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Abstract

Myeloid-derived suppressor cells (MDSCs) are a population of myeloid cells generated during a 

large array of pathologic conditions ranging from cancer to obesity. These cells represent a 

pathologic state of activation of monocytes and relatively immature neutrophils. MDSCs are 

characterized by a distinct set of genomic and biochemical features, and can, with recent findings, 

be distinguished by specific surface molecules. The salient feature of these cells is their ability to 

inhibit T cell function and thus contribute to the pathogenesis of various diseases. In this review, 

we discuss the origin and nature of these cells, their distinctive features and biological roles in 

cancer, infectious diseases, autoimmunity, obesity and pregnancy.

The name myeloid-derived suppressor cells (MDSCs) was introduced to scientific literature 

10 years ago1 describing initially a loosely defined group of myeloid cells with potent 

immune regulatory activity. In recent years, the nature and biological role of MDSC became 

clearer and MDSC emerged as a universal regulator of immune function in many pathologic 

conditions. MDSCs consist of two large groups of cells: granulocytic or polymorphonuclear 

(PMN-MDSC) and monocytic (M-MDSC). PMN-MDSC are phenotypically and 

morphologically similar to neutrophils, whereas M-MDSC are more similar to monocytes 2. 

Studies in humans demonstrated the existence of a third small population of MDSCs that are 

represented by cells with colony forming activity and other myeloid precursors. These cells 

are currently termed early-stage MDSC (eMDSC) 3 and have yet to be defined in mice.

Intensive clinical studies identified MDSC as a valuable predictive marker in cancer and 

extensive efforts in MDSC targeting is ongoing. However, despite such advances, the nature 

of MDSCs still raises questions and skepticism. This review is not a comprehensive analysis 

of MDSC phenotype or function (these topics were addressed in many reviews in recent 

years4, 5), but is our attempt to address the most controversial issues pertinent to these cells. 

We discuss new information regarding the development, activation status, phenotype and 

function that allow for a better discrimination of MDSCs from other myeloid cells. We also 

discuss their role in regulation of different pathologic conditions.
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What are these cells?

The main controversial issue associated with MDSCs since initial discovery is their nature. 

Morphologically and phenotypically MDSCs are similar to neutrophils and monocytes. 

What is so special about these cells that would justify a separate name? What makes these 

cells different? Below, we will present our view on why MDSC are indeed a very special 

group of cells with unique features and biological roles.

The major populations of bone marrow (BM)-derived myeloid cells include granulocytes 

(with their most abundant representative – neutrophils) and mononuclear cells: monocytes 

and terminally differentiated macrophages (MΦ) and dendritic cells (DC). In contrast to 

experiments in vitro, where both MΦ and DCs can be easily differentiated from monocytes, 

in tissues under steady state conditions, MΦ expand largely in situ and most DCs 

differentiate from their specific BM precursors6. However, during inflammation and cancer, 

BM-derived monocytes are the primary precursors of MΦ, especially tumor associated 

macrophages (TAM) and a population of inflammatory DCs7.

Myeloid cells have emerged in evolution as one of the major protective mechanisms against 

pathogens and are an important element of tissue remodeling. Under physiological 

conditions, GM-CSF drives myelopoiesis and G-CSF and M-CSF induce the differentiation 

of granulocytes and macrophages, respectively8. In cancer and in other pathological 

conditions, these factors are overproduced and favor the generation of MDSC2, 9. Thus, 

accumulation of MDSC takes place alongside the same differentiation pathways as 

neutrophils and monocytes.

Classical activation of myeloid cells takes place in response to relatively strong signals 

coming from pathogens primarily in form of toll-like receptor (TLR) ligands, various 

damage associated molecular patterns (DAMP) and pathogen-associated molecular pattern 

(PAMP) molecules10. This results in rapid mobilization of monocytes and neutrophils from 

the BM, a dramatic increase in phagocytosis, respiratory burst, production of pro-

inflammatory cytokines, as well as up-regulation of major histocompatibility complex 

(MHC) class II and co-stimulatory molecules11, 12. This response is usually of short duration 

and ends in elimination of the threat. During unresolved inflammation such as persistent 

infection, cancer, and other chronic conditions, the nature of signals activating myeloid cells 

differs13, 14. These signals are relatively weak and of a long duration, often in the form of 

growth factors and inflammatory mediators as described in detail below. Neutrophils and 

monocytes generated under these conditions display an immature phenotype and 

morphology, relatively weak phagocytic activity, increased background levels of reactive 

oxygen species (ROS) and nitric oxide (NO) production, high expression of arginase, PGE2, 

and a number of anti-inflammatory cytokines15, 16. Most of these features are absent in 

classically activated neutrophils and monocytes. Therefore, this state of activation can be 

characterized as pathologic (Fig. 1). This state of activation leads not to the elimination of 

the threat or activation of immunity, but to the inhibition of adaptive immunity (immune 

suppression) and support of tumor progression and metastases. Cells in this pathologic state 

of activation can be identified functionally, biochemically, and to some extent, 

phenotypically, and are now termed MDSC. The longer the myeloid compartment is exposed 
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to the effects of factors described above, the more potent the pathologic activation of these 

