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Rare variants in drug target genes 
contributing to complex diseases, 
phenome-wide
Shefali Setia Verma1, Navya Josyula   2, Anurag Verma1, Xinyuan Zhang   1, Yogasudha Veturi1, 
Frederick E. Dewey4, Dustin N. Hartzel3, Daniel R. Lavage3, Joe Leader2,3, Marylyn D. Ritchie1 
& Sarah A. Pendergrass2

The DrugBank database consists of ~800 genes that are well characterized drug targets. This list 
of genes is a useful resource for association testing. For example, loss of function (LOF) genetic 
variation has the potential to mimic the effect of drugs, and high impact variation in these genes can 
impact downstream traits. Identifying novel associations between genetic variation in these genes 
and a range of diseases can also uncover new uses for the drugs that target these genes. Phenome 
Wide Association Studies (PheWAS) have been successful in identifying genetic associations across 
hundreds of thousands of diseases. We have conducted a novel gene based PheWAS to test the effect 
of rare variants in DrugBank genes, evaluating associations between these genes and more than 
500 quantitative and dichotomous phenotypes. We used whole exome sequencing data from 38,568 
samples in Geisinger MyCode Community Health Initiative. We evaluated the results of this study 
when binning rare variants using various filters based on potential functional impact. We identified 
multiple novel associations, and the majority of the significant associations were driven by functionally 
annotated variation. Overall, this study provides a sweeping exploration of rare variant associations 
within functionally relevant genes across a wide range of diagnoses.

While genome wide association studies (GWAS) and Phenome Wide Association Studies (PheWAS) studies have 
identified novel and replicating associations for many common genetic variants and complex traits1–5, rare varia-
tion coupled with comprehensive PheWAS associations are only beginning to be explored. Rare variation studies 
have the potential for uncovering novel and informative relationships between genetic architecture and common 
diseases, increasing our understanding of biological mechanisms as well as identifying key targets for drug devel-
opment6. For example, gain of function rare variation in the lipid pathway gene PCSK9 is associated with familial 
hypercholesterolemia, while loss of function mutations lead to lower levels of LDL-cholesterol7. Thus, drugs have 
now been developed that target PCSK9 to lower LDL-cholesterol levels8,9. In addition, rare genetic variation can 
also perturb biological networks, impacting the risk and protection for conditions as well as impacting quantita-
tive traits such as clinical laboratory measures. Further, risk or protective impact on one trait may be reversed for 
another trait, due to antagonistic pleiotropy. Finally, contrasting protective and risk associations for specific genes 
can highlight potential drug side effects10. With PheWAS, we can interrogate a wide array of quantitative clinical 
laboratory measures and dichotomous diagnoses across rare variation, including potentially functionally high 
impact rare variation, across many genes11–13 to identify new hypotheses for gene function.

Using rare-variant collapsing approaches and choosing rare variants based on functional category has been 
shown to be of importance14,15. For example, loss of function (LOF) variants result in the truncation or lack 
of translation of a protein, and thus have the potential for a very strong impact on downstream phenotypes. 
Functional annotation of variations can be obtained from several predictive and analytical tools16–18. Binning 
these filtered variants and testing them against multiple phenotypes has the potential for different insights 
depending on how the variants are filtered.

The DrugBank database (version 4.0)19 is a resource with extremely well characterized genes and the drugs 
that target those genes. In this study, we performed a PheWAS using ~800 unique genes from the DrugBank 
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database evaluating comprehensive associations between these genes and 541 diagnoses and 35 quantitative clini-
cal lab measures using a gene burden-based approach. For this study, we used whole exome sequencing data from 
38,568 unrelated European American adults (>18 years of age) from the MyCode Community Health Initiative, 
from Geisinger a large health care provider20. To explore how results changed depending on different methods 
for filtering rare variants, we used several approaches: all rare variants within the DrugBank specified genes, as 
well as LOF and non-synonymous variants via different predicting algorithms and filters. We also contrasted 
our results with burden based association testing of all rare variants that lacked functional annotation. Our goal 
was to identify (1) the impact of LOF variants on disease risk, (2) protective effect of variants in these genes, (3) 
cross-phenotype associations for these targeted genes.

We identified novel associations between these genes and diagnoses and quantitative clinical lab measures, 
identifying many associations that are supported by the known biological impact of these genes. We contrasted 
our results with the known function of these genes in the context of drugs and the diagnoses these genes target, 
as well as evaluated cross phenotype associations. We also evaluated associations where variants were filtered by 
functional impact. Overall, we have identified novel genetic associations providing new insights across many 
phenotypes for a series of high impact genes, with the additional context of gene function, genetic pathways, the 
functional impact of genetic variation, and potential pleiotropy.

Results
For the results of associations between various low frequency variant filtering methods, for 797 DrugBank 
genes using whole exome sequencing data, we found a total of 91 results that passed the Bonferroni threshold 
(P-value = 1.08e − 07); all 91 results passing this threshold are in Supplementary Table 1. Table 1 also lists the 
most potentially novel gene-phenotype associations for clinical lab and diagnosis codes of our study.

The two most significant results of this study are associations between genes and phenotypes where the impact 
of loss of function highly relates to the known function of these genes. For example, the top result from the 
diagnosis codes analysis observed in the functional annotation filter category 2 was an association between the 
calcium-sensing receptor gene (CASR) and the diagnosis of “hypercalcemia” (ICD-9 275.42, P-value = 1.34e − 22, 
beta = 3.89, functional annotation filter 2), Supplemental Table 1. CASR plays an essential role in calcium home-
ostasis and is expressed mostly in kidneys and parathyroid glands. Mutations in CASR lead to familial hypocalci-
uric hypercalcemia (FHH)21. In our study, this association was Bonferroni significant using all four functionally 
annotated filter categories with the most significant result for functional annotation filter 2. Associations between 
CASR and hypercalcemia were least significant via the ‘all variants’ filtering category (functional annotation filter 
1). This suggests the effect of association is impacted more strongly by functionally annotated variants in the 
CASR gene rather than non-functionally annotated variants. The diagnoses used in drug treatments that target 
CASR are hyperparathyroidism, bone destruction, chronic kidney disease with secondary hyperparathyroidism 
and impaired renal function. The most significant result from the clinical laboratory measurement analyses was 
the association between the gene GPT and alanine aminotransferase levels (P-value = 3.29e − 83; Beta = −0.64; 
functional annotation filter 1), Supplemental Table 1. The GPT gene encodes the enzyme glutamate-pyruvate 
transaminase 1, also known as cytosolic alanine aminotransferase. Comparative analyses of GPT with alanine 
aminotransferase among the four filter categories suggests that functionally annotated variants have a larger 
impact on phenotypic variation than non-functionally annotated variants.

