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Abstract

BACKGROUND—The majority of cleft lip with or without cleft palate (CL/P) cases appear as an 

isolated, non-syndromic entity (NSCLP). With the advent of next generation sequencing, whole 

exome sequencing (WES) has been used to identify single nucleotide variants and insertion/

deletions which cause or increase risk of NSCLP. However, to our knowledge, there are no 

published studies using WES in NSCLP to investigate copy number changes (CNCs), which are a 

major component of human genetic variation. Our study aimed to identify CNCs associated with 

NSCLP in a Honduran population using WES.

METHODS—WES was performed on two to four members of 27 multiplex Honduran families. 

CNCs were identified using two algorithms, CoNIFER and XHMM. Priority was given to CNCs 

that were identified in more than one patient and had variant frequencies of less than 5% in 

reference data sets.

RESULTS—WES completion was defined as >90% of the WES target at >8× coverage and 

>80% of the WES target at >20× coverage. 24 CNCs that met our inclusion criteria were identified 

by both CoNIFER and XHMM. These CNCs were confirmed using qPCR. Pedigree analysis 

produced three CNCs corresponding to ADH7, AHR, and CRYZ segregating with NSCLP. Two of 

the three CNCs implicate genes, AHR and ADH7, whose known biological functions could 

plausibly play a role in NSCLP.

CONCLUSIONS—WES can be used to detect candidate CNCs that may be involved in the 

pathophysiology of NSCLP.
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Introduction

Cleft lip with or without palate (CL/P) is one of the most common birth defects worldwide, 

and is associated with major comorbidities, including feeding difficulties, speech delay, 

impaired hearing, dental problems, and psychiatric disease. CL/P occurs in approximately 1 

in every 700 live births worldwide, but the prevalence may be as high as 1 in 500 in Asian 

and Amerindian populations (Dixon, 2011; Marazita, 2012). CL/P may occur as part of a 

syndrome, but the majority of cases (70%) appear as an isolated entity, nonsyndromic cleft 

lip with or without palate (NSCLP) (Calzolari, 2007).

It has long been thought that risk of developing NSCLP has a large genetic component 

(Dixon, 2011). However, identifying the specific genetic factors underlying risk for NSCLP 

has proven challenging for several reasons. For example, inheritance of NSCLP often 

departs from traditional Mendelian modes of inheritance and, in some families, penetrance 

appears to be incomplete (Beiraghi, 2007; Wyszynski, 2002). Additionally, assigning 

affectation status can be difficult because subclinical features, such as orbicularis oris 

defects, are part of the phenotypic spectrum of NSCLP (Neiswanger, 2007).

Prior targeted genetic studies have identified multiple candidate loci, including IRF6, TGFA, 
RARA, and TGFB3 (Lidral and Moreno, 2005). Genome-wide linkage scans and genome-

wide association studies have revealed additional candidate genes and susceptibility loci 

(Beaty, 2010; Lidral and Moreno, 2005; Ludwig, 2012; Mangold, 2010; Prescott, 2000; 

Wyszynski, 2003). In addition, environmental factors – such as smoking (Honein, 2007; 

Little, 2004; Zeiger, 2005), alcohol use (Chevrier, 2005; Romitti, 2007; Shaw and Lammer, 

1999), nutrition, teratogens, and viral infections – also influence disease risk (Dixon, 2011; 

Mossey, 2009; Murray, 2002). These environmental factors may interact with genetic 

variants to modulate the risk of developing orofacial clefts. Such gene-environment 

interactions have been demonstrated with maternal smoking and TGFA (Zeiger, 2005), 

maternal folic acid consumption and MTHFR (van Rooij, 2003), and maternal multivitamin 

use and NAT1 (Lammer, 2004).

The advent of next-generation sequencing has accelerated the discovery of new loci 

underlying Mendelian conditions and birth defects. Whole exome sequencing (WES) offers 

an efficient and powerful method for detecting pathogenic mutations, as exons comprise 

only 1% of the human genome but harbor 85% of disease-causing mutations (Choi, 2009). 

WES approaches have identified pathogenic single nucleotide variants (SNVs) and small 

insertions and deletions (indels) in NSCLP (Bureau, 2014; Jezewski, 2003; Vieira, 2005). 

However, fewer studies have investigated the role of copy number changes (CNCs) in 

NSCLP.

