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A comprehensive evaluation of module detection
methods for gene expression data
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A critical step in the analysis of large genome-wide gene expression datasets is the use of
module detection methods to group genes into co-expression modules. Because of limita-
tions of classical clustering methods, numerous alternative module detection methods have
been proposed, which improve upon clustering by handling co-expression in only a subset of
samples, modelling the regulatory network, and/or allowing overlap between modules. In this
study we use known regulatory networks to do a comprehensive and robust evaluation of
these different methods. Overall, decomposition methods outperform all other strategies,
while we do not find a clear advantage of biclustering and network inference-based
approaches on large gene expression datasets. Using our evaluation workflow, we also
investigate several practical aspects of module detection, such as parameter estimation and
the use of alternative similarity measures, and conclude with recommendations for the
further development of these methods.
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ver since the introduction of genome-wide gene expression

profiling technologies, module detection methods have been

a cornerstone in the biological interpretation of large gene
expression compendia'~3. Modules in this context are defined as
groups of genes with srmllar expression profiles, which also tend
to be functionally related and co-regulated. Apart from allowing a
more global and objective interpretation of gene expression
data*®, co-expression modules are also frequently used to infer
regulatory relatlonshlps between transcription factors and puta-
tive target genes®~®. In addition, modules can improve functional
genome annotation through the guilt-by-association prmcrple
and allow a better understanding of disease origin!’ and
progression'!

Numerous approaches and algorithms have been proposed for
module detection in gene expression data. The most popular
approach, clustering, has been used since the first gene expression
datasets became available and is still the most widely used to this
day®~%19, However, in the context of gene expression, clustering
methods suffer from three main drawbacks. First, clustering
methods only look at co-expression among all samples As
transcriptional regulation is hrghly context specific'?, clusterlng
potentially misses local co-expression effects which are present in
only a subset of all biological samples. Second, most clustering
methods are unable to assign genes to multiple modules. The
issue of overlap between modules is especially problematic given
the increasing evidence that gene regulation is highly combina-
torial and that gene products can participate in multiple path-
ways'>!4, A third limitation of clustering methods is that they
ignore the regulatory relationships between genes. As the
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variation in target gene expression can at least be 5partly explained
by variation in transcription factor expression!”, including this
information could therefore boost module detectlon. Several
alternative module detection approaches have therefore been
developed in order to alleviate these three limitations. Decom-
position methods'® and biclustering!” try to handle local co-
expression and overlap. These methods differ from clustering
because they allow that genes within a module do not need to be
co-expressed in all biological samples, but that a sample can
influence the expression of a module to a certain degree
(decomposition methods) or not at all (biclustering methods).
Two other alternative methods, direct network inference!® (direct
NI) and iterative NI'®, use the expression data to additionally
model the regulatory relationships between the genes.

Given the importance of module detection within the tran-
scriptomics field and the wealth of available methods, it is critical
that existing and new approaches are evaluated on objective
benchmarks. However, we identified several shortcomings in past
evaluation studies!”"!%=?2, related to the use of multiple evaluation
metrics, the correct tuning of parameters, and the biological
relevance of synthetic data. In this study we therefore propose a
new evaluation pipeline for module detection methods for gene
expression data. Central to our approach is that we use known
regulatory networks to define sets of known modules, which can
be used to directly assess the sensitivity and specificity of the
different module detection methods on real data. Using our
evaluation strategy we analyze the performance of 42 module
detection methods spanning all five main approaches. We also
consider several practical aspects of module detection, such as the

Samples

Fig. 1 Overview of our evaluation methodology. a The nine different datasets used in this evaluation. b We used three different module definitions to
extract known modules from known regulatory networks for the evaluation on E. coli, yeast and synthetic data. ¢ To avoid parameter overfitting on
characteristics of particular datasets, we first optimized the parameters on every dataset using a grid search, and then used the optimal parameters on one
dataset (training score) to assess the performance of a method on another dataset (test score). d We evaluated a total of 42 methods, which can be
classified in 5 categories: clustering, biclustering, direct network inference (NI), decomposition, and iterative NI. e For the evaluation on human data, we
compared how well the targets of each regulator is enriched in at least one of the modules. f We used four different regulatory networks in our evaluation,

each generated from different types of data
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Table 1 Module detection methods evaluated in this study
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Clustering: grouping genes based on a global similarity in gene expression profiles