Associations with Clinical Lab Measures.  To show the overall landscape of results for the clinical lab 
measures for both highly significant and more potentially suggestive associations, we plotted all results below 
an exploratory P-value of 0.001 for clinical labs in Fig. 1A and B. There were 197 unique gene-phenotype 
combinations.

We found a total of 21 Bonferroni significant associations with quantitative laboratory measurements from 
a total of 5 unique gene-phenotype combinations (due to significant associations for the same gene-phenotype 

Gene Phenotype #Samples Filter Type Beta OR SE P-value

GLCCI1 WBC Counts 36587 Functional Annotation Filter 2 −0.32 0.72 0.04 2.33E − 13

SLC12A3 Potassium 36039 Functional Annotation Filter 3 −0.07 0.93 0.01 5.91E − 07

PTGR2 Abnormal glucose tolerance of mother 38313 Functional Annotation Filter 2 4.02 0.68 55.7 5.48E − 09

PTGR2 Abnormal glucose tolerance of mother 38313 Functional Annotation Filter 3 3.19 0.61 24.28 1.70E − 07

PTGR2 Abnormal glucose tolerance of mother 38313 All Variants 2.9 0.56 18.17 3.18E − 07

PTGR2 Abnormal glucose tolerance of mother 38313 Functional Annotation Filter 1 3.04 0.6 20.9 5.52E − 07

FOS Sensorineural hearing loss, unspecified 36864 Functional Annotation Filter 2 3.03 20.67 0.56 6.73E − 08

FOS Sensorineural hearing loss, unspecified 36864 All Variants 1.74 5.70 0.38 5.71E − 06

FOS Sensorineural hearing loss, unspecified 36864 Functional Annotation Filter 3 1.84 6.30 0.47 9.45E − 05

FOS Sensorineural hearing loss, unspecified 36864 Functional Annotation Filter 1 1.81 6.11 0.47 1.29E − 04

ATF7 Overweight 35809 Functional Annotation Filter 2 2.73 15.33 0.54 3.69E − 07

ATF7 Overweight 35809 Functional Annotation Filter 1 1.96 7.09 0.43 4.19E − 06

ATF7 Overweight 35809 Functional Annotation Filter 3 1.94 6.95 0.44 9.59E − 06

ATF7 Overweight 35809 All Variants 1.52 4.57 0.41 1.85E − 04

Table 1.  Potential novel associations from PheWAS analyses.
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combinations from multiple ways of filtering rare variants). Of these, 20 associations are supported by the known 
function of these genes, impact on respective associated phenotypes through previously reported common 
genetic variation results, and through other existing biological knowledge. We identified 1 potentially novel asso-
ciation without considerable previous biological knowledge relating the gene to the phenotype.

A total of 14 associations out of all Bonferroni significant results were for bilirubin levels and represented 
alternative splicing forms of UGT1A gene. The UGT1A gene is known for highly significant associations with 
bilirubin for common frequency variants22,23–25. This gene family encodes enzyme UDP-glucuronosyltransferase, 
which converts toxic bilirubin into non-toxic form26. Of note, all the highly significant associations only included 
functionally annotated filtered and all variants categories. No associations in the non-functionally annotated 
category reached Bonferroni significance.

We also identified associations between GOT1 and aspartate aminotransferase levels27 (in functional annotation 
Filter 1 and 2). GOT1 is known as Glutamic-Oxaloacetic Transaminase 1 (also known as aspartate aminotrans-
ferase), therefore its association with aspartate aminotransferase levels in serum reflects knowledge of this gene.

We found a highly significant association between TUBB1 and platelet counts (P-value = 7.85e − 11; nor-
malized beta = −6.50; functional annotation Filter 2) that was also Bonferroni significant via functional anno-
tation filters 1 and 3. TUBB1 was also associated with the related mean platelet volume (P-value = 3.57e − 08; 
Normalized Beta = 5.51 in functional annotation Filter 3), but with a positive direction of effect. The TUBB1 gene 
is highly expressed in platelets and megakaryocytes and has been inferred to be involved in proplatelet production 
and platelet release28,29. The TUBB1 protein is one of the two core families to form microtubules. Loss of function 
in the TUBB1 gene inhibits platelet release, which results in decrease in platelet counts. This supports our finding 
of a negative direction of effect in our association with platelet counts, indicating that an enrichment in function-
ally annotated mutations leads to a decrease in platelet counts. It has also been shown that mutation in this gene is 
associated with autosomal dominant macrothrombocytopenia, with both a reduction in platelet counts as well as 
an increase in platelet volume. This is also consistent with the observation in our study that loss of function of this 
gene is positively associated with platelet mean volume (a measure of the average size of platelets in blood)30,31.

Another association from our study is between GLCCI1 gene (using functional annotation filter 2) with white 
blood cell (WBC) counts (Table 1). Common frequency SNPs in the GLCCI1 gene have been previously associ-
ated with asthma32,33, but not WBC counts. High WBC counts are a reflection of inflammation, and higher WBC 
counts are observed in patients with severe allergy and asthma34. A direct connection between this gene and WBC 
levels is not known.

Associations with Clinical Diagnoses.  Of the 70 Bonferroni significant associations with ICD-9 code 
based diagnoses, there were 60 unique gene-phenotype combinations. Of these, 14 associations are closely related 
to the known function of these genes, and 57 associations are more novel with respect to existing understanding 
of these genes.