MDSCs detected in patients and mice. Therefore, at any given moment, there is a 

heterogeneous population of cells in tissues represented by classically activated neutrophils, 

monocytes, and pathologically activated MDSCs (Fig. 2). For instance, at early stages of 

cancer, bona-fide immune suppressive MDSCs are rarely detected. However, there are cells 

with some biochemical and genomic characteristics of MDSC 17, 18, 19 probably 

representing an intrinsic part of MDSC development. They could be called MDSC-like cells 

(MDSC-LC) (Fig. 2). It could be possible that pathologic activation of MDSC can be 

transferred via hematopoietic progenitor cells, as a sort of innate immune memory triggered 

by chronic inflammatory conditions through signals interfering with transcription factors 

and epigenetic reprogramming20. Memory or trained immunity can rely on an altered 

functional state of immune cells that persists for weeks to months after the elimination of the 

initial stimulus. The true nature of this process in MDSC needs to be elucidated.

The accumulation of MDSC is a complex and gradual phenomenon governed by multiple 

factors. We have previously suggested that accumulation of MDSC depends on two groups 

of interconnected signals. The first group of signals is important for the expansion of 

immature myeloid cells, whereas the second group is responsible for their pathologic 

activation21. The first group of signals is driven by factors produced by tumors or BM 

stroma in response to chronic infection and inflammation and includes: GM-CSF, G-CSF, 

M-CSF, S-SCF, VEGF, and polyunsaturated fatty acids (PUFAs). 22, 23, 24, 25. The 

transcriptional factors/regulators STAT3, STAT5, IRF8, C/EBPβ, NOTCH play a major role 

in this process26. Other factors involved in this process include adenosine receptors A2b, 

NLRP3, retinoblastoma protein 1 (RB1), and alarmins S100A9 and A8. Furthermore, a 

recent study showed that the antiapoptotic molecules c-FLIP and MCL-1 are involved in the 

development of M-MDSC and PMN-MDSC in cancer, respectively27. The second group of 

signals is mediated by inflammatory cytokines and DAMP, which include interferon (IFN)-

γ, IL-1β, IL-4, IL-6, IL-13, TNF and the, TLR ligand, HMGB1. These factors mainly signal 

via NF-κB, STAT1, and STAT6 28. A recent study provided a direct experimental 

demonstration of this concept showing that the licensing of monocytes with GM-CSF was 

required for subsequent IFN-γ-mediated conversion of these cells to immune suppressive 

M-MDSC 29.

Phenotypic and molecular features of MDSC

Another controversial issue that was apparent from the beginning is how to identify these 

cells. The field of MDSC research is still immature and it is difficult to distinguish these 

cells from neutrophils and monocytes. In mice, PMN-MDSC can be defined as CD11b
+Ly6G+Ly6Clo with high side scatter (SSC)30. However, this phenotype is typical for 

neutrophils but in some experimental models, PMN-MDSC can express markers not 

normally present on neutrophils like CD115 and CD24416. The direct phenotypic distinction 

between murine PMN-MDSC and tumor associated neutrophils (TANs) is even more 

difficult. TANs are a heterogeneous population of cells, including neutrophils (N1) with anti-

tumor properties and neutrophils (N2) with potent suppressive functions31. Based on these 

functional characteristics, it is likely that N2 neutrophils are in fact PMN-MDSC 32, 33, 34. 
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However, this question cannot be resolved until specific markers of mouse PMN-MDSC are 

identified.

M-MDSCs are defined as CD11b+Ly6G−Ly6Chi with low SSC30. This is the classic 

phenotype of inflammatory monocytes present in healthy mice. Other typical markers shared 

by these cells include CD115, CCR2 and CD49d (VLA4)35. However, M-MDSC usually 

lack surface markers of monocytes like CD11c and MHC class II23, 36. Phenotypically, M-

MDSC can be readily separated from TAMs2, 37 since TAMs have high expression of F4/80, 

low-to-intermediate expression of Ly6C and low or undetectable expression of S100A9 

protein (Table 1).

In humans, the equivalent of murine PMN-MDSC and M-MDSC has been found in the low-

density Ficoll gradient fraction of peripheral blood mononuclear cell (PBMC). In contrast, 

neutrophils are isolated from the high-density fraction. PMN-MDSC and neutrophils share 

similar phenotype CD11b+CD14−CD15+ (or CD66b+) CD33+. However, different density 

allowed for distinction of these cells (Table 1). In healthy individuals, PMN-MDSC are 

practically undetectable. Recently identified lectin-type oxidized LDL receptor 1 (LOX-1) 

allows for better distinction between human neutrophils and PMN-MDSC without use of a 

gradient38. Immune suppressive LOX-1+ cells, with features defining them as PMN-MDSC, 

represent 4–15% of all neutrophils in blood of cancer patients and up to 40% in tumor 

tissues. In healthy individuals, these cells represent less than 1% of neutrophils38.