FLAME: fuzzy clustering by selecting cluster supporting objects based on the K-nearest neighbor density estimation

K-medoids: iteratively refines the centers (which are individual genes) and the average dissimilarity within the cluster

K-medoids (see B) but with automatic module number estimation

Fuzzy c-means: similar to k-means (see F), but using fuzzy instead of crisp cluster memberships

Self-organizing maps: maps each gene on a node embedded in a two-dimensional graph structure

K-means: iteratively refines the mean expression with a cluster and the within-cluster sum of squares

MCL: simulates random walks within the co-expression graph by alternative steps of expansion and inflation

Spectral clustering: applies K-means in the subspace defined by the eigenvectors of the Pearson’s correlation affinity matrix

Affinity propagation: clustering by exchange of messages between genes

Spectral clustering: applies K-means in the subspace defined by the eigenvectors of the K-nearest-neighbor graph

Transitivity clustering: tries to find the transitive co-expression graph in which the total cost of added and removed edges is minimized
WGCNA: agglomerative hierarchical clustering (see M), but using the topological overlap measure and a dynamic tree cutting algorithm to
implicitly determine the number of modules

Agglomerative hierarchical clustering: generates a hierarchical structure by progressively grouping genes and clusters based on their similarity
Hybrid hierarchical clustering: combination of agglomerative and divisive hierarchical clustering

Divisive hierarchical clustering: generates a hierarchical structure by progressively splitting the genes into clusters

Agglomerative hierarchical clustering (see M), but with automatic module number estimation

SOTA: combination of self-organizing maps and divisive hierarchical clustering

First finds cluster centers by searching for high-density regions, each gene is then assigned to the cluster of its nearest neighbor of higher density
CLICK: uses density estimation to find tight groups of similar genes, after which these are expanded into modules

DBSCAN: groups genes within core, non-core and outlier genes based on the number of neighbors

Clues: first applies a shrinking procedure which moves each gene towards nearby high-density regions, after which the genes are partitioned into an
automatically determined number of clusters using the silhouette width

Mean shift: moves each gene towards nearby high density regions until convergence

Decomposition: extracting the components corresponding to co-expression modules by decomposing the expression matrix in a product of
smaller matrices

Independent component analysis: decomposes the expression matrix into a set of independent components using the FastICA algorithm, detects
potentially overlapping modules within each source signal using false-discovery rate (FDR) estimation

Similar to A, but detects two modules per independent component depending on whether genes have positive or negative weights

Similar to A, but detects modules within each source signal using z-scores

Combination of principal component analysis and independent component analysis, uses FDR estimation to find modules

Principal component analysis: decomposes the expression matrix into a set of linearly uncorrelated components, detects potentially overlapping
modules within each component using FDR estimation

Biclustering: simultaneous grouping of genes and samples in biclusters based on similar local behavior in expression
Spectral biclustering: detecting checkerboard patterns within the gene expression matrix

ISA: iteratively refines a set of genes and samples based on high or low expression in both the gene and sample dimension
QUBIC: finds biclusters in which the genes have similar high or low expression levels in a discretized expression matrix
Bi-Force: finds biclusters with over- or under-expression by solving the bicluster editing problem

FABIA: builds a multiplicative model of the expression matrix layer by layer. Every layer represents a bicluster

Plaid: builds an additive model of the expression matrix layer by layer. Every layer represents a bicluster

MSBE: finds additive biclusters starting from randomly sampled reference genes and conditions

Cheng & church: minimizes the mean squared residue within every bicluster

OPSM: searches for biclusters where the expression changes in the same direction between genes and samples

Iterative network inference: iterative optimization of an inferred network and a set of clusters