For ICD-9 code associations, we have highlighted some of the key results of these associations in the 
Manhattan plot of Fig. 1C. Among the top associations is the gene TACR1 associated with chronic sinusitis (ICD-9 
473.9; P-value = 2.01e − 10; beta = 2.34; functional annotation filter 3). The TACR1 gene is from the family of 

Figure 1.  Phewas-view plot of clinical laboratory measures. (A) Represents clinical laboratory measurement 
gene based associations for results with P-value < 0.001. The Y-axis lists all phenotypes. Triangles represent 
the –log10 P-value of associations on the left, with normalized beta in on the right with standard error bars. 
Points are colored based on the filter category. The direction of the triangle corresponds to the direction of 
effect: up is positive, down is negative. The results for alanine aminotransferase (ALT) are plotted separately 
in (B) due to the significance of tshe results on a different scale from the rest of the results. (C) Is a Manhattan 
plot of associations with P-value < 0.001 for ICD-9 code based case/control diagnoses. The x-axis corresponds 
to ICD-9 category and y-axis corresponds to the −log10(P-value) of the association and the points are colored 
based on the ICD-9 category. Within each diagnosis category the plotted points are ordered from most 
significant associations to the least significant associations.
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tachykinin receptors that are characterized by the interactions with G-proteins. Other G-protein receptors such 
as IKACH, GNB2 are linked to some other forms of sinusitis35,36 but this association between functional annotation 
mutations in TACR1 and chronic sinusitis is novel. The drug aprepitant is a known target drug for gene TACR1, 
and is an antagonist of the receptor. It is used to treat nausea and vomiting symptoms caused by chemotherapy 
treatment for cancer37,38. This novel association among functionally annotated mutations in TACR1 and chronic 
sinusitis warrants further investigation to understand what impact this drug may have in relation to sinusitis, 
including a potential side effect of tachykinin receptor blocking through the use of this drug.

In our study, we also identified functionally annotated variants in the PTGR2 gene (from all categories where 
functionally annotated mutations were tested) with “abnormal glucose intolerance of mother”. These association 
results are below the Bonferroni cutoff in all 4 categories where functionally annotated variants are included. For 
these associations, we observed the highest odds ratio of 55.70 in functional annotation filter 2 and lowest OR 
of 18.17 in the all variants category. These results are shown in Table 1. This association is also not p previously 
reported. Gene PTGR2 also showed a Bonferroni significant association in the non-functionally annotated cate-
gory with the diagnosis of ICD-9 code 309.28 (anxiety and depression).

Overall Trends of Results Across Variant Filtering Approaches.  A focus of this study was comparing 
and contrasting the results of gene-based comprehensive associations across a wide range of phenotypes when 
using a range of approaches for filtering rare variants. Figure 2 below shows a circos plots representing all results 
with P-values less than 0.001 from the functional annotation filter 2 category for results from associations with 
ICD-9 based case/control status as well as the quantitative clinical lab measures. Plots for other functionally anno-
tated filters, all variants and non- functionally annotated filter categories are shown in Supplementary Figures 1, 
2, 3 and 4. We have presented results from each of the functional annotation filters in separate colors to exemplify 
the differences and similarities observed in these analyses.

For ICD-9 based diagnoses, the results from functional annotation filter 2 had the least number of associations 
that were significant at an alpha level of 0.001. However, this filter also had the most significant association of the 
entire study (CASR and hypercalcemia), as well as the most significant associations for ICD-9 based diagnoses. 
Also for ICD-9 based diagnoses the non-functionally annotated category showed the highest number of results at 
P-value < 0.001, but the lowest P-value was 1.08e − 09 for the gene GSK3B associated with the diagnosis “thoracic 
aneurysm”, ICD-9 441.2. In the other functionally annotated filter categories for associations with diagnoses, the 
lowest P-value was 1e − 10, and in the non-functionally annotated category the lowest P-value was 1e − 08.

For clinical lab measures associations, filtering rare variants for functional annotation showed more number of 
highly statistically significant results than non-filtering by functional annotation (all variants and non-functional 
annotation filter categories), with the top result for functional annotation filter 1, 2 and 3 was for GPT associated 
with alanine aminotransferase levels (P-value = 3.29e − 83).

To compare and contrast the effect of associations that are significant for one rare variant filter and margin-
ally or not significant in other filters, we picked the top 5 genetic associations from each functional annotation 
filter and plotted the P-values of the same gene and phenotype associations from the other functional annotation 
categories. These results are shown in Fig. 3A and B. For example, for the ICD-9 diagnosis based associations, 
the most significant association in the all variants category was between the gene THBD and the diagnosis “other 
closed fractures of distal end of radius” (ICD-9 code 813.42, P-value = 3.54e − 09). This result seems to be influ-
enced mainly by non-functionally annotated variants as it is (a) significant in all variants, (b) not statistically 
significant for the non-functionally annotated filter (P-value = 2.23e − 06) and (c) not significant in the functional 
annotation filter categories.

The association between gene ADRA2B and “alcohol abuse” ICD-9 305.00 (mental disorders category) is 
observed as most significant result for functional annotation filter 2 (P-value = 3.88e − 10). This association does 
not reach Bonferroni significance in other filter categories implying the relevance of LOF and deleterious variants 
from this category and their link to alcohol abuse. ADRA2B has been linked to diseases such as hypertension, 
obesity, epilepsy, etc39–41 and its association with addiction is also known42, but the specific link with alcohol 
consumption and abuse has not been reported. Notably, the Non-functionally annotated results for this gene and 
phenotype were very non-significant.

In the functional annotation filter 3 category, we observed an association between the gene NPR3 with “anx-
iety behavior” ICD-9 309.24 (diagnosis category “adjustment disorder with anxiety”) with P-value = 1.21e − 09. 
The result however was statistically non-significant for functional annotation filter 1 and All Variants, underscor-
ing the contribution of LOF variants in filter 3 to these associations. Natriuretic receptors are well known to play 
essential role in blood pressure regulation. These receptors are also known to be very important in fluid regulation 
in central nervous system and thus can effect emotional behaviors such as anxiety43.

We repeated this analysis using only the more highly significant top 5 clinical laboratory measure associations 
from each rare-variant filter from the results presented in Fig. 3A. As previously mentioned, the association 
between GPT gene and alanine aminotransferase is the most significant result in all 4 categories consisting of 
functionally annotated variants. This association is not significant in non-functionally annotated category. Also, 
it is interesting to note that top 5 associations that are significant in non-functionally annotated category are not 
significant at all in other categories and do not pass Bonferroni significance in general.