CNCs refer to portions of the genome present in variable number of copies between 

individuals or in comparison to a reference genome. CNCs have been defined at lengths of at 
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least 50 base pairs (bp) to at least one kilobase (kb) (Feuk, 2006; Zarrei, 2015). In 2004, two 

genome-wide studies revealed that CNCs are prevalent in human genomes and are an 

important source of genetic and phenotypic diversity (Iafrate, 2004; Sebat, 2004). Since 

then, CNCs have been studied and implicated in a wide breadth of human diseases including 

autism, schizophrenia, obesity, type 1 diabetes, and various developmental disorders (Zarrei, 

2015).

In the early years of CNC investigation, the predominant methods of CNC detection 

included fluorescent in situ hybridization, array comparative genomic hybridization, and 

single nucleotide polymorphism (SNP) arrays. These methods could detect variants several 

kb to megabases in size (Stankiewicz and Lupski, 2010). With such methods, prior studies of 

CNCs in NSCLP have identified candidate regions (such as 7p14.1) or candidate genes 

(such as SUMO1, BMP2, and CLPTM1L), some of which have been validated in animal 

studies (Klamt, 2016; Sahoo, 2011; Shi, 2009; Williams, 2012; Younkin, 2014). In recent 

years, algorithms for calling CNCs from WES data have been developed, allowing for 

identification of CNCs as small as 50 bp (Fromer, 2012; Krumm, 2012; Tan, 2014). To our 

knowledge, no prior studies have employed WES for this purpose in NSCLP.

Herein, we use WES to identify CNCs in a cohort of multiplex Honduran families with 

NSCLP. Studying multiplex families — those in which two or more persons have the same 

phenotype — increases the likelihood of finding alleles with larger effects that underlie 

NSCLP. Furthermore, it is advantageous to study the Honduran population because of their 

increased rate of clefting (given their Mesoamerican ancestry) and their relative genetic 

isolation due to limited influx of other ethnic populations (Dixon, 2011; Moreno-Estrada, 

2013).

Materials and Methods

SAMPLES

Subjects were identified from patients at Hospital Escuela, a public hospital in Tegucigalpa, 

Honduras between 2001 and 2013. We recruited over 130 families with two or more 

members affected by NSCLP, although not all affected members were present to participate 

in this study. A medical history, family history, and physical exam were performed to 

characterize the type of cleft, exclude syndromic conditions, and construct pedigrees. 

Venous blood samples were obtained from both probands and available relatives. This study 

was approved by the Institutional Review Boards at Columbia University Medical Center 

(CUMC) and Hospital Escuela in Tegucigalpa, Honduras.

GENOTYPING AND WHOLE EXOME SEQUENCING

We selected 27 multiplex families with NSCLP for analysis, prioritizing families with DNA 

samples available for 2 or more affected individuals. The subjects included 52 affected 

individuals and 139 relatives. DNA was extracted from whole blood samples using the 

Qiagen Flexigene DNA kit (Qiagen, Valencia, CA). Two families were sequenced at 

Columbia University. The remaining samples were sent to the University of Washington 

Center for Mendelian Genomics (UW-CMG) in Seattle, Washington for sequencing. For 
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sample quality control (QC), 191 subjects were genotyped using Illumina’s Human Core 

Exome BeadChip. Variants missing >5% of genotypes were excluded.

PLINK v1.90 was used to confirm pedigree relationships using Mendelian error checking 

(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell, 2007). The BeadChip data were then 

used to estimate relationships using Kinship-based INference for Genome-wide association 

studies (http://people.virginia.edu/#wc9c/KING/) (Manichaikul, 2010). QC included 

verification of sample/pedigree relationships. When discrepancies were observed, we 

collected new blood samples for confirmation testing. In cases where correction was not 

possible, QC led to the exclusion of two complete families as well as select individuals from 

three other families (one individual each from two families and two siblings from another). 

All other samples from affected individuals underwent WES. In four families, an unaffected 

member was included for variant phasing, bringing the total number of samples to 59 that 

underwent WES.

