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Abstract

Background—=Clinical trials increasingly aim to retard disease progression during pre-
symptomatic phases of Mild Cognitive Impairment (MCI) and thus recruiting study participants at
high risk for developing MClI is critical for cost-effective prevention trials. However, accurately
identifying those who are destined to develop MCl is difficult. Collecting biomarkers is often
expensive.

Methods—We used only non-invasive clinical variables collected in the National Alzheimer’s
Coordinating Center (NACC) Uniform Data Sets version 2.0 and applied machine learning
techniques to build a low-cost and accurate Mild Cognitive Impairment (MCI) conversion
prediction calculator. Cross-validation and bootstrap were used to select as few variables as
possible accurately predicting MCI conversion within 4 years.

Results—31,872 unique subjects, 748 clinical variables and additional 128 derived variables in
NACC data sets were used. 15 non-invasive clinical variables are identified for predicting MCI/
aMClI/naMCI converters, respectively. Over 75% Receiver Operating Characteristic Area Under
the Curves (ROC AUC) was achieved. By bootstrap we created a simple spreadsheet calculator
which estimates the probability of developing MCI within 4 years with a 95% confidence interval.

Conclusions—We achieved reasonably high prediction accuracy using only clinical variables.
The approach used here could be useful for study enrichment in pre-clinical trials where enrolling
participants at risk of cognitive decline is critical for proving study efficacy, and also for
developing a shorter assessment battery.
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Introduction

Clinical trials increasingly aim to retard disease progression during pre-symptomatic phases
of Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD), when it is more likely
that pathologic changes can be arrested or reversed!-2. Recruiting study participants at high
risk for developing MClI, i.e., study enrichment, is critical for cost-effective prevention
trials34. Pre-symptomatic populations include both those who will convert to MCI (true at-
risk subjects) and those who will retain normal cognitive status over time (false at-risk
subjects). As little or no prevention effects can be detected among false at-risk subject in
conventional trial durations, the higher the fraction of this group in trials, the more
challenging to demonstrate intervention efficacy. Sample size power calculations are
especially problematic as these estimates are often based on longitudinal trajectories of
cognitive or functional outcomes among those who developed MCI vs. those who retained
normal cognitive status during follow-up in prior studies. In reality, when recruiting at-risk
subjects, some proportion of subjects will not experience cognitive decline as expected,
reducing power to detect intervention efficacy.

Biofluid and imaging biomarkers are extensively evaluated as early indicators of
pathological processes in clinical AD®, but assessing these biomarkers is expensive and
often challenging to apply widely among pre-symptomatic older adults. Recent findings
suggest neuropsychological test results (i.e., involving less invasive methods and interviews
only) might have as high discriminatory ability as biofluid or imaging biomarkers in
stratifying at risk subjects®. It would be advantageous to use non-invasively collected clinical
variables to identify accurately those at high risk for developing MCI within conventional
trial durations. The National Alzheimer’s Coordinating Center (NACC) was established by
the National Institute on Aging (NIA, U01 AG016976) in 1999 to facilitate collaborative
research among Alzheimer’s Disease Centers (ADCs) across the United States. NACC
developed and maintains a large relational database of standardized clinical and
neuropathological research data called the Uniform Data Set (UDS) and standardized
neuropsychological test results. Data are uploaded to the central repository from each ADC,
with data cleaned and ready to be distributed to research communities (https://
www.alz.washington.edu/). This dataset contains over 30,000 subjects (December, 2016).
We applied big data analytics approaches to this rich dataset to derive the best model for
distinguishing those developing MCI within a 4 year follow-up period from those retaining
normal cognition. Previous study concluded that it is more cost effective to improve
specificity than sensitivity.3 4 Therefore, we aimed to select the model with the highest
specificity in the current study. By estimating weights of selected variables, we also
developed a risk score calculator based subjects baseline characteristics to obtain the
probability of conversion to MCI within 4 years.
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We used the clinical variables collected in the National Alzheimer’s Coordinating Center
(NACC) Uniform Data sets version 2.0 (UDS 2.0) downloaded April 2015. Thirty four
National Institutes of Health (NIH) funded Alzheimer’s Disease centers contributed the data.
UDS visits conducted between September 2005 and March 2015 was included. The dataset
contained 31,872 unique subjects. Out of 31,872 subjects, 15,516 subjects (48.7%) had three
or more visits/assessments and 4 years of follow-up. Among them, 7026 subjects had normal
cognition at baseline and were used in the current analyses. Out of 7026 subjects, 5883
subjects retained intact cognition (stable normal) during follow-up and 1143 subjects
developed MCI or dementia within 4 years from their baseline evaluations (converters); 748
clinical variables were collected at initial visits and additional 128 derived variables were
computed from UDS Version 2.0. After initial cleaning of variables (treating missing values
correctly and re-categorizing responses if they are ordinal or categorical responses), 348
variables were included as candidate variables in analyses to select informative variables.

