey 
of proteomic and genomic databases for novel RDT candidates, 
identify a P.  falciparum insulin-degrading enzyme homolog 
(PfIDEh) as a conserved, highly expressed protein with tan-
dem repeats, and apply real-time immuno-PCR (i-PCR) with 
PfLDH or PfIDEh to obtain >100-fold better detection than by 
enzyme-linked immunosorbent assay (ELISA). Implications of 
these findings for new-generation RDTs are discussed.

METHODS

Computer Database Searches, Bioinformatics, and Analysis of PfIDEh 

Polymorphisms

Proteomic data available from 10 studies [20–29] were down-
loaded from PlasmoDB (http://plasmodb.org/plasmo/). 
Canonical repeats were detected by Finder programs (http://
nihserver.mbi.ucla.edu/Repeats/ and http://www.ebi.ac.uk/
Tools/pfa/radar/). Antigenicity was analyzed by MacVector 15.0 
software (Apex). Polymorphic regions of the PfIDEh gene were 
sequenced by standard methods (Supplementary Materials).

Peptide Immunogens and Rabbit Antibodies
Peptide Synthesis, Keyhole Limpet Hemocyanin Coupling, and 
Rabbit Monoclonal Antibody Production
Peptides (Supplementary Table 1) were synthesized on a 433A 
Automated Peptide Synthesizer (Applied Biosystems, Foster 
City, California), confirmed by high-performance liquid 
chromatography and matrix-assisted laser desorption/ioniza-
tion–time-of-flight mass spectrometry, and coupled via amide 
groups to keyhole limpet hemocyanin (KLH). A multiple anti-
gen peptide was constructed from NTSDDDNTSDDDNTS of 

the PfIDEh repeat region 2 by Bio-Synthesis, Inc (Lewisville, 
Texas). Production of rabbit antisera and monoclonal anti-
bodies (mAbs) against peptide sequences is described in the 
Supplementary Materials.

His-Tagged PfIDEh Recombinant Protein and Production of Mouse 
Monoclonal Antibodies
A codon-optimized version of PfIDEh (P. falciparum Dd2 line; 
GenBank: PFDG_00647) was designed with an added hexa-his-
tidine tail sequence and expressed in Baculovirus-infected Sf9 
cells (GenScript Corporation, www.genscript.com). BALB/c 
mice were immunized with 50  μg of purified recombinant 
PfIDEh (rc-PfIDEh) in complete Freund adjuvant followed by 
two 25-μg booster injections in incomplete Freund adjuvant at 
2-week intervals; mAbs were produced from standard hybrid-
oma fusions and purified by protein A/G affinity columns 
(GenScript Corporation).

DNA Vaccinations and Mouse Monoclonal Antibody Production
Five DNA fragments (L1–L5) from regions of the PfIDEh coding 
sequence (Figure 1A) were amplified by PCR (Supplementary 
Table 2) and cloned into VR2001-TOPO. Mice were vaccinated 
and used to produce mAbs by standard methods; binding spec-
ificities and association (ka) and dissociation (kd) rate constants 
of these antibodies were determined from immunoblot, immu-
noprecipitation, mass spectrometry, and surface plasmon reso-
nance analyses (see Supplementary Materials for details).

Enzyme-Linked Immunosorbent Assay

For PfHRP-II ELISA, paired mouse mAbs (mouse immuno-
globulin M MPFM-55A; horseradish peroxidase [HRP]–conju-
gated mouse immunoglobulin G MPFG-55A) were purchased 
from Immunology Consultants Laboratory (Portland, Oregon). 
For PfLDH ELISA, anti-PfLDH mouse mAbs MBS498007 and 
MBS498008 were purchased from Mybiosource (San Diego, 
California). For PfIDEh ELISA, mAbs generated in this study 
were used. HRP labeling was performed with a conjugation kit 
as recommended (Abcam, catalog number ab102890).

Immuno-PCR Detection of Captured PfLDH and PfIDEh

The i-PCR assays were carried out as described [30, 31] with 
modifications to optimize blocking conditions and decrease 
nonspecific signals. A  342-bp biotinylated DNA marker was 
prepared by PCR amplification using the pUC19 plasmid as 
the template and primer pair, pUC-bio (5ʹ-biotin-CCCG-
GATCCCAGCAATAAACCAGCCAGCC-3ʹ) and F1 
(5ʹ-TATGCAGTGCTGCCATAACCATGA-3ʹ).