Monocytes and M-MDSC can be separated based of expression of MHC class II molecules. 

M-MDSC have a phenotype CD11b+CD14+CD15−CD33+HLA-DR−/lo, whereas monocytes 

are HLA-DR+19. M-MDSC represents a very small fraction of PBMC39. eMDSC are 

defined as Lin− (CD3, CD14, CD15, CD19, CD56) HLA-DR−CD33+ 19, 39.

Thus, in humans, MDSC can be separated from neutrophils and monocytes based on 

phenotypic markers and density gradient, whereas in mice such distinction is much more 

challenging. This is probably due to differences between mouse models and human diseases. 

Most of the cancer models utilize transplantation of tumor cells, which is associated with 

inflammation and rapid tumor progression. This leads to a dramatic expansion of MDSC 

that may replace most of the neutrophils and monocytes. This is not the case in human 

disease40. More detailed studies including single cells sequencing may help to address this 

question.

Human PMN-MDSC have a gene expression profile that distinguishes them from 

neutrophils in cancer patients, and from healthy donors38. They include eukaryotic 

translation initiation factors 2 and 4 (eIF2 and eIF4) associated with ER stress (discussed 

below), up-regulation of mTOR signaling, the MAPK pathway, CSF1, and the IFN-γ 
regulated pathways38. It is important to point out that none of these pathways by themselves 

can define MDSC. cDNA array analyses of sorted mouse PMN-MDSC and neutrophils 

revealed that PMN-MDSC had a higher expression of genes associated with cell cycle, 

autophagy, G-protein signaling, and the CREB pathway16. Neutrophils, on the other hand, 

had higher expression of genes associated with NF-κB signaling via CD40, IL-1, IL-6, TLR, 

and TNF pathways, as well as lymphotoxin-β receptor signaling. Substantial differences 
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between PMN-MDSC from tumor-bearing and neutrophils from tumor -free mice were 

identified using whole transcriptomic analysis 41. Quantitative proteomics of murine MDSC 

determined that these cells constitute a distinct myeloid population characterized by a 

“kinase signature” and well-defined interactomes42, 43. Thus, it appears that distinct genomic 

and proteomic signatures of MDSC can be developed based on available information but 

more formal validation studies are needed to establish their value.

In addition to gene and protein expression profiles, MDSC are distinguished from 

neutrophils and monocytes by the activity and the expression of specific molecules. Up-

regulation of STAT3 is a hallmark of MDSC as this transcriptional factor is directly 

implicated in the accumulation of MDSC in human and mice37, 44, 45, 46. Interestingly, 

although STAT3 activity is critical for MDSC expansion in bone marrow and spleen, inside 

the tumor, MDSC seem to down-regulate STAT3 activity by a mechanism involving the 

hypoxia-inducible activation of CD45 phosphatase47. This promotes rapid differentiation of 

M-MDSC to TAMs. Down-regulation of IRF8, a member of the interferon related factor 

(IRF) family is closely associated with PMN-MDSC expansion in mice30, 31, 32. A very 

recent study showed that growth of 4T1mammary adenocarcinoma was associated with a 

selective expansion of IRF8lo granulocyte progenitors. These progenitors had an increased 

ability to form PMN-MDSC48. Up-regulation of C/EBPβ, a member of a family of basic-

region-leucine zipper transcriptional factors, is also associated with MDSC expansion 49. C/

EBPβ regulates the expression of arginase (ARG1) and inducible nitric oxide synthase 

(NOS2), which are required for the suppressive functions of MDSC50. RB1 (p105) is a 

member of RB family, that also includes RB2 (130) and p107, which repress E2F and block 

cell proliferation. Low expression of RB1 in M-MDSC was associated with these cells 

ability to differentiate to PMN-MDSC, whereas RB1hi M-MDSC give rise to MΦ and 

DCs51. The accumulation of RB1lo PMN-MDSC has also been described in the PyMT 

transgenic model of breast cancer52.

Immune suppressive activity of MDSC

Another controversial issue in MDSC biology is whether the functional activity of these 

cells is uniquely associated with a specific set of biochemical events. Immune suppression is 

the main feature of MDSC that allows MDSC to be distinguished from monocytes and 

neutrophils in peripheral blood in humans and in spleens of mice. Splenic monocytes in 

mice and monocytes isolated from peripheral blood of humans can acquire immune 

suppressive features upon culture for several days on plastic. This approach is used for 

generation of MDSC in vitro. However, although suppressive activity of these in vitro-

derived cells and some suppressive mechanisms (like NO) are shared with M-MDSC, at this 

moment, it is not clear whether these cells have similar biochemical and genomic profiles. 

MDSC generated from hematopoietic progenitors also have the same issue53, 54. Generation 

of suppressive neutrophils in vitro is a more difficult task probably due to their nature as 

terminally differentiated cells and their very short survival in culture. However, neutrophils 

isolated from healthy donor’s blood acquire potent suppressive activity upon treatment with 

ER stress inducers38.
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M-MDSC are more suppressive than PMN-MDSC when assessed on a per cell basis 23, 36. 