MCI incidence was determined based on consensus meetings at each ADC. The amnestic
MCI category includes single and multi-domain amnestic MCI. Non-amnestic MCI was
MCI without memory impairment.

Statistical model

Our aim is to differentiate between those who converted to MCI and/or dementia within 4
years versus those retaining normal cognition. We compared discriminatory abilities
indicated by Receiver Operating Characteristics Area Under Curve (ROC AUC) by using the
following classifiers: Support Vector Machine (SVM), Logistic Regression (LR), and
Random Forest (RF). For each classifier, we examined the following univariate feature

selection methods: Information Gain (InfoGain)’, X*-test (Chi2)8, minimum Redundancy
Maximum Relevance Feature Selection (MRMR)?, Gini-index (Gini)10, BLogReg!, Fisher
scorel2, and Kruskal-Wallis test (KW)13 . Briefly, InfoGain analysis first calculates the
information gain for each clinical variable independently and then the features with specified
numbers of highest information gains are selected as informative variables. Chi2 uses chi-
square test to estimate the independence between clinical variables and diagnostic

categories. A high value of X statistic indicates the failure of the hypothesis of
independence of the two variables, indicating the high associativity of clinical variables and
diagnostic categories. The mRMR selects the variables one-by-one where the selected
variables are maximally relevant to the diagnostic categories and their dependence between
each other is minimized. The Gini feature selection uses the Gini-index as the measurement
of dependence between clinical variables and diagnostic categories. The BLogReg models
the feature/label dependence based on an improved sparse logistic regression algorithm. The
Fisher score feature selection is based on a so-called Fisher criterion to select variables. This
criterion prefers the feature presentation where the distance of the same type of subjects is
minimized while the distance of different type of subjects is maximized. The Kruskal-Wallis
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test is a non-parametric statistical test method to detect the independence between clinical
variables and diagnostic categories. It is a non-parametric method applicable to non-
Gaussian distributions but may require more samples. The above methods are implemented
by the software package FeatureMiner4. In addition to the above univariate feature selection
approaches, jointly feature selection method based on L1-norm regularizer such as LASSO
is another popular approach to simultaneously select features and learn feature weights. We
use the liblinear!® implementation of sparse Logistic Regression in our experiment (listed as
LR-LASSQO in Table 2). The parameters of LR-LASSO are tuned by five-fold cross-
validation and subsampling in the same way as in the univariate feature selection approach.

Our first experiment is to find the best trade-off between the number of selected clinical
variables and the discriminative power of the classifiers trained on these variables. We first
examined the gain in ROC AUC by selecting top 10, 15, 20 and 25 variables. Preliminary
study showed that after selecting 15 variables, there were little further gains in AUC by
increasing the number of variables to predict MCI converters i.e., ROC AUC stabilizes after
15 variables (see Figure 1). Therefore, we used 15 variables as the number of candidate
variables for ROC AUC for each model.

We randomly split 7026 subjects into 5 folds and used 4 folds for training and 1 fold for
testing (i.e, 20% of the data is for testing). We repeated the five-fold cross-validation 100
times and then averaged over trials. We compared the average accuracy, sensitivity,
specificity and AUC of each model for identifying converters. We first assessed incidence of
overall MCI conversion, followed by limiting the outcomes to incidence of amnestic MCI or
to incidence of non-amnestic MCI. Our focus was to find predictors of MCI incidence, but
some subjects received diagnoses of dementia without prior incident MCI incidence (MCI
skippers). These subjects were included as incidence of overall MCI if the transition to
dementia occurred within 4 years from baseline assessment, presupposing that these subjects
went through an undetected MCI stage prior to diagnoses of dementia. If responses to
questionnaire items are yes/no, we created one dummy variable. If responses are categorical
with multiple response categories, we created multiple dummy variables with the lowest
category as a reference group. Other variables were treated as continuous variables in all
models.