MERLIN: iteratively refines a direct regulatory network and modules within a probabilistic graphical network framework

Genomica: starts from an initial hierarchical clustering and iteratively refines this clustering and an inferred module network using a model based on
Bayesian regression trees

Direct network inference: inference of a regulatory network based on gene expression similarity between regulators and target genes
GENIE3: predicts the expression of each target gene based on random forest regression

CLR: calculates the likelihood of mutual information estimations based on the network neighborhood

Pearson's correlation between regulator and target gene

TIGRESS: network inference using a combination of Lasso sparse regression and stability selection

Within each category, methods are ranked according to their average test score (Fig. 2). We refer the reader to Supplementary Note 2 for details regarding the implementation and parameters

relative data requirements of the methods, parameter estimation,
and the use of alternative similarity measures for clustering. The
purpose of this evaluation study is twofold. We first want to
provide an overview of the characteristics and performance of
current module detection methods to guide the biologist in their
choice. Second, we propose a benchmark strategy, which can be
used in future studies to compare novel methods with the current
state of the art. For this purpose, we provide all gold standards,
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expression datasets, and the evaluation procedure to the
community.

Results

Evaluation workflow. Our evaluation procedure was structured as
follows (Fig. 1). We applied publicly available module detection
methods on nine gene expression compendia from Escherichia coli,
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Fig. 2 Overall performance of 42 module detection methods (Table 1) based on the agreement between observed modules and known modules in gene
regulatory networks. The methods can be divided in five categories: clustering, decomposition, biclustering, direct network inference (direct NI) and
iterative network inference (iterative NI) methods. Clustering and biclustering methods were further classified in subcategories (see Methods). a Average
test and training scores across datasets and module definitions. The score represents a fold improvement over permutations of the known modules.
*Automatic estimation of number of modules. b Different properties of the module detection methods (see Supplementary Note 2). A+ (green
background) denotes that a method can handle a certain property listed on the left. We distinguish between explicit (=), implicit (+), and automatic (+)
module number estimation. Note that running times strongly depend on the implementation, hardware, dataset dimensions, and parameter settings, and
are therefore only indicative. ¢ Test scores at each of the four datasets, averaged over module definitions. d Test scores on each of the three module

definitions, averaged over different datasets

yeast, human, and in silico simulated regulatory networks (Fig. 1a).
We scored the different methods by comparing the observed
modules with a set of known modules. These known modules were
extracted from known regulatory networks using three different
module definitions (Fig. 1b), two requiring co-regulation by either
one or all known regulators and one looking at strong inter-
connectedness within the gene regulatory network. To compare a
set of observed modules with known modules, we considered sev-
eral scores described in the literature (Supplementary Note 1) and
ultimately chose four scores as follows: recovery, relevance, recall,
and precision (Supplementary Fig. 1). Note that classical scores
comparing clusterings could not be used because these cannot
handle overlap. As all methods generally performed equally or
worse than random on human datasets, due to the high number of
false positives in the gold standard (Supplementary Note 1), we
instead used a scoring system which looks at how well the observed
modules cover the targets of regulators in the dataset (Fig. le). To
avoid certain gold standards and module definitions from dis-
proportionately influencing our final score, we normalized each
score using random permutations of the known modules. The final
score for a method ultimately represented a fold improvement of a
given module detection method over the score obtained from
randomly permuted known modules.

Parameter tuning is a necessary but often overlooked challenge
with module detection methods. Although good performance
generally depends on the correct choice of parameters, this also
increases the risk of overfitting on specific characteristics of one
dataset, as such parameters will lead to suboptimal results when
generalizing the parameter settings to other datasets. To address
both problems, we optimized the parameters for every method
with a grid search (Supplementary Note 2) and used an approach
akin to cross-validation where the optimal parameter settings
from one dataset were used to assess the performance of a method
on another dataset (Fig. 1¢c). For every method we give two scores:
the training score represents the score at the optimal parameter
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settings, whereas the test score denotes the performance when
parameters were estimated on an alternative dataset (Fig. 1c).