PMN-MDSC and M-MDSC use different mechanisms to suppress immune responses and 

some of the mediators of suppression can be used to distinguish MDSC from neutrophils 

and monocytes. The most prominent factors implicated in MDSC suppressive activity 

includes arginase, NO, up-regulation of ROS and the production of prostaglandin E2 

(PGE2)55, 56, 57. Changes in oxidative phosphorylation and glycolysis in tumors has also 

been associated with the function of MDSC. In mice, glycolysis is increased concurrently 

with increased ARG1 activity in MDSC. Interestingly, AMP-activated protein kinase 

(AMPK) is also activated and normally drives metabolism towards oxidative 

phosphorylation58. A very recent study showed that tumor-infiltrating MDSC preferentially 

use fatty acid β oxidation (FAO) as a primary source of energy. Tumor-infiltrating MDSC 

show increased mitochondrial mass, key FAO-associated genes, and oxygen consumption 

rate59. The inhibition of FAO affects the suppressive functions of MDSC and enhances the 

efficacy of cancer immune therapy.

Endoplasmic reticulum (ER) stress response has emerged in recent years as an important 

mechanism regulating pathologic activation of MDSC and thus critical for their functions. 

The ER stress response is an evolutionary conserved mechanism used by cells for protection 

from dysregulated proliferation, oxidative stress, nutrient deprivation, hypoxia and acidic 

extracellular pH. Three major sensors of ER stress are currently described: protein kinase 

RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating 

transcription factor 6 (ATF6). The transcription factor CCAAT-enhancer-binding protein 

homologous protein (CHOP) is a critical mediator of the PERK pathway, whereas spliced X-

box binding protein-1 (sXBP1) is a mediator of the IRE1 pathway60, 61. In tumor DCs, ER 

stress leads to increased lipid peroxidation and was directly implicated in their defective 

function 62. MDSC from tumor-bearing mice and cancer patients demonstrate a much higher 

ER stress response than neutrophils and monocytes from tumor-free hosts63. Up-regulation 

of PERK and IRE1 pathways was observed. The level of ER stress response at the tumor site 

was substantially higher than in peripheral lymphoid organs in mice 63. The direct cause of 

ER stress induction in MDSC is not clear. However, the functional consequences have been 

identified. Experimental induction of ER stress enhanced the immunosuppressive capacity of 

tumor-infiltrating MDSC by increasing expression of ARG1, NOS2, and NOX264. Tumor 

MDSC from mice deficient for CHOP showed low expression of pSTAT3, decreased 

production of IL-6 and ARG1, which are directly involved in immune suppression. CHOP-

deficient MDSC isolated from tumor-bearing mice had reduced immunosuppressive 

activity65. Increased sXBP1 was observed in human LOX-1+ PMN-MDSC as compared to 

LOX-1− neutrophils38. Moreover, the induction of ER stress in neutrophils isolated from 

healthy donors converts them to potent suppressive cells38. ER stress also controls MDSC 

survival in tumors and favors apoptosis through tumor necrosis factor (TNF)-related 

apoptosis-induced ligand receptor 2 (DR5) and caspase-8 activation63. In fact, targeting 

TRAIL-R2 results in elimination of different populations of MDSC without affecting mature 

myeloid or lymphoid cells in cancer patients66. Another study showed that trabectedin, an 

approved chemotherapeutic agent, induces apoptosis of monocytes and macrophages by 

activating the extrinsic apoptotic pathway downstream of TRAIL receptors67. Consistent 

with these observations, the absence of CHOP was shown to delay apoptosis and prolonged 
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survival of MDSC in cancer65. Other mechanisms of MDSC-mediated immune suppression 

include up-regulation of regulatory T cells and immune suppressive cytokines. They are 

reviewed in detail elsewhere2. Altogether, these unique features of MDSC allow for 

identification of these cells and provide an insight into their biological activity.

How important is the immature state for MDSC biology?

One of the controversial questions of MDSC biology is whether all MDSC are immature 

cells. Large number of studies in mice and humans demonstrated that most of PMN-MDSC 

have a morphology similar to immature granulocytes and in some in vitro studies PMN-

MDSCs are able to acquire characteristic of mature neutrophils upon short term culture16. 

However, a recent report showed that granulocytic MDSC in patients with Hodgkin’s 

lymphoma were mostly composed of mature low-density suppressive neutrophils in an 

activated state68. Another recent study confirms that activated mature neutrophils expressing 

CD10, isolated from G-CSF–treated donors, systemic lupus erythematous and cancer 

patients, also have suppressive properties69. Although more studies are needed to clarify this 

issue, it is likely that pathologic activation of PMN-MDSC would include mature cells.

In tumor tissues, M-MDSC rapidly differentiate into TAMs and inflammatory DCs29, 63. 