Since we used cross-validation and sub-sampling, the feature weights are random variables
derived from multiple trials. We applied bootstrap method to estimate the mean value and
the standard deviation of the feature weights. Once we estimated the mean value and the
standard deviation, we generated the 95% confidential intervals using these values and a
standard approach: Let the number of bootstrap loops be n, the empirical mean value be #
and the standard deviation be . The lower bound . and the upper bound x, of the 95%
interval is given by

g

Vi

g

x_=p — 1.96
vn

X4+ =p+1.96

Using the weights, we were able to estimate the probability of each subject converting to
MCI by using his or her information for the selected variables. Given a new subject, we first
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use the 100 SVM models to predict his/her affiliation of normal or MCI. Then we could
estimate the probability of this patient converting to MCI by counting how many SVM
models give positive predictions. Similarly, the 95% confidence interval was estimated as
described above. Probability calculators in excel formats were generated.

Table 1 shows baseline characteristics of the overall study cohort, incident MCI groups, and
subjects retaining normal cognition. Mean age (std) of the total sample used here was 76.0
(10.0) with 66.1% female. Table 2 shows top-10 models with the highest AUC for predicting
each outcome (MCI, aMCI and naMCI). AUC, accuracy, sensitivity and specificity are
shown. There were not large differences in AUC across models within each outcome as
shown in 2a, 2b, and 2c. For overall MCI, AUC was around 0.76 in all models and for aMCl
around 0.77. For naMCI, AUC was slightly lower, ranging from 0.72 to 0.73. In addition to
AUC, the specificity is of significant importance for cost-effective trial enrichment design®.
Therefore, we chose the model with best specificity among the top-10 AUC models. The
chosen models are exhibited in Table 2 with bold fonts.

Tables 3a — 3¢ shows the 15 variables selected as predictors of outcomes and their
descriptions. Tables 4a- 4c summarize predictor variables specific to aMCI (4a), naMCI
(4b), common to both subtypes (4c) and those selected only when overall MCI (including
MCI skippers) was an outcome (4d). We also list weights for each variable in Supplemental
table (Table S1:a-c) where weights are averaged weights over the five-fold cross-validation
which were repeated 100 times. Predictor variables specific for aMCI incidence included
older age, lower logical memory immediate and delayed recall scores (latter with a higher
weight than the former), clinician’s impression of subject’s memory decline, difficulty in
travelling independently, Unified Parkinson’s Disease Rating Scale (UPDRS) non-
dopaminergic deficiency indicators, and an indicator that subjects had motor neuron disease.
However, the motor neuron disease variable has a very low weight (0.002) compared with
other selected variables (see supplemental Table 1b). For example, one rank before this
variable has weight of —0.015 (verbal fluency category animals) and therefore there is a
large gap in importance in predicting an aMCI outcome between the 14t and 15t variables.
For aMCI outcome, 14 variables are sufficient. naMCI specific variables included more
frequent falls, disease status at enrollment (not being proband (those with 15t degree relatives
being diagnosed as AD)), motor slowing, lower Boston naming test scores, lower length of
digit span backwards, impairment in CDR’s judgment/problem solving component, and
having tremor. Variables selected across both MCI sub-types included (from high to low
weights in order) UDS cognitive status based on UDS neuropsychological test results,
informant’s report of a decline in subject’s memory, lower category fluency vegetables
score, lower digit symbol scores, higher Trail B scores (i.e., taking longer time to complete),
higher CDR sum of box, impairment in memory component of CDR and category fluency
animals. Finally, using these selected variables and weights generated from models, we
created Excel calculators which estimate probability of converting to MCI, aMCI and
naMCI diagnoses within 4 years, given specific characteristics of subjects (Supplemental
excel sheets 1 — 3), with 95% confidence interval of the probabilities.
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Discussion

As clinical trials increasingly target pre-symptomatic subjects, enriching study populations
with those likely to convert to MCI within conventional trial durations may reduce required
sample sizes and costs associated with evaluating study participants®4. NACC UDS is used
in all NIH-funded Alzheimer’s disease centers in the United States and the approach shown
in this study may be useful for selecting candidate subjects for preclinical trials from the
NACC sampling pool. In addition to enriching clinical trial samples, it proved possible to
create a short battery of selected variables and associated weights for screening at-risk
subjects when administering long batteries such as UDS is not feasible. Our results showed
that we could achieve over 75% AUC and over 70% specificity in distinguishing incidence
of MCI within 4 years from those who remained normal cognition without invasive and
costly indicators such as biofluid or imaging biomarkers.