Overall performance. We evaluated a total of 42 module detec-
tion algorithms covering all 5 approaches (clustering, decom-
position, biclustering, direct NI, and iterative NI) using the
described methodology (Table 1 and Supplementary Note 2).
Overall, our results indicate that decomposition methods detect
the modules which best correspond to the known modular
structure within the gene regulatory network (Fig. 2a). The best
decomposition methods are all variations of independent com-
ponent analysis (ICA) with different post-processing meth-
0ds'®23, Surprisingly, neither biclustering nor direct NI, nor
iterative NI methods outperform clustering methods, although in
theory they should offer several advantages by allowing overlap,
modelling transcriptional regulation and/or looking for local co-
expression effects (Fig. 2b).

Note that decomposition methods not only perform well when
the gold standard modules contains overlap, in the case of
minimally co-regulated modules, but also when no overlap is
present in the known modules (Fig. 2d). To further investigate
this, we calculated separate scores for genes within one or
multiple modules. This analysis showed that both clustering and
decomposition methods are better at grouping genes that are
present in one module, whereas biclustering and direct NI
methods are slightly biased toward genes present in more than
one module (Supplementary Fig. 2). These results indicate that
the higher performance of decomposition methods over cluster-
ing is not exclusively caused by their ability to detect overlapping
modules, but that also other factors such as local co-expression
could have a role.

We further classified clustering algorithms into four categories:
graph-based clustering, representative-based clustering, hierarch-
ical clustering, and density-based clustering. We found that
graph-based, representative-based, and hierarchical clustering all
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Fig. 3 Effect of automatic parameter estimation using four different cluster validity indices and two measures based on functional enrichment on the
performance of top module detection methods. Shown are changes in test scores after parameter estimation (either using measures based on functional
enrichment in blue or cluster validity indices in red-orange), averaged over datasets and module definitions, of the top module detection methods in every

category

performed equally well, with the clustering method
FLAME (Fuzzy clustering by Local Approximation of Member-
ships)?4, one of the only clustering methods able to detect
overlap, slightly outperforming other clustering methods. Among
hierarchical clustering methods, agglomerative methods provide
the highest performance compared with the intermediate and low
scores of respectively hybrid and divisive methods. Density-based
clustering methods on the other hand had much lower
performance, which can be partly explained by a higher
parameter sensitivity for some density-based methods. Although
the overall performance of biclustering methods was low, we also
made a similar categorization of these methods based on the type
of biclusters they detect. Methods that detect constant or extreme
biclusters generally outperformed other methods detecting more
complex bicluster patterns. In fact, except for FABIA (Factor
Analysis for Bicluster Acquisition), the performance of the latter
methods was generally not much better or even worse than
random permutations of the known modules.

Although the relative ranking of the main methods is
remarkably stable across datasets (Fig. 2c and Supplementary
Fig. 3a), individual methods can still perform well in one setting
even though their overall performance is poor (Supplementary
Fig. 4). Most profoundly is the higher performance of certain
biclustering methods, such as ISA (Iterative Signature Algorithm),
QUBIC (Qualitative Biclustering), and FABIA, and direct NI
methods, primarily GENIE3, on human and/or synthetic data,
where these methods can in some cases compete with clustering
and decomposition methods. Performance was generally very
consistent across different module definitions (Fig. 2d and
Supplementary Fig. 3b), despite limited similarity between the
sets of known modules (Supplementary Fig. 5). We also found
that the overall ranking of the methods remained similar when we
used different randomization procedures to normalize our scores
(Supplementary Fig. 6). The relative performance of individual
methods was more variable when we compared different scores,
especially for scores which can handle overlapping modules,
although the overall ranking of the different module detection
approaches remained stable (Supplementary Figs. 7 and 8).
Together, this again highlights the importance of using multiple
datasets and scoring metrics for a robust and unbiased evaluation
of bioinformatics methods>>%°.