To capture PfLDH or PfIDEh for i-PCR, mouse mAb 
(MBS498007 or 3B4D12) was coated onto the wells of a 
microtiter plate overnight at 4°C (50 μL/well, 8 μg/mL). The 
wells were washed 5 times with 150 mL of Tris-buffered saline 
(20 mM Tris, 150 mM NaCl, pH = 7.4) and then treated for 
1 hour at room temperature with 150 mL of Neptune block 
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buffer (ImmunoChemistry Technologies, Bloomington, 
Minnesota) plus 200 ng/mL boiled (single-stranded) salmon 
sperm DNA (Thermo Fisher Scientific, catalog number 
AM9680). Two-fold serial dilutions of 3D7 parasite lysate 
in RIPA buffer (25  mM Tris-HCl pH 7.6, 150  mM NaCl, 
1% NP-40, 1% sodium deoxycholate, 0.1%  sodium dodecyl 
sulfate; Thermo Fisher Scientific, catalog number 89900)  or 
recombinant PfIDEh in 1× phosphate-buffered saline (PBS) 
buffer (10  mM PO4

3−, 137  mM NaCl, and 2.7  mM KCl, 
pH = 7.4) were added (30 μL/well) for 2 hours at 37°C. After 
5 washes with 1× PBS containing 0.05% Tween 20, the wells 
containing captured antigen were incubated at 37°C for 30 
minutes with streptavidin-labeled anti-PfLDH MBS498008 
or anti-PfIDEh AID1-1-9 (Streptavidin Conjugation Kit, 
Abcam, catalog number ab102921) in Neptune Block buffer. 

Unbound streptavidin-labeled antibodies were cleared from 
the wells by additional 6 washes with 1× PBS containing 
0.05% Tween 20 at room temperature.

For i-PCR detection, 30 μL of 0.5 ng/μL biotinylated DNA in 
Neptune Block buffer was added to each well. After 30 minutes 
of incubation at room temperature with the streptavidin-labeled 
antibodies, unbound biotinylated DNA was removed by 10 
washes with 1× PBS containing 0.05% Tween 20. Bound DNA 
was released from the biotin-streptavidin complex by incuba-
tion with Bam HI (1 unit/well, 30 μL volume) for 2 hours at 
37°C. Real-time PCR detection was performed on 6-μL samples 
in a Rotor-Gene Q instrument (Qiagen, Valencia, California) 
with cycling parameters: initial 5 minutes denaturation step at 
95°C, followed by 40 cycles of 5 seconds at 95°C and 10 seconds 
at 60°C. All experiments were performed in duplicate. Statistical 
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Figure 1.  Map of Plasmodium falciparum insulin-degrading enzyme homolog (PfIDEh) plasmid inserts and plots of enzyme-linked immunosorbent assay (ELISA) results with 
monoclonal antibody (mAb) pairs. A, Plasmid inserts were amplified from the PfIDEh sequence by indicated primer pairs. Schematic of the PfIDEh primary structure shows 
relative locations of the KQQDNV and DDDNTS repeats. B, Plots show signal levels obtained from horseradish peroxidase (HRP)–labeled 3B4D12, 5A2G2, and 3A3 mAbs 
in ELISAs of recombinant PfIDEh (rc-PfIDEh) or of PfIDEh captured by rabbit mAb AID-1-1-9 from 3D7 parasites. C, Plots show signal levels from HRP-labeled goat antimouse 
antibody applied to unlabeled 3B4D12, 5A2G2, and 3A3 mAbs in ELISAs of rc-PfIDEh or of PfIDEh captured by rabbit mAb AID-1-1-9 from 3D7 parasites.
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analyses were performed using Prism 7 software (GraphPad 
Software, La Jolla, California).

P. falciparum Cultures and PfHRP-II, PfLDH, and PfIDEh Assessments After 

Chloroquine Treatment

Plasmodium falciparum 3D7 parasites were cultivated in O+ 
human red blood cells at 2% hematocrit under standard in 
vitro conditions. Cultures were treated with 150  nM chloro-
quine (Sigma, St Louis, Missouri) at parasitemias of 8% (mixed 
stages). Infected erythrocytes and culture media were collected 
at the time of chloroquine treatment and at 24-hour intervals 
for 9 days.

