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Abstract

Many population genetics tools employ composite likelihoods, because fully modeling genomic linkage is challenging. But
traditional approaches to estimating parameter uncertainties and performing model selection require full likelihoods, so
these tools have relied on computationally expensive maximum-likelihood estimation (MLE) on bootstrapped data. Here,
we demonstrate that statistical theory can be applied to adjust composite likelihoods and perform robust computa-
tionally efficient statistical inference in two demographic inference tools: @a@i and TRACTS. On both simulated and real
data, the adjustments perform comparably to MLE bootstrapping while using orders of magnitude less computational
time.
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Many population genetic inference tools use composite like-
lihoods to estimate model parameters and choose between
models (e.g., Gutenkunst et al. 2009; Gravel 2012; Excoffier et
al. 2013; Harris and Nielsen 2013; Robinson et al. 2014;
Fearnhead et al. 2015). Composite likelihoods approximate
the full likelihood by a product of simpler likelihoods that are
treated as if they were independent (Lindsay 1988; Varin et al.
2011). With full likelihoods, confidence intervals can be esti-
mated from the Fisher Information Matrix (FIM), and model
selection can be done using the likelihood ratio test (LRT),
Akaike’s information criterion, or the Bayesian information
criterion. But when applied to composite likelihoods these
approaches underestimate parameter uncertainties and erro-
neously favor more complex models (Gao and Song 2010).
These biases can be avoided by performing maximum-like-
lihood estimation (MLE) on many bootstrap data sets
(Horowitz 2001), but at substantial computational cost.
Statistical theory shows that one can compensate for the
model misspecification inherent to composite likelihoods
(Pace et al. 2011), and this theory has found some previous
application in population genetics (RoyChoudhury 2011;
Fearnhead et al. 2015). The FIM can be replaced with the
Godambe Information Matrix (GIM; supplementary eq. S1,
Supplementary Material online; Godambe 1960), and the LRT
can be adjusted by normalizing the difference in log-likeli-
hoods (supplementary eq. S2, Supplementary Material
online; Rotnitzky and Jewell 1990). Here we apply composite
likelihood statistical approaches to two popular demographic
history inference tools, @a@i (Gutenkunst et al. 2009) and
TRACTS (Gravel 2012). We show that these approaches
yield accurate uncertainty quantification and model selection,
using orders of magnitude less computation than MLE on
bootstrapped data.

@a@i uses a diffusion approach to fit models of demo-
graphic history to the allele frequency spectrum
(Gutenkunst et al. 2009). It calculates a composite likelihood,
because it assumes that entries in the spectrum are inde-
pendent Poisson variables (Sawyer and Hartl 1992), but this
assumption is violated by linkage between the single-nucleo-
tide polymorphisms (SNPs) from which the spectrum was
built. In simulated data from a population growth model
(supplementary fig. S1A, Supplementary Material online),
reducing the recombination rate to increase linkage between
SNPs increased parameter uncertainties, but this was not
captured by the FIM (fig. 1A and B). The GIM, however,
yielded confidence intervals that closely match MLE on
bootstraps (fig. 1A and B), with similar coverage (fig. 1C
and D). Results for a more complex isolation-with-migration
model (supplementary fig. S1B, Supplementary Material
online) were similar (supplementary fig. S2, Supplementary
Material online). We also tested the GIM on a complex
human Out-of-Africa model that was previously fit to
gene resequencing data (Gutenkunst et al. 2009). The FIM
consistently underestimated parameter uncertainties, but
the GIM matched results from MLE on bootstrap data
well (fig. 1E). Tests varying the number of sampled indivi-
duals and SNPs showed that the GIM performed well when-
ever the original data yielded a physically plausible set of
maximum-likelihood parameter values (supplementary fig.
S3, Supplementary Material online). In @a@i analyses, it is
common to project the allele frequency spectrum down
to a smaller effective sample size, to incorporate SNPs that
were not successfully called in all individuals (Marth et al.
2004). Such projection yields a composite likelihood even
when SNPs are unlinked. In this case, the FIM overestimates
parameter uncertainties, but the GIM agrees with MLE
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bootstrapping (supplementary fig. S4, Supplementary
Material online).