Parameter tuning. The need to tune parameters on individual
datasets varied greatly among methods, which we quantified by
comparing training and test scores. Some methods, such as
FLAME, WGCNA (Weighted Gene Co-expression Network
Analysis), and MERLIN (Modular regulatory network learning
with per gene information) were relatively insensitive to

| (2018)9:1090

parameter tuning, despite requiring the optimization of two or
more parameters (Fig. 2a). On the other hand, methods such as
fuzzy c-means, self-organizing maps, and agglomerative hier-
archical clustering performed very differently between test and
training parameters. Nonetheless, the overall ranking of the dif-
ferent module detection approaches does not change drastically
between training and test scores. The top decomposition methods
for instance outperform clustering methods both before and after
controlling for parameter overfitting (Fig. 2a and Supplementary
Fig. 4).

The most central parameters in module detection (and
unsupervised data analysis in general) are those affecting the
number of clusters detected within a dataset. We distinguish three
different ways a method determines the number of modules
(Fig. 2b). Explicit methods, such as k-means and all decomposi-
tion methods, require that the number of modules is specified by
the user. Implicit methods, such as affinity propagation, adapt the
module number on each dataset based on other parameters
supplied by the user. Finally, automatic methods determine the
number of modules completely automatically, usually by iterating
over several parameter settings and selecting the one that
optimizes some criterion of cluster quality. Measures for cluster
quality can range from the stability of clusters among several
resamplings of the dataset?’, the balance between cluster tightness
and separateness (as measured by cluster validity indices®®), or
the optimal functional enrichment of the modules®2. Although
the top method within each clustering subcategory estimate the
number of modules implicitly (coinciding with a relatively low
parameter sensitivity) (Fig. 2b), we found that implicit or
automatic estimation of the number of modules is not a
prerequisite for a high performance (Supplementary Fig. 9).
Indeed, the top decomposition methods all require the number of
modules to be specified beforehand. Interestingly, the perfor-
mance of iterative NI methods depended only little on the initial
parameters, possibly because these methods adapt the number of
modules depending on the inferred regulatory network.

Apart from those parameters influencing the number of
clusters, most module detection methods also have other
parameters, frequently affecting the compactness of the modules,
the way local co-expression is defined or the minimal number of
genes within a module. As all these parameters can have
significant effects on the resulting modules (and thus the
performance of a method), we assessed how well automatic
parameter estimation can improve method performance. Auto-
matic parameter estimation can be seen as an alternative to
determining the optimal parameters on one or more training
datasets and using these parameters on a test dataset to assess
performance. Based on a previous evaluation study®® we chose
four of the most promising cluster validity indices, and found that
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Fig. 4 Influence of the number of samples on the performance of the top module detection methods. Shown are average training scores (left) and test
scores (right) over all datasets and module definitions at different levels of random subsampling (five repeats)

the benefits of cluster validity indices were mostly confined to
clustering methods (Fig. 3). Notably, spectral clustering, affinity
propagation, and k-medoids frequently increased in test score
when their parameters were automatically estimated using the
average silhouette width and the Davis-Bouldin index (Supple-
mentary Fig. 10). On the other hand, the performance of FLAME
clustering and decomposition methods generally decreased when
using cluster validity indices, usually performing even worse than
randomly selecting parameters within the parameter grid
(Supplementary Fig. 11). It is important to note here that all
four cluster validity indices have been developed in the context of
clustering methods and were therefore never really designed with
overlap and local co-expression in mind, which could explain
their low performance with these methods. We also analyzed two
alternative measures, which try to estimate the number of clusters
based on the optimal enrichment of functional terms or pathways
within the modules. We found that a measure that assesses both
the coverage of all functional terms as well as the strong
individual enrichment of every module (F-aucodds) performed
very well, in a large majority of cases performing better than using
the optimal parameters of another dataset (Supplementary Fig. 10)
and random parameter settings (Supplementary Fig. 11).