These terminally differentiated myeloid cells can persist in tissues for a long time. TAMs 

have a long-established role as inhibitors of immune responses and promoters of tumor 

progression70, 71. Some studies have shown that inflammatory DCs can promote anti-tumor 

T cell responses72, 73. However, it has been also shown that they can contribute to immune 

suppression in tumor-bearing hosts74.

Do MDSC have similar role in different pathologic conditions?

Cancer was historically the first condition where MDSCs were described. We will discuss 

below the data directly implicating MDSC in clinical outcome and response to therapy. In 

recent years, a large body of evidence demonstrated the role of MDSC in regulation of 

immune responses and pathogenesis of many pathologic conditions. The question is whether 

these MDSC have similar origin and function. No direct side-by-side comparison have been 

performed so far. However, analysis of available data (below) may clarify this question.

Cancer

MDSC role in mouse tumor models is well established15. In most of the studies PMN-

MDSC cells expanded the most. In recent years, the clinical role of MDSC has emerged. 

Initial studies monitored MDSC in cancer patients, analyzing total MDSC population 

(PMN-and M-MDSC together). Results showed a positive correlation of MDSC numbers in 

peripheral blood with cancer stage and tumor burden in colorectal carcinomas, breast, 

bladder thyroid and NSCLC75, 76, 77, 78, 79, 80, 81. In melanoma and breast cancer, both 

PMN- and M-MDSC numbers correlate with stage and metastasis82. In a meta-analysis, 

elevated numbers of MDSC in the circulation was found to be an independent indicator of 

poor outcomes in patients with solid tumors83. Accumulation of M-MDSC in peripheral 

blood was associated with shorter progression-free interval (PFI) and/or overall survival 
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(OS) in NSCLC, colorectal, bladder, thyroid and uterine cervical cancer81, 84, 79, 85, 80, 86. In 

melanoma and hepatocellular carcinoma, both PMN- and M-MDSC correlated with poorer 

outcomes82, 87. In non-solid tumors, M-MDSC numbers correlated with reduced survival in 

multiple myeloma, Hodgkin and non-Hodgkin lymphoma and diffuse large B cell 

lymphoma88, 89, 68. Notably, most of the studies consider only circulating MDSC, but some 

attention should also be paid to tumor infiltrating cells. In one report, neutrophil (CD66b+) 

infiltration in colorectal cancer tissue was associated with good prognosis90. TANs can also 

contribute to tumor progression, upregulating tumor proliferation pathways, promoting 

angiogenesis and supporting tumor extravasation by disrupting the extracellular matrix 

(reviewed in 91). Until recently, histological studies presented technical challenges since 

multiple markers were required to identify MDSC. Introduction of multiplex 

immunohistochemistry and new markers of MDSC (like LOX-1) should help address this 

problem.

Recent studies demonstrated the value of MDSC in predicting the response to various cancer 

therapies. The frequency of M-MDSC numbers negatively correlated with the response to 

chemotherapy in breast, cervical, prostate and colorectal cancer 78, 86, 92, 84 squamous cell 

carcinoma, multiple myeloma and Hodgkin lymphoma93, 94, 95 ; similarly, PMN-MDSC 

numbers negatively correlated with chemotherapy response in colorectal cancer 84. M-

MDSC numbers were a predictor of radiotherapy failure in hepatocellular carcinoma77, 96. 

High numbers of circulating MDSC have been associated with vaccine failure in melanoma, 

NSCLC and colon adenocarcinoma97, 98. The percentage of circulating M-MDSC and PMN-

MDSC negatively correlated with objective clinical response to Ipilimumab (CTLA-4 

antibody) in patients with unresectable melanoma 99, 100, 101. Moreover, in melanoma, M-

MDSC frequency could predict the failure of the second line immunotherapy using anti-PD1 

antibody (Nivolumab) after failure of first line Ipilimumab treatment102. Recent studies in 

mouse tumor models showed that MDSC inhibition during immunotherapy increases its 

therapeutic effect103, 104, 105, 106, 107, 108.

Infectious diseases

Many studies have shown that bacteria (both Gram-positive and Gram-negative) can induce 

or modulate MDSC in vitro and in vivo (reviewed in109). In some studies, subpopulation of 

MDSC have not been analyzed in detail, thus we refer to those studies with the broader 

definition of “MDSC”.

In Staphylococcus aureus infection models, M-MDSC and PMN-MDSC numbers expand 

and suppress T cells110, contributing to the aggravation of infection111. Mycobacterium 
tuberculosis induced expansion of PMN-and M-MDSC suppressive activity in mice112. 