Next, we explored the results intersecting among the rare-variant filters and again looked at the count of 
results with P-value < 0.001, shown in Fig. 4. For clinical laboratory measures, we observed 8 results that were 
in functionally annotated filtered categories. For ICD-9 diagnoses, we observed only 5 results that were shared 
among all categories implying that the effect of association is from the combination of all functionally annotated 
and not annotated variations, 200 results that were only present for functionally annotated filters, and 202 results 
in both the functionally annotated and all variants filter.
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The intersection plots shown in Fig. 4 for the counts of associations shared in each category highlight results 
due to various functionally annotated filters. There were 155 associations in functional annotation filter 2 and 3 
in the ICD-9 based associations and 6 associations for the laboratory measures t indicating that these associations 
were mostly influenced by LOF and deleterious variants.

Associations Only Identified For Functionally Annotated Filters.  The PheWAS-view plot in Fig. 5 represents the 
common results identified from all functionally annotated filters, with minimum number of cases 501 (track 3 
in Fig. 5). Among the top most significant associations that were found only by functional annotation filtering of 
variants, we identified associations between the FOS gene with “sensorineural hearing loss” ICD-9 389.10 (See 
Table 1). One factor that causes sensorineural hearing loss is noise and studies in mouse models have suggested 
that noise exposure activates the MAPK signaling pathway and the FOS gene among other genes is up-regulated 
in MAPK Signaling pathway44,45. Another interesting association was observed is between gene ATF7 and the 
ICD-9 diagnosis 278.02 (overweight) (see Table 1). Even though this result did not achieve statistical significance, 
it might reflect clinical importance with further study. The ATF7 gene is known to be linked to familial atrial 
fibrillation46 but its association with obesity is not completely known.

 Associations Only Identified for Variants Not Functionally Annotated.  We explored the top-most associations 
where the effect was not due to functionally annotated variants, only due to associations with non-functionally 
annotated variants. We identified 2120 such associations from the ICD-9 analyses and 31 associations from the 

Figure 2.  Circos plot of –log 10(P-value) association results by chromosome from ICD-9 codes (outer circle, 
points represented as triangles) and clinical laboratory values (points represented as squares) for results with 
P-value < 0.001. The genes are labeled at their respective chromosome base pair location boundaries. Yellow 
points represent results from functional annotation filter 1 category. The axis on both plots is same and goes 
from 0 to 22 (−log10 P-value).
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Figure 3.  (A) Shows the top 5 results from each rare variant filtering strategy and corresponding –log10(P-
value) and magnitude and direction of effect (boxes linked to the data points) from other filtering strategies 
for the same gene-phenotype associations for clinical lab measures. The x axis shows the clinical lab name and 
y-axis shows the –log10(p-value). Beta coefficient are represented by numbers next to points which are color 
coded by filter category and shape corresponds to gene name. (B) Shows the top 5 results from each rare variant 
filtering strategy and corresponding –log10(P-value) and magnitude and direction of effect (boxes linked to the 
data points) from other filtering strategies for the same gene-phenotype associations for ICD-9 based diagnoses. 
The x axis shows the general ICD-9 category the diagnosis was grouped into and y-axis shows the –log10(p-
value). Beta coefficients are represented by numbers next to points, are color coded by filter category, and the 
shape corresponds to the specific gene listed in the legend.

Figure 4.  Intersection of results passing a P-value < 0.001 for associations from different rare variant filtering 
strategies. The results for clinical laboratory measurements are on the left in (A) and the results for ICD-9 codes 
are on the right in (B). This figure shows the breakdown of these results based on how the variants were filtered, 
and whether or not the association was found only with one approach for filtering variants, or more than one 
way of filtering variants (lines connected between filtering method). The “intersection size” shows for each 
combination of filtering approach how many results passed the P-value cutoff, and set size indicates across that 
filtering approach total how many results there were.
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clinical lab analyses where the results are filtered at P-value of 0.001. Among the most significant associations is a 
novel association between the gene PTGS2 (Prostaglandin-Endoperoxide Synthase 2) and ICD-9 493.20 (chronic 
obstructive asthma) with P-value = 4.90e − 08 and also between the gene ADRA1D and ICD9-9 780.93 (memory 
loss) with P-value = 7.64e − 07, where the gene ADRA1D is already known to be associated with Schizophrenia47. 
All Bonferroni significant results in this category are shown in Supplementary Table 1.

The top most associations are between gene NGF and WBC counts (P-value = 5.24e − 06, normalized 
beta = −4.55) and gene AZIN2 and creatinine levels (P-value = 5.94e − 06, normalized beta = −4.54). Both of 
these associations have not been reported previously by rare variant association studies. Nerve Growth Factor 
(NGF) has been known to act in inflammatory responses in rat studies48,49 and is also known to be responsible 
for T and B-cell activation in humans50, therefore, its association with WBC counts based on rare variants offer 
further evidence. Further EHR-based research could help in providing useful insights into understanding the 
genetics behind these results.

Associations with diagnoses matching the diagnoses for drugs of the DrugBank database.  We 
characterized gene-disease associations where the diagnosis matches the reason drugs are prescribed that target 
specific genes. The DrugBank database provides list of genes that are targets for drugs, along with the condition 
the drugs are prescribed for. We mapped these gene and drug combinations to the ICD-9 code ranges corre-
sponding to disease diagnosis. We matched results below a P-value threshold of 0.001 to the DrugBank listed 
ICD-9 codes range as explained above. A total of 1,277 associations (7 out of those associations were Bonferroni 
significant) had a match between the target gene, associated phenotype, and the diagnosis drugs that are pre-
scribed to target that gene. There were 874 unique gene – phenotype combinations. Figure 6A shows how these 
results across individual ways of filtering rare variants, and when the associations were present with more than 
one way of filtering rare variants. In supplemental materials, we describe in more detail the number of associa-
tions we had depending on the functional annotation of variants.

Figure 5.  PheWAS-view plot showing P-values, Beta and case number track for all results with strongest 
associations derived from filtering on functionally annotated variants.
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Two of the top associations, apart from the CASR results already described, were for functionally annotated 
filtered variants. We found an association between ADRA2B and “substance addiction and disorders” (ICD-9 
305.00; lowest P-value = 3.88e − 10; beta = 4.51; functional annotation filter 2), the drugs known to target this 
gene include Amoxipine, Amphetamine, Loxapine, Clozapine, and the drugs are prescribed for are depression, 
stress and attention deficit hyperactivity disorder (ADHD). There were also associations between RBP1 and 
ICD-9 695.89 “other specified erythematous conditions” (lowest P-value 1.28e − 09, beta = 3.25, functional anno-
tation filter 1). RBP1 plays an important role in transportation of vitamin A to epithelial tissue and thus is a gene 
target for the drug Acitretin51 which is used to treat psoriasis, squamous cell carcinoma, chronic hand dermatitis, 
and malignant melanoma, among others52.