In the LRT, the difference in log-likelihoods between a
more complex full model and a simpler nested model is
compared with a null �2 distribution. For two-population
data simulated with symmetric population sizes and fit
with an asymmetric size model, the distribution of log-like-
lihood differences was broader than expected (fig. 1F), leading
the traditional test to erroneously favor the model with asym-
metric sizes (fig. 1G). Using first-order moment matching,
however, restored the expected distribution of log-likelihood
differences (fig. 1F and supplementary text, Supplementary
Material online), resulting in a well-controlled Type 1 error
rate (fig. 1G). If the simpler model lies on the boundary of
parameter space, such as comparing models with and with-
out migration, the null distribution is more complex (supple-
mentary materials and methods, Supplementary Material
online), yet moment-matching still yielded a well-controlled
error rate (fig. 1H). In many population genetics contexts,

there is a degeneracy in the parameter space mapping the
more complex to the simpler model. For example, a model of
instantaneous growth can be reduced to the standard neutral
model by setting either the magnitude or the time of the
growth to zero. In this case, to achieve proper Type I error
rates we calculated derivatives for moment-matching with
time equal to zero and size change equal to 1 (fig. 1I). The
Wald and score tests are alternatives to the LRT that can be
also be adjusted for composite likelihood (Pace et al. 2011;
RoyChoudhury 2011), although we find in our applications
that they perform less well (supplementary fig. S5,
Supplementary Material online).

To demonstrate the broad applicability of these statisti-
cal approaches, we also considered TRACTS (Gravel 2012),
which models the distribution of ancestry tract lengths to
infer recent gene flow. TRACTS calculates a composite like-
lihood, because it assumes a Poisson number of tracts in
each length interval. As with @a@i, on simulated data the
FIM underestimated parameter uncertainties, but the
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FIG. 1. Adjusted composite-likelihood statistics compared with MLE on bootstrapped data and assuming full likelihood. Throughout, results in gray are
from MLE on bootstrapped data, in blue are from composite likelihood (GIM), and in red are from assuming full likelihood (FIM). The full likelihood
assumption is incorrect when data are linked (�/r 6¼ 0). (A, B) Inferred @a@i parameter standard deviations for data simulated with an instantaneous
population size change � at a time T in the past. To vary the strength of linkage, the mutation rate � was held constant while the recombination rate r
was varied. Plotted are averages over 100 data sets per value of �/r. (C, D) Coverage of 95% confidence intervals for model and simulations in (A)
and (B). (E) Parameter standard deviations from Godambe and Fisher Information Matrices compared with conventional bootstrapping for the data
and 13-parameter @a@i model of Gutenkunst et al. (2009). (F) For 100 symmetric migration data sets simulated with linkage, log-likelihood differences
(�LL) between asymmetric and symmetric migration @a@i models, before (red) and after adjustment (blue) compared with expected �2

1 null
distribution (black line). (G) Type I error rate versus significance level � for LRT on simulations and models in F, using adjusted (blue) and nonadjusted
(red) �LLs. (H) Type I error rate versus significance level � for LRT between @a@i models of isolation with and without migration. (I) Type I error rate
versus significance level � for LRT between instantaneous growth and standard neutral @a@i models. (J, K) Standard deviations for parameters inferred
by TRACTS for a model in which Europeans and African-Americans admixed T generations ago with admixture proportion � and 1 � �.
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GIM agreed well with MLE on bootstrap data sets (fig. 1J
and K).

The GIM and LRT adjustment depend on the expectations
of derivatives of the composite likelihood function with
respect to parameters, where the expectations are over reali-
zations of the stochastic process that generates the data
(supplementary eqs. S1 and S2, Supplementary Material
online). Expectations of second derivatives can be approxi-
mated by the observed values (Efron and Hinkley 1978). The
observed first derivatives, however, are zero at the MLE. We
approximated their expectations over the stochastic process
using a conventional bootstrap (supplementary eq. S3,
Supplementary Material online; Catelan and Sartori 2015).
In @a@i and TRACTS, this bootstrapping of first-derivative
calculations can be done extremely efficiently, because calcu-
lation of the likelihood decomposes into an expensive calcu-
lation of the expected spectrum of allele frequencies or tract
lengths, which is only dependent on the parameter values,
and an inexpensive Poisson calculation of the likelihood,
which is dependent on the data. Reusing evaluations of the
expected spectra thus enables fast computation. For example,
MLE for all the bootstrap data for figure 1E took hundreds of
CPU hours, but evaluating the GIM took only 1 CPU hour.
Similar decompositions of the likelihood calculation occur in
other population-genetic inference applications (e.g., Harris
and Nielsen 2013; Kamm et al. 2015). Moreover, because like-
lihood calculation is deterministic in @a@i and TRACTS, deri-
vatives can be accurately approximated by finite differences.
For analytical methods, automatic differentiation may more
efficient and accurate (e.g., Bhaskar et al. 2015), but accurate
derivative calculation may be challenging in methods that rely
on stochastic simulation to estimate likelihoods (e.g., Excoffier
et al. 2013; Mathew et al. 2013).

The methods described are implemented in @a@i version
1.7.0, available at https://bitbucket.org/GutenkunstLab/dadi
(last accessed November 23, 2015).

Supplementary Material
Supplementary text, materials and methods, equations
S1–S3, and figures S1–S5 are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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