Patients with sepsis exhibited expansion of MDSC numbers. PMN-MDSC were expanded 

mainly in sepsis caused by gram-positive pathogens, while M-MDSC expanded in response 

to gram-positive or gram-negative pathogens113. Sepsis-associated MDSC have upregulated 

ARG1 expression and are associated with adverse outcome114. MDSC expansion after 

bacterial infection does not always translate to worse outcome. In Pseudomonas.aeruginosa 
and Klebsiella pneumoniae, MDSC expansion is associated with host protection and better 

outcome115. It appears that in early stages of sepsis (as probably in other infectious as well) 
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accumulation of neutrophils and monocytes with potent anti-pathogen activity protect the 

host. MDSC are probably either not present or present at very low frequency. However, if 

infection is not resolved, the frequency of MDSC increases gradually and these cells exert an 

immune suppressive effect on adaptive immunity, which is very similar to the situation 

observed in cancer

Human pathogenic fungi could regulate the immune system and directly induce MDSC 

accumulation. In these studies, MDSC were monitored as Gr1+CD11b+ cells without further 

distinction between PMN- and M-MDSC. Albicans fumigatus and Candida albicans induced 

MDSC through the recognition of the receptor Dectin-1. Interestingly, MDSC were 

protective against C.albicans infections, but not A.fumigatus infection116. In a follow up 

study, the same group demonstrated that MDSC induction and suppressive activity on T 

cells were dependent on the Candida species117. MDSC expanded in mouse and rat models 

of P. pneumonia infection where MDSC exert their function through ARG1 and NOS2, and 

contribute to a more severe infection118.

M-MDSC are expanded in patients with chronic hepatitis C virus (HCV) infection. This 

accumulation correlated with the disease progression and response to antiviral therapy119. 

Different studies report ROS production120 or ARG1119 as the main mechanisms for MDSC 

mediated T cell suppression. HCV-induced MDSC could directly inhibit NK cell activities 

via ARG1-independent mechanisms121, 122. In vitro studies show that HCV directly induces 

M-MDSC through TLR2-STAT3 signaling. These MDSC stimulate Treg cell accumulation 

and inhibit CD4+ T cell proliferation123.

M-MDSC are also expanded in HIV-1-infected individuals and suppress T cell function via 

ARG1124, 125. Similarly to HCV, HIV directly induced expantion of M-MDSC126 that 

promoted differentiation of Tregs cell127. PMN-MDSC may induce T-cell anergy by 

suppressing CD3ζ expression and inhibiting CD8+ T cells through PD-L1-PD1 

interaction125, 128. PMN-MDSC accumulation in patients with primary HIV-1 infection may 

be regulated by TRAIL and GM-CSF levels and positively correlates with disease 

progression128, 129. Thus, in infectious diseases, accumulation of MDSC, their functional 

activity, as well as major biochemical features closely resemble cancer-associated MDSC.

Autoimmune disorders

If in cancer and infectious disease MDSC activity is deleterious for patients, the role of 

MDSC in autoimmune disease is more complex. It has been shown that MDSC are expanded 

in murine models and patients with autoimmune diseases130. Nevertheless, MDSC role in 

this process is not established, with contrasting studies showing positive and negative roles 

for MDSC in regulation of disease progression. Systemic lupus erythematosus (SLE) is a 

systemic autoimmune disorder, with high cellular infiltration of organs. In mouse models, 

MDSC suppressed CD4+ T cell proliferation via ARG1 and were expanded in peripheral 

blood and kidney during disease progression131. The ability of MDSC to expand regulatory 

B cells has also been demonstrated132. However, in lupus-prone mice MDSC function was 

found to be impaired suggesting that SLE development is associated with a defect in 

MDSC133. A recent study demonstrated that M-MDSC and PMN-MDSC are both expanded 
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in peripheral blood of SLE patients and their frequency positively correlates with serum 

ARG1 concentration, TH17 cell responses and lupus severity134.

Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to inflammation of 

multiple joints, progressing to cartilage destruction and bone erosion. Initial studies in a 

mouse collagen induced arthritis (CIA) model showed that suppressive MDSC accumulate 

in the spleen and adoptive transfer of MDSC reduced the severity of RA by blocking the 

CD4+ T cell pro-inflammatory immune response135. MDSC lost suppressive activity during 

arthritis development, thus failing to control the disease135. M-MDSC isolated from BM of 

CIA mice were also able to inhibit B cell proliferation and function, improving CIA 

outcome136. In support of a beneficial role of MDSC in RA models, synovial fluid of RA 

patients contained PMN-MDSC, that were able to suppress T cell activity in vitro137, 

similarly to what was previously shown in mice138. Moreover, circulating MDSC in patients 

with RA negatively correlates with TH17 cells and plasma arginin concentrations139. 

Recently, it has been reported that MDSC could have the opposite role by promoting RA 

onset in mice by sustaining TH17 cell differentiation. MDSC infiltration in arthritic joints 

positively correlated with high disease activity, but MDSC frequency in peripheral blood 

negatively correlated with TH17 cell numbers136. Overall, RA studies consistently report 

beneficial effects of MDSC adoptive transfer for inhibiting RA progression in mouse models 

consistent with the suppressive activity of these cells, but MDSC recruitment shows 

inconsistency with TH17 and Treg cell expansion and RA onset. This inconsistency could be 

due to the heterogeneity of the myeloid cell population discussed above, with variable 

frequencies of MDSC present in the total population of myeloid cells. Several studies have 

also associated MDSC with inflammatory bowel disease (IBD). MDSC reduced severity of 

experimentally-induced colitis in mice140. In IBD patients, M-MDSC were expanded and 

their frequency was associated with disease activity141.