In order to further contrast how the significance of results changed depending on variant filter, Fig. 6B shows 
these results in PheWAS-view plot53 where we present P-values, betas and the number of cases for each unique 
gene-phenotype combination. We also list the drugs as listed in the DrugBank database that are prescribed for the 
matching diagnosis code. Notably in the figure, regardless of the annotation or all variant filter, for each associ-
ation the direction of effect is consistently positive. Thus, all associations are with a protective direction of effect 
for the disease conditions of the associations. In Supplemental file 1 we describe in detail how many associations, 
and how much overlap, there was for these associations depending on variant filtering.

Cross-phenotype Associations.  Exploring cross-phenotype and potentially pleiotropic associa-
tions are possible with PheWAS studies due to a wide range of phenotypes evaluated at once. We filtered all 
results at P-value threshold of 1.08e − 08 and number of cases greater than 150 (for ICD-9 code associations) 
to explore cross-phenotype associations. We did not observe any cross-phenotype associations where results 
were all Bonferroni significant. To explore these results further, for each gene where P-value with phenotype was 
Bonferroni significant, we also extracted results for same genes at P-value < 1e − 04. Here we only report unique 
gene-phenotype combinations from all filter categories as represented in Supplementary Fig. 5. This exploratory 
search of cross-phenotype associations at an exploratory P-value cutoff resulted in several interesting observa-
tions. For example, we see association among gene ABCA1 with HDL levels, total cholesterol levels, and irritable 
bowel syndrome (IBS). The drug Probucol is used to target ABCA1 gene which helps in controlling cholesterol and 
is also known to lower HDL cholesterol levels. In the MyCode dataset, we observed 1,486 patients that are cases 
for IBS and out of these patients 528 have total cholesterol > 200 mg/dl and 198 patients have HDL <40 mg/dl.  
A connection between lipid levels and IBS warrants further investigation.

Next, we also observed associations of various phenotypes such as hyposomality (abnormal levels of electro-
lytes), hypopotassemia, chloride levels and septicemia with the gene Cytochrome oxidase 6 C (COX6C). The only 

Figure 6.  (A) Shows the intersection of results where the diagnosis of the association matched the diagnosis 
used for the drug targeting the gene of the DrugBank database. A total of 874 associations had a match 
between the target gene, associated phenotype, and the diagnosis that drugs are prescribed to target that gene, 
for p < 0.001. (B) Represents the forty-one associations where there was a match between the target gene, 
associated phenotype, and the diagnosis drugs are prescribed for that target that gene, for p < 0.001. The x-axis 
shows the disease description and tracks from top to bottom show -log10 P-value, the magnitude and direction 
of effect, and the number of cases. Colors represent the different filters applied to the variants before gene based 
association testing. The Drug name is listed in the same column as the association showing the drug prescribed 
for the diagnosis listed. Bonferroni significant associations are shown in larger size on the plot.
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Bonferroni significant association with COX6C is abnormal electrolyte levels but this exploratory search points to 
the direction of the changes in body caused due to sepsis infection. Septicemia can cause abnormal levels of potas-
sium, sodium, chloride, etc54,55. Cholic acid is used to target COX6C in treatment of adults and children with bile 
acid synthesis disorders such as Zellweger Syndrome56. Cytochromes are known to be crucial during development 
of sepsis57,58 and there is a relationship between cholic acid levels increasing with sepsis.

Pathway Analyses for Gene-Sets.  With the results of our DrugBank PheWAS, we also used gene set 
enrichment analysis to see if there were multiple genes within the same genetic pathways, that had been asso-
ciated with the same phenotype. This provides further information about key pathways impacting phenotypic 
variability, and the impact of perturbing biological networks on outcomes. This approach can also identify mul-
tiple potential drug targets across a single pathway. We used the P-values from the regression analyses, separated 
by each phenotype and variant filtering approach, and ranked results from most significant gene association to 
least significant association. We then performed gene-set enrichment analysis (GSEA)59,60 for the results of each 
phenotype and filtering approach separately (described further in methods)

Supplementary Fig. 6 shows an overview of number of results in ICD-9 code categories at FDR q-value < 0.25 
for each of the filter categories. Similarly, Supplementary Fig. 7 represents an overview of the number of results 
from clinical laboratory measurements. In our analysis, we did not identify the enrichment of highly-significant 
genes in any pathways, we instead observed that less significant genes (ranked lower in the list) were enriched in 
pathways. These results are plotted in a heatmap in Supplementary Fig. 8.

We also explored gene set enrichment analysis at a non-stringent FDR q-value threshold of 0.001. Counts 
varied from range of 1-5, we picked all gene-sets, gene and phenotype combination where minimum counts 
of genes are 3. Using a less stringent approach with the association results resulted in combination of 18 genes 
and 3 gene-sets (GO Drug Metabolic process, KEGG Drug Metabolism Cytochrome P450 and KEGG Retinol 
Metabolism) that are found to be most enriched in our analysis. These results are shown in Supplementary Fig. 9.

It is not surprising to see drug metabolic processes as the top results from GSEA since we started our analysis 
with genes that are common drug targets. We observed that in majority of cases for each of these enriched path-
ways, that even though we performed gene set enrichment separately, there were multiple filter categories (evi-
dent from overlaying points in Supplemental Fig. 9) that showed similar gene enrichment results. We did however 
observe some results where genes were found to be enriched in pathways for results only from one functional 
variant filtering category. For example, all the genes listed in Supplementary Fig. 9 in the KEGG retinol metabo-
lism pathway are from associations with triglycerides for functional annotation filter 2, there was no enrichment 
for these genes from other variant filters in this pathway.