RESULTS

P. falciparum Proteome Searches for Highly Expressed Conserved 

Proteins With Tandem Repeats

Sensitive PfHRP-II-based RDTs take advantage of the multi-
ple binding sites for mAbs to tandem repeats (most commonly 
AHHAAD) that occur throughout much of the PfHRP-II 
protein [32]. These repeats increase mAb avidity and help to 
account for the greater sensitivity of PfHRP-II detection over 
PfLDH- and aldolase-based tests, even though PfLDH and 
aldolase are among the most abundant proteins in proteome 
databases [20]. Considering the variability and even absence 
of PfHRP-II expression by some P. falciparum strains, we sur-
veyed proteomic data from 10 studies [20–29] for proteins that 
are conserved in all known parasite strains, contain tandem 
repeats, and are highly represented in asexual (ring, tropho-
zoite, schizont) stage parasites. Relative representations were 
estimated from the number of spectra from each protein rela-
tive to the number from PfLDH in the parasitized erythrocytes. 
Only proteins with >2% representation relative to PfLDH and 
≥3 canonical peptide repeats were included for further analy-
sis. Proteins reported to be nonessential to the parasites in vitro 
[33] were also removed from consideration.

Eight P. falciparum proteins identified by the above selection 
criteria are listed in Supplementary Table 3 along with percent-
age representation of spectra relative to PfLDH, information on 
repeats, and predicted antigenicities. Pfg377 (PF3D7_1250100), 
leading the list with 33% representation relative to LDH, is an 
abundant osmiophilic body protein that contributes to main-
tenance of the parasitophorous vacuole and egress of female 
gametocytes [34]. Another 4 of the 8 proteins are well-described 
antigens: a mature parasite-infected erythrocyte surface antigen 
(MESA, PF3D7_0500800) [35], a glycophorin binding pro-
tein (GBP, PF3D7_1016300) [36], an asparagine-rich antigen 
(PF3D7_1110400) [37], and parasite liver stage antigen 3 (LSA 
3; PF3D7_0220000) [38]. A  P.  falciparum homolog of insulin 
degrading enzyme (PfIDEh; PF3D7_1118300) shows conserva-
tion in other Plasmodium species but contains 2 regions of tan-
dem repeats that are not found in the homologs of Plasmoidum 
vivax, Plasmodium knowlesi, or rodent malaria parasites 

(Supplementary Figure  1A). The 2 remaining candidates in 
Supplementary Table  3 are Plasmodium proteins of unknown 
function (PF3D7_0401800 and PF3D7_1120000).

Antibodies to Tandem Repeats and Selection of PfIDEh for Comparative 

Evaluation

Synthetic peptides of the repeat units listed in Supplementary 
Table  3 were KLH-coupled to immunize rabbits. Antisera 
against 4 KLH-peptides yielded bands on P.  falciparum (3D7) 
immunoblots at relative molecular weights consistent with their 
corresponding proteins: PfIDEh, GBP, asparagine-rich anti-
gen, and protein PF3D7_1120000 (Supplementary Figure 2A). 
Rabbit antisera against the KQQDNV repeats of PfIDEh 
yielded a distinct band at RMW ~175 000. This band was con-
firmed in immunoblots of 4 additional P.  falciparum strains 
from geographically distant regions (Fab9, South Africa; C2A, 
Thailand; D10, Papua New Guinea; 7G8, Brazil; Supplementary 
Figure 2B). Recognition of rc-PfIDEh on the immunoblots fur-
ther confirmed the rabbit antisera against KQQDNV repeats 
(Supplementary Figure 2B).

To assess variation in the number of PfIDEh KQQDNV 
repeats, we examined sequences of 320 P. falciparum isolates 
from regions of Africa, Asia, the Americas, and Oceania. Results 
showed PfIDEh with 3–15 KQQDNV repeats among these para-
sites (Supplementary Table 4; Supplementary Figure 1B). A sec-
ond region of DDDNTS repeats in PfIDEh was also surveyed; 
all 320 isolates contained 3 or 4 of these repeats (Supplementary 
Table 4; Supplementary Figure 1B). The overall sequence con-
servation among isolates, together with the abundant presence 
of PfIDEh in proteomic data and strong specific recognition of 
KQQDNV by rabbit antisera, led us to select PfIDEh for further 
evaluation as a potential diagnostic marker.