Thus, the importance of MDSC in autoimmune diseases is evident. However, in contrast to 

cancer and infectious diseases, the expansion of MDSC is less prominent, which results in a 

larger heterogeneity of the myeloid population and variable frequency of MDSC among 

myeloid cells, which may result in contradictory results. This heterogeneity is apparently 

due to the different severity of autoimmune diseases and specifics of the microenvironment.

Obesity and pregnancy

Obesity is associated with chronic inflammation and linked to increased risk of breast, 

prostate, and colorectal cancer, as well as cardiovascular metabolic disorders and type 2 

diabetes mellitus142143. The metabolic changes in the microenvironment associated with 

obesity and the associated chronic inflammation led to the hypothesis that MDSC could play 

a role in maintaining immune homeostasis in obese subjects. In a diabetes mouse model, 

MDSC were able to down-regulate immune responses and prevent diabetes onset144. Tissue-

infiltrating MDSC were crucial in controlling obesity-associated inflammation and 

increasing insulin sensitivity. MDSC suppressed CD8+ T cells by NOS2 and IFN-γ-

dependent mechanisms. MDSC also induced M2 MΦ polarization, probably through 

IL-10145. Obese subjects are often susceptible to infections and poorly respond to vaccines. 

This observation could be explained by MDSC expansion and consequent suppression of T 
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and B cell functions as was demonstrated in obese mice146. There are few human studies in 

the field, but it was reported that M-MDSC numbers were increased in the peripheral blood 

of obese subjects147. Recent work showed that obesity caused expansion of neutrophils in 

mouse lungs, enhancing breast cancer metastasis through IL-5 and GM-CSF148 (Fig. 3a).

Insulin resistance promotes metabolic syndrome development, characterized by elevated 

serum inflammatory cytokines and high macrophage infiltration in adipose tissue. 

Macrophages accumulate in adipose tissue as obesity progresses and in late obesity M2 

macrophages are induced in parallel with MDSC infiltration of adipose tissue (reviewed in 
149). Insulin resistance could be the result of adaptation to bacterial infection in order to 

provide glucose to M1 macrophages, which rely on glycolysis. M2 macrophages, instead, 

rely on oxidative phosphorylation (reviewed in 150). Increased concentrations of IGF-1 and 

estrogens associated with insulin resistance and obesity can directly polarize myeloid cells 

in adipose tissues to the M2 phenotype 151, 152. The obesity microenvironment can also 

induce differentiation of M2 macrophages to M1 macrophages, that then recruit T cells153 

and induce monocytes migration via CCL2154. In vitro, macrophages coming from obese 

subjects or exposed to conditions mimicking the obese microenvironment showed increases 

in migration and upregulation of markers of TAM. In the same study, it was also 

demonstrated that obesity promoted macrophages infiltration in the prostate tumor 

microenvironment, and induced TAM polarization through the COX2-PGE2 pathway155.

Maternal-fetal tolerance is critically important for normal pregnancy. Pregnancy failure 

(miscarriage, implantation failure, preterm birth, preeclampsia) is associated with 

dysregulation of the immune system (reviewed in156). Early observations in mice showed 

that MDSC accumulate in mouse placenta157 and their level decreased towards the time of 

delivery. Subsequently, MDSC expansion has been observed in peripheral blood and the 

uterus of pregnant mice, in association with anti-inflammatory functions158. MDSC 

recruitment was driven by CXCR2159, and progesterone supported MDSC differentiation 

and activation via STAT3 signaling160. MDSC suppressed T cells either via ARG1161 or 

ROS production160 or by preventing T cell activation by down modulating L-selectin 

expression on naïve T cells162.

During human pregnancy, MDSC are expanded in peripheral blood163 and decidua164 of 

healthy pregnant women and rapidly drop to normal levels after birth165. Reduction of 

MDSC in peripheral blood, endometrium and placenta is associated with early 

miscarriage166, and low level of arginine and reduced NOS2 expression in placental tissues 

are found in women with preeclampsia167,168. A study demonstrated that MDSC are 

expanded during the first trimester, with a decrease towards the third166. Conversely, another 

study observed that MDSC are equally expanded during the entire gestation period. In this 

study, the main population of MDSC expanded in peripheral blood was PMN-MDSC, 

expressing ARG1 and NOS2 and producing high ROS levels165.

During pregnancy, estradiol expand M-MDSC in the circulation via STAT3 activation that 

suppressed T cells in a ROS-dependent fashion160. Conversely, in placental tissue, M-MDSC 

were expanded by CCL2 and overexpressed IDO1, ARG1 and COX2168. PMN-MDSC in 
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the placenta could also interact with other immune system cell populations, directly 

expanding Tregs cells via the TGFβ-β-catenin pathway161 (Fig. 3b).