Discussion
Association analyses for rare variants is another strategy in the search for uncovering the hidden heritability of 
complex diseases61. Single variant analyses for rare variants can be under-powered to detect meaningful associa-
tions. Thus, collapsing or binning based methods are an important approach to provide enough power for identi-
fying the impact of rare variation on phenotypic variability, these tests can be further refined by filtering variation 
for functional impact. For this study, we filtered rare variants for each gene in various ways to characterize how 
much results changed depending on the type of variants chosen.

We identified 91 novel rare variant associations. Many of the results clearly recapitulated the known function 
of those genes on outcomes, some from common variant association testing, even though the rare variant associ-
ations themselves were novel. We also had additional results identifying new hypotheses for gene impact due to 
rare genetic variation. For example, we observed associations between functionally annotated rare variants in the 
gene TACR1 and chronic sinusitis, as well as associations between functionally annotated variants in ATF7 and 
obesity related diagnoses (results not passing multiple burden threshold).

One of the unique approaches of this study was to compare and contrast results across different ways of filter-
ing rare variants by function. Gene-based association testing is still relatively new, and annotation of rare variants 
to identify candidates for study is also a quickly growing and developing field with more and more emerging bio-
informatics tools. Our study showed no single filtering approach with superiority over another filtering method. 
There was variability in the top most significant results for each filtering approach, variability in the number of 
significant association results for each filtering approach, and our most significant association result also came 
from the filtering method with the least number of highly significant associations. Thus, our study shows the 
utility of using different filtering approaches for rare variants when seeking out new genetic associations. For 
example, our associations between as CASR and hypercalcemia, GPT and alanine aminotransferease and UGT1A 
genes and bilirubin levels, were identified in all ways of filtering functionally annotated variation. We also tested 
for associations for rare variants within genes for all variants except that are functionally annotated. We observed 
that in the non-functional annotation filter category, the results were overall less significant when compared to 
filtering based on annotated variants even though the largest number of associations passing a P-value cutoff of 
0.001 were not annotated. With the overall weaker effects of associations when not filtering variants by func-
tionality, we have confirmation of the importance filtering novel variants by functional impact for gene based 
association testing.

Because DrugBank provides genes that are known drug targets with linked medications that prescribed for 
specific diagnoses, we linked these diseases to ICD-9 code ranges and identified associations that matched both 
the gene target and the diseases the specific drugs are used to target. Our analysis resulted in 254 associations at 
P-value < 0.001 that linked to similar range of ICD-9 codes as diseases for which drugs are prescribed. Again, 
most of the results passing our P-value cutoff consisted of functionally annotated variants where 5 different algo-
rithms were used to predict LOF, non-synonymous, and deleterious variants. Thus, this underscores again the 
importance of functional annotation in rare variant association analysis to identify biologically relevant results.
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We also explored potential pleiotropic associations, and unsurprisingly we found many cross-phenotype asso-
ciations for highly correlated phenotypes. However, there were some intriguing cross phenotype associations. 
For example, Bonferroni significant results showed association of COX6C with electrolyte levels but also associa-
tions with other phenotypes such as septicemia, chloride and potassium levels for results below P-value 1e − 04. 
While these phenotypes are interrelated, we may be seeing more of a reflection of the complex interplay between 
genetics and these phenotypes, not just the correlation between these phenotypes. We also performed pre-ranked 
gene-set enrichment analysis and we identified 3 pathways and 18 genes that are enriched from low-significant 
ranked genes from our list. We did not find any of the genes that were highly significant in our associations to be 
enriched in any pathways.

Limitations.  We adjusted our regression models consistently by age, sex and the first 4 principle compo-
nents corresponding to genetic ancestry. We could have potentially missed the effect of other covariates on the 
associations. However, from one phenotype to another the most relevant covariates can vary, and we performed 
high-throughput associations over hundreds of phenotypes. This is regularly a limitation in PheWAS when per-
forming high throughput associations. The benefit of PheWAS is that the results generate new hypothesis for 
further research, where any individual association models can be investigated in the future in a more compre-
hensive manner, including more phenotypic development and exploring various covariates and their impact on 
the model.

Conclusions
In this manuscript, we have presented a gene based PheWAS-study by collapsing functionally annotated and 
non-annotated rare variants (MAF < 1%) into gene bins that are known drug targets. We used a burden based 
approach to highlight the direction of effect for associations for the genes tested. We have presented several asso-
ciations where our results clearly reflect the known function of these genes, underscoring how changes to the 
proteins through rare variation impact phenotypic variation. We also found associations where there is less of a 
known relationship between gene products and phenotypic variability, which could lead to new hypotheses for 
further research. Our analyses highlight the importance of filtering rare variants by functional impact before test-
ing associations. We identified interesting cross-phenotype associations. Our future work includes more refined 
phenotyping of variables identified in the associations of this study and also developing high throughput tech-
nique to adjust the models for related phenotypes. We will also further explore the potentially pleiotropic results 
of this study.

Methods
Figure 7 provides an overview of the sequence of steps and tools that were used for the analyses of this manuscript.

Extraction of Genes from DrugBank Database.  The DrugBank database19 contains 4,387 different 
genes and drugs. A drug can have multiple target genes or a single gene can also be the target of multiple drugs. A 
total of 3 drugs (Captopril, Fluorescein and Glycine) did not have target genes in DrugBank. We obtained unique 
list of 829 genes and 957 drugs after removing duplicates.

We also retrieved chromosome and base pair locations for these 829 unique DrugBank genes in the latest 
genome assembly build 38 using Biofilter version 2.462 and the (Library of Knowledge Integration) LOKI database 
version 2.2. Of the list of 829 genes, 19 gene identifiers, listed in Supplementary Table 3, were unrecognized by 
the Biofilter software. For these genes, alternate identifiers were searched for using NCBI PubMed (https://www.
ncbi.nlm.nih.gov/pubmed) and Gene Cards63 database. Table 2 lists the genes unrecognized by Biofilter as well 
as the alternate gene recognized by Biofilter. For the genes, the build 38 regions were retrieved the same way as 
explained above. Further, for our final gene list, we only considered genes in autosomal regions, and excluded 
mitochondrial genes.

Due to the unspecific and changing nature of gene symbols, gene annotation sources such as Entrez (the 
source of gene symbols and locations used by Biofilter) can have gene symbols annotated with multiple genic 
regions. In the current dataset, there were 5 genes with multiple regions listed in Table 3. We tested variants in 
these multiple regions even though they were mapped to same gene name.