Monoclonal Antibodies (Rabbit and Mouse) for PfIDEh Detection

The KQQDNV repeats of PfIDEh are missing from the IDEh 
sequences of P.  vivax, P.  knowlesi, and rodent malaria para-
sites (Supplementary Figure 1A) and thus provide epitopes for 
P.  falciparum–specific recognition. In addition, the multiple 
epitopes of these repeats may boost functional antibody bind-
ing (avidity) [39, 40]. Greater binding has also been reported 
with mAbs from rabbits relative to mAbs from mice [41]. We 
therefore obtained 6 KQQDNV-binding mAbs from rabbit 
lymphocytes, and, from these, selected mAb AID-1-1-9 based 
on its strong recognition of the peptide in ELISA experiments. 
Immunoprecipitation and mass spectroscopy confirmed rec-
ognition of PfIDEh by AID-1-1-9 (Supplementary Figure  2C; 
Supplementary Table 5).

For ELISA detection of PfIDEh, we required a second mAb 
against an epitope away from the KQQDNV region bound by 
rabbit mAb AID-1-1-9. For this purpose, we sought a mouse 
mAb to provide assay flexibility and low background signal. 
Two approaches were used: (1) immunize mice with rounds 
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of rc-PfIDEh from baculovirus; and (2) immunize mice with 
plasmid DNA expressing different regions of PfIDEh, with or 
without boosting by baculovirus-produced rc-PfIDEh protein 
(Figure 1A). These approaches yielded 2 mouse mAbs (3B4D12, 
5A2G2) from lymphocytes of mice immunized with rc-PfIDEh 
and 1 mAb (3A3) from lymphocytes of mice vaccinated by 
plasmid L-2 and boosted with PfIDEh. Each of these mAbs was 
conjugated with HRP and tested in ELISA plates coated with 
either:(1) rc-PfIDEh or (2)  PfIDEh captured by mAb AID-1-1-9 
from parasite lysate. The mAb 3B4D12 yielded strongest detec-
tion of both rc-PfIDEh and the captured PfIDEh (Figure 1B). 
To test if the different signal intensities from mAbs 3B4D12, 
5A2G2, and 3A3 could be due to differential HRP labeling, we 
repeated the ELISA experiments with unlabeled mouse mAbs 
followed by an HRP-labeled goat antimouse antibody. Results 
again showed that the signals were strongest with mAb 3B4D12 
(Figure 1C), suggesting that mAb binding, not HRP labeling 
efficiency, was the greater determinant of signal intensity.

Binding dissociation constants (KD) of mAbs AID-1-1-9 and 
3B4D12 were determined against rc-PfIDEh by surface plas-
mon resonance (Supplementary Table 6). KDs of 2.7 × 10–9 M 

and 4.3 × 10–8 M were obtained for AID-1-1-9 and 3B4D12, 
respectively. These values compare to reported KDs of 2.5 × 
10–8 M to 42 × 10–8 M for several mouse mAbs against PfLDH 
[42], and to the KD of 1.4 × 10–9 M for anti-PfLDH mouse 
mAb MBS498007 in our present study (Supplementary Table 
6, determined against an rc-PfLDH fragment). All of these the 
KDs were weaker than the KD of MPFM-55A and other mAbs 
against the runs of repeats in the PfHRP-II antigen (KD 3.05 × 
10–10 M [43]; 1.1 × 10–10 M, Supplementary Table 6).

