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Abstract

Objectives—The aim of the study was to compare the intra-individual plasma and intracellular 

peripheral blood mononuclear cell (PBMC) pharmacokinetics (PK) of tenofovir (TFV) and its 

intracellular metabolite, tenofovir-diphosphate (TFV-DP) in patients switched from a fixed dose 

combination (FDC) tablet of tenofovir disoproxil fumarate (TDF)/ emtricitabine (FTC)/ 

elvitegravir (EVG)/ cobicistat (COBI) to a FDC containing tenofovir alafenamide 

(TAF)/FTC/EVG/COBI.

Design—A single arm, prospective, non-randomized, cross-over, PK study in patients receiving a 

TDF-containing regimen (TDF 300mg/ FTC 200mg/ EVG 150mg/ COBI 150mg) switched to a 

TAF-containing FDC regimen (TAF 10mg/ FTC 200mg/ EVG 150mg/ COBI 150mg).

Methods—Single, sparse plasma and PBMC samples were collected during TDF therapy and 4 

to 8 weeks post-switch to the TAF-containing regimen. Plasma TFV and cell associated TFV-DP 

concentrations were determined with validated liquid chromatography tandem mass spectrometry 

methods. PBMC cell enumeration was performed by quantification of RNaseP (RPP30) gene copy 

numbers using a highly sensitive droplet digital PCR (ddPCR) assay. Plasma and PBMC PK were 

summarized as geometric mean (GSD) and compared as a geometric mean ratio with a Wilcoxon 

Signed Rank test.

Results—In 30 participants with evaluable data, TFV plasma concentrations decreased 90% 

[TDF: 99.98 (2.24) ng/mL vs TAF: 10.2 (1.6) ng/mL, p<0.001] after the switch while cell 
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associated TFV-DP increased 2.41 fold [TAF: 834.7 (2.49) vs TDF: 346.85 (3.75) fmol/106 cells, 

p=0.004].

Conclusions—Intraindividually, plasma TFV concentrations significantly decreased while cell 

associated TFV-DP concentrations significantly increased after switching from a TDF to a TAF-

containing ART regimen.
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Introduction

Tenofovir alafenamide (TAF) is a novel prodrug of the antiretroviral agent tenofovir (TFV). 

Recently, TAF has been included as a first-line recommended nucleotide reverse 

transcriptase inhibitor in the treatment of both antiretroviral therapy (ART)-naïve and ART-

experienced patients by both the United States Department of Health and Human Services as 

well as the European AIDS Clinical Society and International Antiviral Society treatment 

guidelines1,23. Two randomized phase 3 studies of TAF compared to an older TFV prodrug, 

tenofovir disoproxil fumarate (TDF), during initial treatment of HIV infection demonstrated 

non-inferiority of TAF4,5. A third phase 3 trial in virologically suppressed individuals 

receiving TDF-containing ART, randomized to either a TAF substitution or continuation of 

TDF, showed no difference in maintenance of virologic suppression6.

Initial clinical studies suggest TAF possesses a superior safety profile related to renal and 

bone adverse events when compared with TDF5,7. The improved safety profile of TAF is 

thought to be due to substantially lower plasma TFV exposure resulting from a lower dose of 

TAF (either 10mg or 25mg) versus the currently used dose of TDF (300mg), as higher 

plasma TFV exposure has been shown to correlate with both renal and bone toxicity8. 

Parallel group pharmacokinetics (PK) from three studies demonstrate 90% lower plasma 

TFV exposure, while conversely attaining a roughly 4-fold increase in the intracellular active 

metabolite of TFV, tenofovir diphosphate (TFV-DP), in participants receiving TAF versus 

TDF910. The increased intracellular concentrations of TFV-DP achieved when administered 

as TAF may be related to the increased plasma stability of the TAF prodrug as compared 

with TDF, as the prodrugs of TFV more readily enter cells as compared to TFV itself11.

Taken collectively, these studies present a rationale for switching persons with HIV infection 

who are virologically suppressed on a TDF-containing regimen to a similar TAF-containing 

regimen, especially those at higher risk for renal impairment or bone mineral density loss. In 

2015 the first TAF containing fixed-dose combination product was approved by the U.S. 

Food and Drug Administration, and subsequently recommended as a first-line ART regimen 

by HIV guidelines2,3,12. In this study, we investigated the intra-individual PK of plasma 

TFV and intracellular peripheral blood mononuclear cell (PBMC) TFV-DP concentrations in 

patients undergoing a planned switch from a TDF-containing regimen [TDF / emtricitabine 

(FTC) / elvitegravir (EVG) / cobicistat (COBI)] to a TAF-containing regimen 

(TAF/FTC/EVG/COBI).
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Methods

A single arm, prospective, non-randomized, cross-over PK study was conducted at the 

University of Nebraska Medical Center. Consecutive patients for whom a switch from 

TDF/FTC/EVG/COBI to TAF/FTC/EVG/COBI was planned were approached during 

routine clinic visits and invited to participate. Entry criteria were age >19 years, diagnosis of 

HIV-infection, receiving TDF 300mg/FTC 200mg/EVG 150mg/COBI 150mg once daily for 

at least 4 weeks prior to enrollment, and switching to TAF 10mg/FTC 200mg/EVG 150mg/

COBI 150mg once daily therapy. Exclusion criteria were HIV RNA >50 copies / mL after 6 

months on ART, or after previously being virologically suppressed on ART. Additionally, 

patients could not be receiving any concomitant medications that are contraindicated with 

TDF, FTC, EVG, COBI or TAF13,14. Data on demographics, medical history, CD4+ cell 

count and HIV-RNA at entry were abstracted from participant medical records.