The selected variables predicting MCI incidence, which include age, CDR sum of boxes and
CDR memory score, cognitive domains that tap memory (logical memory immediate and
delayed test scores) and executive functions (Trail B, category fluency), attention (digit
symbol), informant’s report of subject’s memory decline, are all well-established predictors
of MCI. Two financial management abilities — managing taxes and paying bills — are also
known FAQ items which decline early in the course of dementing disorders!6-19, For
predicting conversion to MCI, aMCI, and naMClI, useful predictor variables included items
from the UPDRS, history of falls, presence of tremor (captured in UPDRS), bradykinesia,
hypomimia, and speech changes. The selection of motor slowing is consistent with previous
findings where decline in walking speed was an early indicator of cognitive impairment20-22,
The inclusion of motor items among our useful variables emphasizes the utility of a careful,
standardized motor evaluation, much of which is captured by the widely used and easily
implemented UPDRS scale. This result may reflect the impact of forebrain amyloid burden
on motor function23,

One recent study applied a multimodal SVM method to identify those who converted from
normal cognition to MCI or AD (vs. stable normal) within 24 months using Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study participants?4. Applying the modalities
which include selected features of MRI, AV45-PET, and FDG-PET, they showed 70%
accuracy, 75% sensitivity and 67% specificity in predicting MCI converters. Also using
ADNI cohort, another study2® examined the predictive ability of FDG-PET a priori specified
ROI in identifying MCI converters. This study obtained 82% AUC ROC, identifying 11
subjects who received diagnosis of MCI or AD dementia within 4 years out of 54 initially
healthy control subjects. After including results of Trail Making Test B, the AUC improved
to 93.4%. In another study of ADNI participants5, the authors used a model combining
MRI & FDG-PET measures to achieve 81.2% accuracy (80.0% sensitivity, 82.4%
specificity) in predicting MCI converters within 4 years. Unlike past studies, we used only
clinical variables and obtained the possible combination of items with each variable
weighted to maximize prediction of MCI converters. During ADC consensus conferences,
clinicians and neuropsychologists gather all clinical information available, including those
obtained in previous assessments and establish clinical diagnoses. Experienced clinicians
weigh all the available information and provide the best possible judgment. Our approach
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can be regarded as an algorithmically operationalized summary of clinical judgments
predicting clinical MCI incidence within 4 years. Based on estimates obtained from these
models, we generated user friendly Excel spreadsheets which return the probability of
developing MCI, aMCI, and naMCI with 95% confidence intervals.

Clearly selecting a population to maximize treatment benefit (predictive enrichment, e.g.,
selecting those with high amyloid burden for anti-amyloid trials) is critical. If not, the trial is
likely to fail due to lack of benefits among the experimental group. It is ideal if our proposed
risk calculation approach based solely on clinical variables could be combined with a
biomarker-based enrichment strategy. This will likely ensure the efficacy shown in clinical
outcomes (not just biomarker modifications) as well as reduction in cost of following false
positive subjects longitudinally.

Limitations of our analyses include potential sampling bias. Those enrolling in ADC cohorts
are not representative community samples, even when subjects exhibit normal cognition.
Therefore, application of probability calculators to non-NACC data might not be valid. The
education level of this group, for example, is likely above the population average. This may
limit generalizability of our study results. Even though standard criteria and procedures are
applied across all ADCs, there may be some variability in selection and diagnoses factors
among centers?/:28,

The neuropsychological (NP) test battery in UDS used in the current study (\ersion 2.0) was
replaced by new tests in March of 2015 (Version 3)29 as part of an effort for NACC to use
non-proprietary cognitive tests (see detail: https://www.alz.washington.edu/WEB/
researcher_home.html). Once data with Version 3 NP test battery are accumulated, we plan
to construct an equivalent calculator based on the new battery. We will post our current
conversion probability calculator on the NACC researcher website, after permission from
NACC, for wider use among AD center researchers. Considering uncertainty in
psychological distress posed by disclosing estimated probability of getting MCI diagnosis,3°
our plan is to release the calculator only for research purposes.