ELISA Detection of PfHRP-II, PfLDH, and PfIDEh in P. falciparum Lysates

Figure  2 presents results from ELISA experiments to detect 
PfHRP-II, PfLDH, and PfIDEh in lysates from P.  falciparum 
cultures. Capture of PfHRP-II by unlabeled mAb MPFG-55A, 
followed by detection with HRP-labeled MPFM-55A, yielded 
readily observable signals to parasite dilutions of 100–200 para-
sites/µL, depending on the concentration of HRP-labeled detec-
tion antibody (Figure 2A). Similar sensitivity of detection was 
obtained from PfLDH capture by mAb MBS498007 and detec-
tion by mAb MBS498008 (Figure 2B). Capture of PfIDEh with 
AID-1-1-9 mAb followed by detection with 3B4D12 was about 
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Figure 2.  Parasite detection in Plasmodium falciparum cultures by enzyme-linked immunosorbent assay based on P. falciparum histidine-rich protein II (PfHRP-II), P. falci-
parum lactate dehydrogenase (PfLDH), and P. falciparum insulin-degrading enzyme homolog (PfIDEh). A, PfHRP-II in 3D7 lysates was captured by unlabeled MPFG-55A and 
detected by horseradish peroxidase (HRP)–labeled MPFM-55A. Signal levels decreased with dilutions of HRP-labeled-MPFM-55A. B, PfLDH in 3D7 lysates was captured by 
MBS498007 and detected by HRP-labeled-MBS498008. Signal levels decreased with dilutions of HRP-labeled-MBS498008. C, PfIDEh in 3D7 lysates was captured by rabbit 
monoclonal antibody (mAb) AID-1-1-9 and detected by HRP-labeled mAb 3B4D12. Signal levels decreased with dilutions of HRP-labeled mAb 3B4D12. D, PfIDEh in 3D7 lysates 
was captured by mAb 3B4D12 and detected by HRP-labeled AID-1-1-9. Signal levels decreased with dilutions of HRP-labeled AID-1-1-9. Dashed line in the panels represents 
the absorbance signal cutoff. Results are the average ± standard deviation of 3 independent experiments.
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3-fold less sensitive (Figure 2C), whereas use of these mAbs in 
the opposite order—that is PfIDEh capture by mAb 3B4D12 
followed by detection with AID-1-1-9—was about 2-fold less 
sensitive, with a detection lower limit of 200–400 parasites/µL 
(Figure 2D).

High-Sensitivity Detection of Captured PfLDH or PfIDEh by Immuno-PCR

Considering the limited sensitivity of colorimetric signals from 
the HRP-conjugated mAbs in ELISA, we looked for methods 
to improve detection of captured PfLDH or PfIDEh antigen. 
Quantitative PCR (qPCR) of oligonucleotides conjugated to 
detection antibodies is reported to yield signals that are up 
to 100,000-fold more sensitive than those from colorimetric 
ELISA [44]. We therefore implemented i-PCR assays that com-
bine mAb capture with the sensitivity of qPCR. In experiments 
on parasite lysates, PfLDH capture by MBS498007 followed by 
i-PCR of streptavidin-labeled MBS498008 yielded signals with 
a limit of detection (LOD) of 0.02 parasite/µL (Figure 3A). 
PfIDEh capture by mAb 3B4D12, followed by i-PCR of bound 
mAb AID-1-1-9, yielded an LOD of 0.78 parasite/µL (Figure 
3B). Background signal with the detection antibodies likely 
explains much of the difference between LODs of these assays. 
We also obtained standard curves from serial dilutions of 
known rc-PfIDEh concentration (Figure 3C). Results showed 
a delta cycle threshold (∆Ct) of 20.79 from 3 fg/µL recombi-
nant protein (0.017 pM, assuming predicted MW 174 000), just 
above the calculated ∆Ct of 20.55 for the LOD [30].

Clearance of PfHRP-II, PfLDH, and PfIDEh From Chloroquine-Treated P. fal-

ciparum Cultures

Parasitized erythrocytes and media were collected from P. fal-
ciparum cultures (3D7 line) before and after treatment with 
150 ng/mL chloroquine. In comparative ELISAs over a 9-day 
period, PfHRP-II persisted in the samples until day 7 after treat-
ment, whereas the levels of PfIDEh and PfLDH fell to near zero 
by day 3 (Figure 4A). Samples of culture supernatant included 
readily detectable amounts of PfHRP-II and PfLDH but only 
low levels of PfIDEh, suggesting little release of this protein into 
the medium from P. falciparum–infected cells (Figure 4B).

DISCUSSION

RDTs are increasingly important for detection of silent parasite 
carriage and local outbreaks in programs of malaria control and 
elimination. Detection of asymptomatic parasitemias as low as 
1 parasite/µL in field settings, minimization of false-positive 
and false-negative results, differentiation of the Plasmodium 
species, fast results, and inexpensive and ready implementation 
are among desired properties of an ideal RDT. RDTs based on 
antigen detection in inexpensive lateral flow formats have some 
of these properties and are presently in wide use, but these can 
miss infections and have sensitivities generally limited to 100–
200 parasites/µL [6, 14].