Pharmacokinetic Evaluations

Participants underwent PK sampling at two study visits: the first was during 

TDF/FTC/EVG/COBI therapy, and the second was six to eight weeks after switching to 

TAF/FTC/EVG/COBI. The six to eight week cross over period was based on tenofovir and 

tenofovir-DP half-lives as well as rates of enzyme and transporter synthesis and turnover 

which have been previously reported to normalize by 28 days post perturbation15–17. 

Participants were asked to come to clinic at the same time of day for each PK visit, although 

PK samples were collected irrespective of the time post-dose. Participants were asked to 

provide the time of the three previous doses of ART taken prior to each PK study visit. If a 

participant had missed any of the three previous ART doses, their PK sampling visit was 

rescheduled to a later date where adherence to study medication was ensured. At each of the 

visits, 5 mL of whole blood was collected by venipuncture into a Vacutainer spray dried K2 

ethylenediaminetetraacetic acid (EDTA) tube for plasma TFV concentration determination. 

Blood was immediately processed upon collection. Plasma was separated by centrifugation 

(1200 × g for 10 minutes at 4 C) and transferred to labeled polypropylene cryotubes. Plasma 

was stored at −80 C until analysis. PBMC’s were collected at each of the two PK study 

visits as previously described18. Briefly, 6-8 mL of blood was collected by venipuncture into 

cell preparation tubes (CPT) with sodium heparin anticoagulant. The CPT tubes were 

centrifuged and mononuclear cells collected. Cells were washed via a rapid spin through oil 

approach prior to placing the cells in 70% methanol for long term storage at −80 C. PBMC 

cell enumeration was performed by quantification of RNaseP (RPP30) gene copy numbers 

using a highly sensitive droplet digital PCR (ddPCR) assay as previously described19.

Statistical Analysis

Descriptive statistics (median with range or frequency distributions) were used to summarize 

all demographic information. Median and interquartile range (IQR) were used to describe 

the times post dose of the PK blood sampling. PK data were summarized as geometric mean 

(GSD) and geometric mean ratio (GMR, 90% CI) of TAF:TDF, and compared with a 

Wilcoxon signed rank test.
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Ethics

This study was approved by the UNMC Institutional Review Board and all participants 

provided written informed consent. The study was conducted in accordance with the 

Declaration of Helsinki.

Results

Study Population

Forty-seven participants consented to the study between January 2016 and June 2016, and 

30 participants completed both PK sampling visits. The median age of the 30 participants 

with complete PK data was 39 years (25-58), 4 (13%) were female, 16 (53%) non-Hispanic 

white, median CD4+ cell count was 632 (429–713) cells/mm3, and all participants had an 

undetectable (<20 copies/mL) HIV-1 RNA at study entry.

Tenofovir Pharmacokinetics

The participants underwent PK sampling after a mean of 82.8 (38.6) weeks of receiving 

TDF and 5.9 (1.5) weeks of receiving TAF. Plasma TFV and intracellular TFV-DP PK data 

are summarized in Table 1 and Figure 1. The time of blood sampling for plasma TFV 

determination was 11.2 (4.1 – 18.6) hours post dose during TDF-containing ART and 10.8 

(2.7 – 17.4) hours post dose during TAF-containing ART. Geometric mean TFV plasma 

concentrations were 99.98 (2.24) ng/mL during TDF-containing ART and 10.20 (1.60) 

ng/mL during TAF-containing ART [GMR 0.10; (90% CI 0.06 - 0.18); p<0.001].

Geometric mean intracellular TFV-DP concentrations measured during the TDF-containing 

regimen were 346.85 (3.75) fmol/106 cells. After switching, the intracellular TFV-DP 

concentrations were 834.70 (2.49) fmol/106 cells in participants receiving the TAF-

containing regimen [GMR 2.41; (90% CI 1.23 - 4.73); p=0.004].

Discussion

We found plasma TFV concentrations decreased 90% and intracellular TFV-DP 

concentrations increased 2.41-fold in participants who were switched from TDF/FTC/EVG/

COBI to TAF/FTC/EVG/COBI as part of routine clinical care. These intra-individual PK 

data confirm previous observations of 90% lower plasma tenofovir exposure when 

comparing TAF to TDF in parallel groups of participants9,10. Additionally, this study 

confirms the higher intracellular TFV-DP concentrations achieved with TAF compared to 

TDF.