Conclusions

Using only non-invasively collected clinical variables, we achieved over 75% ROC AUC for
identifying subjects converting to MCI within 4 years of initial evaluations. The proposed
variable selection and MCI converter identification approaches may be useful in clinical trial
enrichment and also assist in creating a shorter battery for screening at-risk subjects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AUC of the best model varying with number of predictor variables (features)

[The x-axis is the number of variables]
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Table 4

Predictor Variables Specific to aMCI or naMCI (Listed in order of from high to low weights)
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(Yes)

Variable Description | Direction
Table 4a. Predictor Variables Specific to aMCI
NACCAGEB | Age at assessment +
NACCZLMD | Age-, sex-, and education-adjusted z-score for Logical Memory 1A-Delayed total _
DECCLIN Does the clinician believe there has been a current meaningful decline in the subject’s memory, non-memory +
cognitive abilities, behavior, or ability to manage his/her affairs, or have there been motor/movement changes
relative to previously attained abilities? (Yes)
TRAVEL In the past four weeks, did the subject have any difficulty or need help with traveling out of the neighborhood, +
driving, or arranging to take public transportation.
NACCZLMI Age-, sex-, and education-adjusted z-score for Logical Memory 1A-Immediate total number of items recalled _
NACCLEVB | Levy B score for levodopa-nonresponsive symptoms: UPDRS non- dopaminergic deficiency. +
NACCMND Subjects for whom a clinical diagnosis of “motor neuron disease” is indicated in the form (Yes) +
Table 4b. Predictor Variables Specific to naMCI
MOFALLS Does the subject fall more than usual? (Yes) +
PRESTAT Presumed disease status at enroliment. (case or proband) -
MOSLOW Slowness (Has the subject noticeably slowed down in walking or moving or handwriting, other than due to an +
injury or illness? Has his/her facial expression changed, or become more “wooden” or masked and
unexpressive?) (Yes)
NACCZBOS | The Boston Naming Test -
Age-, sex-, and education-adjusted z-score for the Boston Naming Test score
NACCZDBL | The length on the Digit Span Backward test -
Age-, sex-, and education-adjusted z-score for Digit Span Backward length
JUDGMENT | Judgment & problem solving in CDR +
MOTREM Tremor (Has the subject had rhythmic shaking, especially in the hands, arms, legs, head, mouth or tongue?) +

Table 4c. Predictor variables common to both aMCI and naMClI incidence (In the order of from high to low weights appeared for aMCl

1 = Slight loss of expression, diction and/or volume.
2 = Monotone, slurred but understandable; moderately impaired.
3 = Marked impairment, difficult to understand.
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incidence)
COGSTAT Based on the UDS neuropsychological examination, the subject’s cognitive status is deemed: +
1 = Better than normal for age
2 = Normal for age
3 =0One or two test scores abnormal
4 = Three or more scores are abnormal or lower than expected
DECIN Does the informant report a decline in subject’s memory relative to previously attained abilities? (Yes) +
NACCZVEG | Total number of vegetables named in 60 seconds -
Age-, sex-, and education-adjusted z-score for Category ‘vegetables’
NACCZWAI | Age-, sex-, and education-adjusted z-score for the WAIS-R Digit Symbol score -
NACCZTRB Age-, sex-, and education-adjusted z-score for the Trail B score -
CDRSUM Clinical Dementia Rating Sum of Box +
MEMORY Memory in CDR +
NACCZANI Total number of animals named in 60 seconds -
Age-, sex-, and education-adjusted z-score for Category ‘animals’
Table 4d. Variables selected only when outcome is overall MCI
SPEECH 0 = Normal. +




1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Linetal. Page 20
Variable Description Direction
4 = Unintelligible.
TAXES In the past four weeks, did the subject have any difficulty or need help +
with assembling tax records, business affairs, or other papers
BILLS In the past four weeks, did the subject have any difficulty or need help +

with writing checks, paying bills, or balancing a checkbook.

*
: The variables in Table 4c. are in the order of from high to low weights appeared for aMCI incidence. Please check supplemental material for the
full table with variable description. The symbol +/- indicates the positive/negative effects of the variables.
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