In this study, we identified a new P. falciparum–specific diag-
nostic marker, PfIDEh, and assessed it relative to the PfHRP-II 
and PfLDH antigens detected by many commercially avail-
able RDTs. In our comparisons of mAb-based capture assays, 
PfHRP-II- and PfLDH-based ELISAs showed detection limits 
of 100–200 parasites/µL, whereas the PfIDEh-based ELISA was 
about 2-fold less sensitive, with a limit of 200–400 parasites/
µL. However, with use of i-PCR instead of colorimetric devel-
opment to detect bound mAb, detection sensitivities improved 
greatly, to limits of 0.02 parasite/µL and 0.78 parasite/µL in 
PfLDH- and PfIDEh-based assays, respectively. These results 
show that the relatively poor sensitivities of ELISAs and related 
colorimetric development assays are attributable to insensitive 
sensor technology, not to inherent inability of the mAb to detect 
antigen at much lower levels. Indeed, the i-PCR limits of <1 par-
asite/µL show that mAb detection can serve for assays in the 
sensitivity range of LAMP and PCR-based detection.

PfHRP-II, presently the most commonly used antigen in 
RDTs for P.  falciparum infection, contains multiple tandem 
repeats rich in alanine, histidine, and aspartic acid, com-
prising respectively, 37%, 34%, and 10% of the protein [32]. 
The mAbs against these repeats bind with very high avid-
ity (KD  =  3.05  ×  10-10 M) ([43]). Strong antibody responses 
against tandem repeats have likewise been reported for 
other Plasmodium proteins and antigens of Leishmania and 
Trypanosoma cruzi [39, 45, 46] and are often targets of B-cell 
responses [46, 47]. In this study, we specifically targeted the 
tandem KQQDNV repeats to optimize detection of PfIDEh as a 
marker of P. falciparum infection. The functional binding affin-
ity of a rabbit mAb against these repeats (KD = 2.7 × 10-9 M), 
however, was not as strong as that of mouse mAb against the 
PfHRP-II repeats, a difference that may arise from the much 
greater number of repeats in the PfHRP-II protein.

The different thresholds of parasitemia detection by i-PCR 
assays based on PfLDH or PfIDEh may be partly explained by 
the levels of these proteins in proteomic data. Amounts of anti-
gen produced by different P. falciparum stages, particularly the 
ring and gametocytes stages that circulate in the bloodstream, 
may also affect the ability of ELISA or i-PCR assay to sense 
parasitemias.

Considering the exquisite sensitivities of i-PCR for PfIDEh as 
well as PfLDH, we did not pursue i-PCR assays with PfHRP-II 
as there are recent reports that some P. falciparum strains do not 
produce this antigen [16]. PfIDEh and PfLDH are proteins that 
are highly conserved in P. falciparum, and there is no evidence 
that either is deleted from any parasite strain. Additionally, 
unlike the PfHRP-II antigen that can persist in vitro or in vivo 
for weeks after parasites are killed by drug treatment, PfIDEh 
and PfLDH clear from P. falciparum cultures within a few days 
and are therefore less likely to yield false-positive results like 
those that confound outcome assessments with PfHRP-II–
based RDTs [18].
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The ability of PfLDH- or PfIDEh-based i-PCR to detect very 
low-level parasitemias suggests that technologically improved 

sensing of bound mAb may be able to greatly increase the sen-
sitivity of antigen-based diagnostic tests. Additional proof of 
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Figure 3.  Immuno–polymerase chain reaction (i-PCR) detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) and P. falciparum insulin-degrading enzyme 
homolog (PfIDEh) antigens. A, i-PCR curves of PfLDH in 2-fold serially diluted lysates from a culture of P. falciparum 3D7. MBS498007 was employed as the capture antibody 
and streptavidin-conjugated MBS498008 was used for i-PCR detection of PfLDH. Signal levels were proportional to the lysate dilution. Results from negative controls (NC; no 
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principle might be obtained by LAMP detection of the oligonu-
cleotide-labeled secondary mAb in a suitable format, although 
the complexity and cost of such a hybrid i-PCR/LAMP system 
would likely be prohibitive in the field setting. Technologies 
involving various oligonucleotides, nanoparticles, or gold-
based sensors may offer possibilities for greatly improved sens-
ing [48–50]. If sufficiently improved detection can be applied 
with such technologies, a new generation of inexpensive, highly 
sensitive, and practical point-of-care RDTs may be possible for 
malaria elimination programs.
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