Exome capture was performed using Perkin-Elmer Janus II in 96-well plate format and 

Roche/Nimblegen SeqCap EZ at UW-CMG, as has been previously described (http://

uwcmg.org/#/instruction) (Aylward, 2016). Library concentration was determined using 

quantitative PCR. An Illumina HiSeq sequencer was used to massively parallel sequence 

samples and generate base calls. Unaligned BAM files were created using Picard Extract 

Illumina Barcodes and IlluminaBasecallsToSam and aligned to human reference GRCh37/

hg19 using the Burrows-Wheeler Aligner v0.6.2 (Li and Durbin, 2009). QC measures were 

performed according to UW-CMG protocol (http://uwcmg.org/#/instruction) (Aylward, 

2016). Briefly, WES completion was defined as >90% of the WES target at >8× coverage 

and >80% of the WES target at >20× coverage.

CNC CALLING

CNC variant calling was performed using a large set of reference WES data from the UW-

CMG (N=6085) and the NHLBI GO Exome Sequencing Project (ESP; N=3635) to reduce 

noise and improve calling quality (Fromer, 2012; Krumm, 2012). Because there is no gold 

standard for CNC calling using WES data, we restricted analysis to events detected by both 

XHMM v1.0 (Fromer, 2012) and CoNIFER v.02.2 (Krumm, 2012) to decrease the number 

of false positives. The default software parameters were used for both tools. BED files from 

the two callsets were generated and Bedtools intersect was used to extract the intersecting 

calls (http://bedtools.readthedocs.org/en/latest/content/tools/intersect.html). Intersecting 

calls were defined as CNCs identified by both algorithms that shared the same genomic 

sections for 50% or more of their length.

CNC VALIDATION

Quantitative PCR (qPCR) was used to validate each CNC. Primers were designed using 

Primer3 (Rozen and Skaletsky, 2000) (Supplementary Table 1) and qPCR was performed on 

an Applied Biosystems 7500 Real Time PCR Instrument. Each sample was analyzed in 

triplicate, either in 25 µl or 50 µl reaction mixture, using SYBR Green I master mix (Roche 

Molecular Biochemicals), 200 nM of each primer, and 20 ng of genomic DNA. The default 

conditions supplied by the manufacturer (Applied Biosystems) were used for amplification. 
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Data were normalized against the reference gene beta actin and relative gene expression was 

determined using the Livak method (Livak and Schmittgen, 2001). Each qPCR experiment 

was performed in triplicate for each suspected CNC carrier, along with three control samples 

selected at random from a cohort of 100 healthy Honduran pediatric patients undergoing 

minor surgical procedures and not affected by clefting or other known genetic diseases. 

Relative gene expression values of ≥1.4 and ≤0.6 were considered evidence of duplication 

and deletion, respectively (Supplementary Table 1). For gene expression values between 0.6 

and 1.4, we ruled out the corresponding CNCs as WES calling errors.

In addition, the population frequencies of the CNCs shown to segregate with NSCLP were 

calculated. Allele frequencies for CNCs were estimated by identifying events of the same 

type (duplication vs. deletion) with a minimum overlap of 50% of the observed CNC using 

Bedtools (v2.25.0) within reference data sets. Reference data included the 1000 genomes 

project integrated structural variant map (Sudmant, 2015) and the Exome Aggregation 

Consortium (ExAC) release 0.3.1 data (Ruderfer, 2016).

Results

CNC events observed in the WES data from multiplex Honduran families with a history of 

NSCLP were prioritized for validation as outlined in Figure 1.

XHMM identified 2545 CNCs while CoNIFER identified 1168 CNCs. After intersecting 

both call sets, 119 CNCs were identified by both XHMM and CoNIFER. To prioritize the 

CNCs most likely to be pathogenic, CNCs were filtered to focus on those identified in more 

than one patient and with variant frequencies <5% in the UW-CMG (N= 6085 individuals) 

and Exome Sequencing Project (ESP, N=3635 individuals) reference data sets. This 

narrowed the list of CNCs of interest from 119 to 24 CNCs. These 24 CNCs ranged in size 

from approximately 4 kb to 226 kb and the genes encompassed by the CNCs are listed in 

Table 1. After qPCR verification, seven CNCs were ruled out as CNC calling errors and 14 

were excluded as they were not present in all patients affected by NSCLP within a pedigree 

(Figure 1).

The three remaining CNCs were present in all members of a pedigree affected by NSCLP. 