The variant calling pipeline for the samples of this study was using the build 37 genome assembly, thus the 
regions for these genes in build 38 were converted to build 37 using LiftOver (Lift Genome Annotations) available 
as part of UCSC genome browser64. For 3 genes: C1R, FCGR1B and MUC2, LiftOver failed to convert regions. 
These regions were split into multiple regions on same chromosome based on the gene boundaries in the build 37 
genome assembly as suggested by LiftOver. Excluding these genes resulted in the final number of 797 unique gene 
regions (including the alternate gene regions as explained above). In Supplementary Table 2, we provide the list of 
all these 797 gene symbols and chromosome and base pair locations.

Extraction of Genes From Exome-Sequenced Data.  We had a sample size of 38,568 for this study. 
Table 4 shows the demographics of our samples. We included all variants in autosomes that passed the Variant 
Quality Score Recalibration (VQSR)65–67 sensitivity threshold of 99.5% for SNPs and 99% for INDELs as recom-
mended in GATK best practices67. In our exome sequencing pipeline, we did not call mitochondrial genes. Hence, 
they were excluded from this analysis. We also filtered the sequencing data to include only unrelated European 
Americans using genetically informed ancestry estimated via principal components who were >18 years of age. 
From this QC’ed version of dataset, using GATK we then extracted regions as specified in Supplementary Table 2 
to obtain all variants in 797 DrugBank genes further used for association testing.

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
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Figure 7.  Flow chart of the analyses of this study.

Unmatched Gene Symbol Alternate Gene Symbol

ABP1 AOC1, DBNL

ACCN1 ASIC2

ACCN2 ASIC1

ADC AZIN2, GADL1

CCBL2 KYAT3

CDO-1 CDO1

DKFZp686P18130 FECH

GAD65 GAD2

GIG18 GOT1, GLCCI1

GPR44 PTGDR2

LEPRE1 P3H1

LEPREL1 P3H2

LEPREL2 P3H3

PGCP CPQ

TUBB2C TUBB4B

Table 2.  Alternate Gene Identifiers for Genes Unrecognized by Biofilter.

Chr Gene Name Start Position End Position

12 C1R 7080209 7082108

12 C1R 7085860 7092447

5 CDO1 115804733 115816954

5 CDO1 115813620 115816111

1 CHRM3 239386518 239387227

1 CHRM3 239386565 239911462

3 LTF 46436005 46465142

3 LTF 46468135 46485234

3 RARB 24829344 25120621

3 RARB 25174332 25597932

Table 3.  Genes Annotated with Multiple Regions by Biofilter.
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For our association testing, we used a collapsing approach and binned all variants with minor allele frequency 
(MAF) <1% within the genes using Biobin68. We also binned variants with MAF <1% using various filtering 
approaches described below:

•	 All Variants: All variants in the DrugBank genes (no filtering based on functionality)
•	 Functional annotation filter 1: Loss of Function (LOF) and non-synonymous variants using SNPEff soft-

ware16 (see the definition of LOF and non-synonymous below).
•	 Functional annotation filter 2: LOF and predicted deleterious non-synonymous variants by using five differ-

ent predictive algorithms. A variant was predicted deleterious if a consensus of the 5 algorithms listed below 
indicated that the variant is deleterious. If multiple annotations existed for a given variant (as would be in the 
case of multiallelic variants or variant annotations specific to a transcript), a variant was considered to be LOF 
or non-synonymous if ANY annotation for that variant met our specification for LOF or non-synonymous. 
The following 5 scoring algorithms were used in dbNSFP69 to predict the deleterious variants (limited to only 
SNPs/SNVs):

	 1.	 SIFT70 5.2.2
	 2.	 PolyPhen2 (HDIV training set)71

	 3.	 PolyPhen2 (HVAR training set)71

	 4.	 LRT72

	 5.	 MutationTaster73.
•	 Functional annotation filter 3: LOF and predicted deleterious non-synonymous variants by using one pre-

dictive algorithm (SIFT). SIFT is one of the most established and commonly used annotation filters, thus we 
created a less stringent filtering than annotation filter 2 by focusing on a single annotation filter. Thus, we 
expanded the number of variants evaluated, while still filtering on LOF and non-synonymous variants, using 
a very established algorithm.

•	 Non-functionally annotated variants: Variants without functional annotation, i.e. the variants that were not 
included in 2, 3 or 4 above
These are the definitions of our LOF and non-synonymous variants

•	 LOF: A variant that has one of the following roles:

	 1.	 Chromosome_number_variation
	 2.	 Exon_loss_variant
	 3.	 Frameshift_variant
	 4.	 Stop_gained
	 5.	 Stop_lost
	 6.	 Start_lost
	 7.	 Splice_acceptor_variant
	 8.	 Splice_donor_variant
	 9.	 Rare_amino_acid_variant
	 10.	 Transcript_ablation
	 11.	 Disruptive_inframe_insertion
	 12.	 Disruptive_inframe_deletion.

Note that this consisted of all SNPEff roles with a HIGH impact modifier, plus the addition of the disruptive 
insertion/deletion

•	 Non-synonymous Variants: Variants identified as a LOF variant above, or had one of the following roles:

	 1.	 Missense_variant
	 2.	 Inframe_insertion
	 3.	 Inframe_deletion
	 4.	 5_prime_UTR_truncation
	 5.	 3_prime_UTR_truncatisplice_region_variant
	 6.	 Splice_branch_variant
	 7.	 Coding_sequence_variant

Total 38568 females 22428 males 16116

Age

Min 18.01 18.01 18.12

Median 62.18 58.71 65.7

Mean 60.21 57.32 64.22

Max 88.55 88.55 88.55

BMI

Min 13.18 13.18 13.51

Median 30.36 30.73 30.04

Mean 31.64 31.98 31.17

Max 113.19 85.79 113.19

Table 4.  Demographic information for the samples of this study after quality control.
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	 8.	 Regulatory_region_ablation
	 9.	 TFBS_ablation
	 10.	 5_prime_UTR_premature_start_codon_gain_variant
	 11.	 Non-canonical_start_codon.