MDSC expansion is rapidly canceled in post-partum women, but MDSC are found expanded 

in neonates during the first month of life. In neonates, the expanded MDSC are mainly 

PMN-MDSC that suppress T cells in a contact-depended manner and reduce IFN-γ 
production. PMN-MDSC decrease rapidly in the first 6 week of life and reach adult levels 

by 6 months of age169. In the same studies, PMN-MDSC were found expanded in the cord 

blood (CB), where their frequency correlated with the proliferative capacity of T cells upon 

stimulation in vitro. M-MDSC and PMN-MDSC expansion in CB modulated the adaptive 

immune response170. PMN-MDSC from CB directly inhibited TH1 cell responses and 

induced TH2 responses and Treg cells. In this setting PMN-MDSC mediates suppression via 

expression of ARG1 and NOS2, production of ROS, and degradation of tryptophan by IDO 

expression171. Neonatal PMN-MDSC show reduced apoptosis and immunosuppressive 

activity upon infection with Escherichia Coli172. A recent study shows that M-MDSC were 

expanded in neonates and respond to microbial stimulation173. Mouse studies from the same 

group showed that S100A8/A9 prevented expansion of these cells and prevented death from 

septic shock173. Studies in humans showed that S100A9 secretion protected neonates from 

sepsis by regulating MyD88-dependend gene programs174. Thus, MDSC in pregnancy 

mainly follows the pattern observed in cancer and is apparently one of the important 

regulators of fetal-maternal tolerance. Because of limited information, at this time the 

biological role of MDSC in newborns is not clear. It is possible that MDSC has evolved as a 

protective mechanism limiting inflammation associated with bacterial colonization of the 

gut.

Conclusions

MDSC are now recognized as one of the major negative regulators of immune responses in 

many pathologic conditions. The challenge is to identify specific markers of these cells that 

allow for easy phenotypical distinction of MDSC from neutrophils and monocytes in mice 

and to expand the already existing panel of markers in humans. This would allow for better 

understanding of the biology of these cells. It appears that in contrast to Treg cells or 

checkpoint molecules, MDSC are not present in steady state condition. This opens a unique 

opportunity to target these cells without possible side effects. Understanding the molecular 

mechanisms regulating the accumulation and function of these cells allow for more precise 

targeted therapy. The clinical significance of MDSC in cancer and in some infectious 

diseases is now established. The next step is to determine whether targeting MDSC may 

provide tangible clinical benefits. The next several years will provide an answer to this 

question.
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Figure 1. 
Pathologic activation of neutrophils and monocytes. (a) In the presence of strong activation 

signals coming from pathogens in the form of toll-like receptors ligands (TLRL), damage 

associated molecular pattern (DAMP), pathogen-associated molecular patterns (PAMP) 

molecules monocytes and neutrophils are mobilized from the BM. This response results in 

classic myeloid cell activation. (b) In the presence of weak activation signal mediated mostly 

by growth factors and cytokines, myeloid cells undergo modest but continuous expansion. 

Pro-inflammatory cytokines and ER stress responses contribute to pathologic myeloid cells 

activation that manifests in weak phagocytic activity, increased production of reactive 

oxygen species (ROS), nitric oxide (NO), arginase 1 (not expressed in human monocytes 

and M-MDSC) and prostaglandin-E2 (PGE2). This results in immune suppression.
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Figure 2. 
MDSC differentiation and accumulation. Neutrophils and monocytes are differentiated in 

bone marrow from hematopoietic progenitor cells (HPC) via common myeloid progenitors 

(CMP) and granulocyte-macrophage progenitors (GMP). Neutrophils differentiation 

progress through several progenitor and precursors stages. Among them are myeloblasts 

(MB), myelocytes (MC), metamyelocyte (MM), band forms (BF). Monocytes originate from 

monocyte/macrophages and dendritic cell (MDP) precursors. Under pathologic conditions, 

immature myeloid cells are expanded and converted to immunosuppressive MDSC. In early 

stages cells with some biochemical features of MDSC do not have suppressive activity and 

can be called MDSC-like cells. In cancer patients, in any given moment neutrophils and 

monocytes and pathologically activated MDSC co-exist, with accumulation of more MDSC 

during tumor progression. In tumors, M-MDSC rapidly differentiate in tumor associated 

macrophages (TAM) and inflammatory dendritic cells (infl DC).

Veglia et al. Page 25

Nat Immunol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
MDSC role in obesity and pregnancy. (a) MDSC are expanded in obese subjects due to 

chronic inflammation and contribute to increase insulin sensitivity. MDSC in obese subjects 

directly inhibit T cells via NO secretion and induce macrophage differentiation to the M2 

phenotype via IL-10 secretion, leading to increased susceptibility to infections. Moreover, 

increased MDSC increases cancer risk and favors metastatic spread of early stage cancers. 

(b) During pregnancy MDSC are expanded and are crucial for successful pregnancy. In 

pregnant women MDSC suppress T cells via ROS and Arg-1 thus sustaining maternal-fetal 

tolerance. Moreover, MDSC are expanded also in cord blood (CB) and neonates protecting 

newborns from infections and harmful inflammation.
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