Two of these CNCs were identified in a single family, observed in two affected brothers and 

their unaffected mother (Figures 2 and 3). These CNCs were a duplication event of 7.7 kb on 

chromosome 4 and a deletion event of 10.3 kb on chromosome 1 corresponding to ADH7 
and CRYZ, respectively (Table 1). A CNC in AHR was identified in another family, 

observed in two affected brothers, their unaffected mother, and unaffected grandfather 

(Figure 4). This was a deletion event of 13.3 kb and 23.6 kb in the affected brothers. The 

genomic contexts and population frequencies of these three CNCs are shown in Figure 5 and 

Table 2, respectively. These CNCs appear to fit inside single genes and there are other events 

intersecting our variants in an online repository of CNCs with phenotypic information, 

DECIPHER (https://decipher.sanger.ac.uk) (Swaminathan, 2012). However, other than for 

the CNC associated with ADH7 (described in the Discussion section), none of the 

overlapping CNCs correspond to a phenotype of cleft lip or palate.
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Discussion

This study identifies candidate CNCs for NSCLP using WES technology. By utilizing this 

technique on a cohort of multiplex families affected by NSCLP, we identified CNCs of 

potential significance corresponding to the genes ADH7 (formerly referred to as ADH3), 

AHR, and CRYZ using our CNC filtering and prioritization criteria. Two of these genes, 

ADH7 and AHR, share involvement in biological pathways linked to environmental factors 

known to influence NSCLP.

A CNC in ADH7 was identified in two affected siblings as well as their unaffected mother. 

Interestingly, prior analysis of WES data in this cohort did not identify causal single 

nucleotide variants, insertions, or deletions that segregated with NSCLP in this family (M1) 

(Aylward, 2016). ADH7 encodes a member of the alcohol dehydrogenase family, class IV 

alcohol dehydrogenase, expressed ubiquitously during embryogenesis (Molotkov, 2002). 

Compared to other members of its class, it is less efficient in ethanol oxidation and most 

active as a retinol dehydrogenase (Satre, 1994). Thus, ADH7 may participate in the 

synthesis of retinoic acid, the active form of vitamin A. Retinoic acid plays an important role 

in cellular differentiation (Niederreither and Dolle, 2008) and is a well-established cause of 

cleft palate (Abbott and Birnbaum, 1990; Abbott, 1989b). Furthermore, prior studies of 

CL/P identified a significant association with a locus in its receptor, retinoic acid receptor 

(RARA) (Chenevix-Trench, 1992; Shaw, 1993). There are no published studies linking 

ADH7 to orofacial clefts, but there are additional cases with CNCs involving ADH7 linked 

to CL/P in DECIPHER (Swaminathan, 2012). A duplication event of 8.08 Mb was 

associated with a non-midline cleft lip in one patient (DECIPHER ID: 270855) and a 

deletion event of 5.81 Mb was associated with bilateral CL/P in the other patient 

(DECIPHER ID: 285906) (Figure 5). Both patients had other related disorders, suggesting 

these presentations of CL/P were syndromic. This CNC has also been identified in a Non-

Finnish European population in ExAC at a frequency of <0.001% (Table 2).

CNCs in AHR were identified in two affected siblings as well as their unaffected mother and 

maternal grandfather, consistent with an autosomal dominant mode of inheritance with 

incomplete penetrance. AHR encodes the arylhydrocarbon receptor (AHR), which is 

expressed in the developing mouse palate and upregulated early in palatogenesis (Abbott, 

1999). This receptor mediates the toxicities of aromatic hydrocarbons that may result in 

teratogenesis, cancers, and birth defects (Nebert, 2004; Whitlock, 1990). Hydrocarbons bind 

to AHR and activate downstream signaling pathways resulting in various toxicities (Landers 

and Bunce, 1991; Poland and Knutson, 1982). Of particular relevance to NSCLP, the 

aromatic hydrocarbon dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) is a ligand of AHR and 

has been shown to induce cleft palate in pregnant mice (Abbott, 1989a; Pratt, 1984; Takagi, 

2000). Interestingly, retinoic acid is involved in and necessary for the development of 

dioxin-induced cleft palate in mice by regulating AHR expression (Jacobs, 2011). There is 

considerable support for a role for AHR in cleft palate development in mice, but it may have 

less significance to cleft palate development in humans. In one study, AHR mRNA in human 

embryos was found at levels 350-fold less than in mouse embryos (Abbott, 1999). In 

addition, humans may be less sensitive to the pathogenic effects of dioxin than are mice 