The increase in TFV-DP concentrations in our participants is less than that seen in parallel 

studies. However, to our knowledge, this is the first study to evaluate plasma and 

intracellular concentrations within participants, and this difference may simply reflect 

differences in intraindividual versus interindividual PK variability. In addition, it must be 

noted that the dosing duration of TAF differs between the present study and prior reports. 

The present study investigated TFV plasma and TFV-DP PBMC concentrations after a mean 

of 5.9 weeks on TAF, ensuring steady state concentrations were reached after switching 

regimens, as plasma and intracellular TFV and TFV-DP half-lives have been reported as 17 
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and 87-150 hours respectively. Previous studies have evaluated TFV-DP after as few as 10 

days of TAF therapy20–22. Additionally, both regimens in this study contained TAF 10mg 

once daily combined with the PK booster, COBI; therefore, the results may only be 

applicable in patients receiving a COBI-boosted ART regimen. Further work is needed to 

determine the effect of switching patients to or from other ART regimens containing TAF, or 

other TAF dosing strategies in combination with PK boosters (eg. TAF 25mg).

There remain differences in analytical methodology that may account for some of this 

difference. For example, in our present study, we enumerated PBMC cells via a highly 

precise ddPCR assay19 while previous studies of intracellular TFV-DP concentrations have 

utilized other less precise or less accurate methods of cell enumeration, such as quantitative 

DNA based approaches or traditional manual and automated cell counting techniques. 

Second, we utilized a rapid spin through oil approach when collecting PBMC’s for PK 

analysis. The benefits of the spin through oil approach have been previously described18. 

Additionally, our study had the limitation of single, non-timed sample collection which 

contributes to the PK variability observed in our study. However, intracellular half-lives of 

TFV-DP of 87 to >150 hours have been reported in the literature, minimizing the effect of 

differences in sampling times across the intracellular PK samples.

The PK relationships for plasma TFV PK and pharmacodynamic response as well as drug 

related adverse events have been well described23–26. There remains a need to better 

understand exposure-response relationships with TFV-DP, the intracellular metabolite of 

TFV. As TFV-DP is the pharmacologically active component of both TDF and TAF 

formulations, TFV-DP may offer the best option for efficacy based evaluations. Studies 

investigating TDF pharmacotherapy as pre-exposure prophylaxis (PrEP) for the prevention 

of HIV infection have elegantly described relationships between the number of doses taken, 

intracellular TFV-DP concentrations, and prevention of HIV infection27. Relationships 

between TFV-DP concentrations and metrics of treatment efficacy (e.g., plasma HIV RNA) 

for HIV are not as explicitly understood. The data generated via this present study, along 

with the PK data from previous phase 2 and phase 3 studies of TAF are reassuring in that 

higher intracellular concentrations are achieved with lower TAF dosing and lower TFV 

plasma exposure in patients who switch from TDF to TAF. Furthermore, drug-drug 

interaction studies to date have identified some differences in p-glycoprotein inducers on 

TAF vs. TDF, based on plasma drug exposure12. These data further inform future drug-drug 

interaction studies, as intracellular TFV-DP PK data would suggest the threshold for 

interactions that decrease TAF exposure may be greater with TAF-containing formulations 

than it is for TDF-containing formulations. Conversely, it remains to be determined whether 

there is an increased rate of adverse events associated with long-term higher TFV-DP 

exposure intracellularly, and if so, what the concentration threshold for such adverse events 

may be. Collectively, these plasma and intracellular PK data of TAF add to the current body 

of pharmacologic knowledge surrounding the optimal use of TAF in present day 

antiretroviral therapy.
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Figure 1. 
Whisker plot of plasma tenofovir and PBMC tenofovir diphosphate concentrations during 

TDF and TAF based dosing. Data presented as 25th, 50th and 75th percentiles.
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Table 1

Tenofovir plasma and intracellular pharmacokinetic data from TDF and TAF based dosing. Pharmacokinetic 

data compared with Wilcoxon Signed Rank test.

Metric
Pre-Switch TFV 

Plasma Conc. 
(ng/mL)

Post-Switch TFV 
Plasma Conc. 

(ng/mL)

Pre-Switch TFV-DP 
Intracellular Conc. (fmol / 

106 cells)

Post-Switch TFV-DP 
Intracellular Conc. (fmol / 

106 cells)

Geometic Mean 99.98 10.20 346.85 834.70

Geometric Std Dev 2.24 1.60 3.75 2.49

Time Post Dose, hours 
(median, IQR) 11.2 (4.1 – 18.6) 10.8 (2.7 – 17.4)

GMR Post : Pre 
Switch(90% CI)

0.10; p<0.001
(0.06 – 0.18)

2.41; p=0.004
(1.23 – 4.73)

GMR=geometric mean ratio; IQR = interquartile range, TFV=tenofovir, TFV-DP= tenofovir diphosphate
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