Phenotype Data Extraction From EHR.  We extracted international classification of disease version 9 
(ICD-9) codes from the electronic health record (EHR) of GHS. For the ICD-9 based data, we created case/
control diagnoses, requiring an individual to have 3 or more instances of an ICD-9 code to be considered a case, 
individuals with less than three but greater than zero instances were dropped out of the analyses in order to avoid 
including samples with misdiagnosis. Zero instances of an ICD-9 code resulted in the individual being considered 
a control. As a result, we had a total of 541 case/control based diagnoses used in our association testing.

A total of 35 clinical lab measures were also extracted from the EHR; we used the median lab value measured 
from the longitudinal data for each individual. Some individuals had more clinical lab measures than others, we 
used the median to obtain a general reflection of individual clinical lab measures. In previous publications11–13, 
we have shown the efficacy of these measures in association studies.

We previously identified that quality control and transformation of clinical laboratory measurements was 
needed to meet all assumptions for the statistical tests of association11. Units of measurements are different at 
various GHS laboratories and devices used at the time of care thus we standardized these observations following 
Logical Observation Identifiers Names and Codes (LOINC) guidelines. We did not include any measurements 
where the units reported were different than LOINC units and/or if the conversion was not possible. We excluded 
outliers where measurements were not within + −3 standard deviations. Median values were calculated for each 

Clinical Lab Trait Transformation

1 Alanine aminotransferase - serum plasma Natural Log

2 Albumin - serum plasma Natural Log

3 Alkaline phosphatase - serum plasma Natural Log

4 Anion GAP - serum plasma —

5 Aspartate aminotransferase (AST) - serum plasma Natural Log

6 Bilirubin - serum plasma 0.001 Natural Log

7 Calcium (Ca) - serum plasma —

8 CARBON_DIOXIDE_CO2_SERUM_PLASMA —

9 Chloride (Cl) - serum plasma —

10 Creatinine (eGFR) - serum plasma Natural Log

11 Erythrocyte Distribution Width (RDW) - blood Natural Log

12 Hematocrit (HCT) - blood —

13 Hemoglobin - blood —

14 Mean corpuscular hemoglobin concentration (MCHC) - blood —

15 Mean corpuscular hemoglobin (MCH) - blood —

16 Mean corpuscular volume (MCV) - blood —

17 Platelet blood count —

18 Platelet mean volume (MPV) - blood —

19 Potassium (K) - serum plasma —

20 Protein - serum plasma —

21 Red Blood Cell (RBC) count - blood —

22 Sodium (Na) - serum plasma —

23 Urea Nitrogen - serum plasma —

24 White Blood Cell (WBC) count - blood 0.001 Log

25 Fasting Blood Glucose (FBG) Boxcox

26 Hemoglobin A1C (HBA1C) Boxcox

27 Cholesterol Natural Log

28 Free T3 Natural Log

29 Free T4 Natural Log

30 Bicarbonate (HCO3) Natural Log

31 High Density Lipoprotein (HDL) Natural Log

32 Insulin-like growth factor (IGF1) Natural Log

33 Low density lipoprotein (LDL) Natural Log

34 Triglycerides (TRIG) Natural Log

35 Thyroid stimulating hormone (TSH) Natural Log

Table 5.  Clinical lab phenotypic variables tested for PheWAS.
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patient using all their measurements from the EHR available as outpatients. Values were also transformed to 
obtain normal distributions. Table 5 lists all the clinical variables used for the analysis and their respective trans-
formation methods applied if necessary (left blank if not required).

Burden-test Analysis.  After collapsing rare variants across the 797 genes separately for all 5 types of filtering 
rare variants, as described above we then used regression to evaluate associations with our 576 phenotypes listed 
in Supplementary Table 3. The rare variant burden calculated for each individual included weighting based on 
rarity of the variants, using weighted sum collapsing approach as suggested by Madsen and Browning74. Weighted 
sum collapsing approach to give more weights to rare variants due to their stronger effect sizes is implemented 
in Biobin. For associations with ICD- 9 diagnoses, logistic regression was used, and for quantitative clinical lab 
measures linear regression was used. All models were adjusted by the covariates of age, sex and first 4 principal 
components for ancestry. Below are the regression models for both disease diagnosis analysis (logistic regression) 
and laboratory measurement analysis (linear regression). Biobin currently does not provide direction of effect 
from regression analysis. Thus, for each analysis we also calculated direction of effect (beta) using PLATO (http://
ritchielab.psu.edu/software/plato-download).

β β β β β
β β β

= + + + +
+ + +

Y X Age Sex PC
PC PC PC

1
2 3 4 (1)

Disease B in Value0 1 2 3 4

5 6 7

β β β β β β
β β ε

= + + + + +
+ + +

Y X Age Sex PC PC
PC PC

1 2
3 4 (2)

Value B in Value0 1 2 3 4 5

6 7

In equations (1) and (2), Y  refers to the dependent variable (YDisease is binary phenotype trait and YValue refers 
to quantitative phenotype value), XBinValue refers to the contribution of individual to a gene bin, β0 is the beta 
coefficent of the model and ε is the error term.

Associations using different filters for binning approaches (filters as described above) as well as ICD-9 codes 
and clinical laboratory measures were run separately and then results were combined. All total, considering both 
case/control diagnoses and quantitative clinical lab measures, we performed 459,072 tests. This resulted in a 
Bonferroni Correction of 1.08e − 07 using an alpha of 0.05.

Gene-set Enrichment Analysis.  Using the P-values from the regression analyses, separated by each phe-
notype and variant filtering approach, we ranked results from most significant gene association to least significant 
association. We then performed gene-set enrichment analysis (GSEA)59,60 for the results of each phenotype and 
filtering approach separately. We ran GSEA using the following gene-set databases:

	 1.	 KEGG Pathway
	 2.	 GO Biological Processes
	 3.	 Immunological signatures
	 4.	 microRNA targets
	 5.	 transcription factor targets

We ran the analysis using GSEA command line option for each phenotype and then compiled all results for 
ICD-9 and quantitative variables at FDR q-value < 0.25 into two sets of results to evaluate. For GSEA, we used 
default options of 1000 permutations for pre-ranked analysis where ranking of genes is based on the significance 
of P-value obtained from regression analysis. We then explored results from diagnosis codes and laboratory meas-
urements to identify most significant gene-set terms and genes enriched for the phenotypes evaluated.

Data Availability
Additional information for reproducing the results described in the article is available upon reasonable request 
and subject to a data use agreement.
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