(Moriguchi, 2003). Induction of cleft palate using dioxin required a much higher 
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concentration of dioxin in human embryos than in mouse embryos (Abbott and Birnbaum, 

1991). Nonetheless, CNCs in AHR warrant further investigation given their segregation with 

NSCLP in one of our multiplex families and the gene’s overall association with craniofacial 

development. Furthermore, SNPs in AHR’s cofactor, AHR nuclear translocator (ARNT), 

have been associated with nonsyndromic orofacial clefts in the Japanese population 

(Kayano, 2004). From our literature search, this CNC does not overlap with those that have 

been previously reported in association with NSCLP. This CNC has been identified in the 

African subpopulation in ExAC at a frequency of 0.06% and the Non-Finnish European 

subpopulation at frequency <0.01% (Table 2).

We also identified a CNC in CRYZ present in patients affected by NSCLP. The pedigree 

corresponding to CRYZ suggests an autosomal dominant inheritance pattern with 

incomplete penetrance in family M1 (Figure 3). It worth noting that members in this same 

family also had CNCs in ADH7. This finding of multiple candidate variants within the same 

patient and/or family has also been demonstrated by prior studies of SNVs or indels in our 

Honduran families (Aylward, 2016) and of CNCs in other cohorts (Simioni, 2015). These 

findings would be consistent with the polygenic nature of NSCLP and incomplete 

penetrance. However, there is less evidence supporting a major role for this gene in the 

pathogenesis of NSLCP. CRYZ encodes crystallin zeta, a quinone reductase expressed in the 

eye lens of vertebrates (Gonzalez, 1994). Its biologic function in humans is less well 

established, though a GWAS associated CRYZ with regulation of resistin, a hormone 

implicated in diabetes in cardiovascular disease (Qi, 2012). Our literature search did not find 

reports of an association of CRYZ with NSCLP, though this CNC has been identified in the 

American subpopulation in 1000 Genomes project and ExAC at frequencies of 0.29% and 

0.09%, respectively (Table 2).

Conclusion

We have identified candidate CNCs that rank highly based on prioritization criteria in three 

separate genes. Two of these genes, ADH7 and AHR, play roles in craniofacial 

development. Interestingly, both ADH7 and AHR interact with environmental factors, 

retinoic acid and dioxin, respectively, both of which have well-established roles in clefting. 

Specifically, ADH7 participates in retinoic acid synthesis and retinoic acid regulates the 

expression of AHR. Our preliminary results suggest that these candidate genes identified via 

CNC analysis in exome sequencing data warrant further investigation as risk factors for 

NSCLP. Replication of these findings in a larger cohort of families with NSCLP or a 

different population is necessary to confirm or refute their role in the pathogenesis of 

NSCLP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Summary of CNC calling, prioritization, and confirmation.
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FIGURE 2. 
Presence of CNCs in ADH7 in NSCLP patients in a Honduran family. Key: + = positive for 

a CNC in ADH7. DNA was not available for subjects without + or − denoted. Sample 

identification (ID) numbers are italicized and correspond to Supplementary Table 1.

Cai et al. Page 14

Birth Defects Res. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Presence of CNCs in CRYZ in NSCLP patients in family M1. Key: + = positive for a CNC 

in CRYZ. Sample ID numbers are italicized and correspond to Supplementary Table 1.
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FIGURE 4. 
Presence of CNCs in AHR with NSCLP in family M45. Key: + = positive for a CNC in 

AHR. Sample ID numbers are italicized and correspond to Supplementary Table 1.
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FIGURE 5. 
Genomic contexts of the CNCs identified in NSCLP patients. This figure was generated 

using UCSC Genome Browser. The genomic regions spanned by the CNCs corresponding to 

CRYZ (panel A), ADH7 (panel B), and AHR (panel C) are shown and represented by the 

black bar(s) labeled “Chromosome coordinates list.” The boundaries of each CNC are 

indicated by the red box on the chromosome ideogram and the encompassed RefSeq genes 

are shown. In addition, other CNVs that have been previously reported in DECIPHER are 

shown in the red (deletion/loss) or blue (duplication/gain) bars.
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