Another important parameter for most clustering methods is
the distance or similarity measure for comparing gene expression
profiles. The most popular metric for gene expression data is
undoubtedly the Pearson’s correlation coefficient, which mea-
sures the extent of the linear dependence between two expression
profiles regardless of differences in absolute expression levels.
Several authors have criticized this measure?®=3!, mainly due to
three limitations: (i) it ignores inverse relations between genes
(Supplementary Fig. 12a), (ii) it is unable to capture non-linear
relationships (Supplementary Fig. 12b), and (iii) it is not robust to
outliers and skewed distributions (Supplementary Fig. 12c).
Several alternative measures have therefore been proposed, which
try to tackle some of these limitations (Supplementary Note 3).

To investigate whether these alternatives are able to improve
the module detection, we used 15 such measures as the input for
four of the top clustering methods which require having a
similarity or distance measure as parameter. Surprisingly, none of
the alternative similarity metrics are able to improve performance
of any of the four top clustering methods (Supplementary
Fig. 12d). When investigating this further, we found several cases
where these alternative measures can indeed retrieve known co-
regulated genes which were ranked lower than Pearson’s
correlation, as illustrated with three case examples (Supplemen-
tary Fig. 12a—c, e). However, when comparing the top 10% gene
pairs between Pearson’s correlation and alternative measures,
more known co-regulated gene pairs are removed than there are
gained (Supplementary Fig. 12f).

6 | (2018)9:1090

Sensitivity to number of samples and noise. We next tested the
influence of the number of samples within an expression dataset
on the relative performance of the top module detection methods
within every category. Although, as expected, the performance of
every method declined with decreasing dataset size, the magni-
tude and timing of this decline varied strongly per method.
Notably, ICA-based decomposition methods (decomposition
methods A and B) seem to be much more sensitive to the number
of samples in the dataset compared with other methods (Fig. 4
and Supplementary Fig. 13). On the other hand, the performance
of several network inference based methods, such as Genomica
(iterative NI method A) and GENIE3 (direct NI method A),
remained relatively stable with decreasing number of samples.
Together, this indicates that despite its better performance on
large datasets, current matrix decomposition methods are unable
to meet the performance of clustering methods when a smaller
number of biological conditions are being considered.

We also analyzed the noise sensitivity of the different methods
by applying different levels of noise on the synthetic datasets.
Although we saw that most methods were similarly sensitive to
noise compared with their overall performance, we found that
some methods, notably WGCNA and fuzzy c-means, were more
sensitive (Supplementary Fig. 14).

Discussion
Unsupervised data analysis has the potential to provide an
unbiased and global overview of biological datasets. Compared
with other unsupervised clustering tasks in biology (extensively
evaluated elsewhere?®), module detection in gene expression data
is unique, because the complexity of the underlying gene reg-
ulatory network poses particular challenges, such as local co-
expression and overlap. These challenges led to the development
of numerous algorithms and tools specifically dedicated to gene
expression data; however, so far the comparative performance of
these methods was unclear. In this work we therefore introduced
a general framework for evaluating module detection methods
and used it to provide a first comprehensive evaluation of state-
of-the-art module detection methods for gene expression data.
Based on this evaluation we analyzed several practical aspects of
module detection, such as the choice of methods and parameter
estimation, which are summarized in Fig. 5 and will be further
discussed here. Moreover, we also provide several guidelines for
further development of these methods combined with what in our
view has already been accomplished, as summarized in Supple-
mentary Fig. 15.

Module detection in gene expression data can serve a variety of
roles and different methods are better suited for particular roles
(Fig. 5a,b). Owing to the ease of visualization and interpretation,
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Fig. 5 Practical guidelines for module detection in gene expression data. Module detection in gene expression data has three main applications (left; panel
a). For each application, we suggest different module detection methods (b), which in turn influences the way parameters are estimated (c), how the
modules can be visualized (d), and how they can be functionally interpreted (e)

non-overlapping clustering methods can quickly generate a global
overview of the dataset, revealing the main expression and
functional effects among the different biological samples in the
dataset?. Our analysis showed that FLAME, WGCNA, Affinity
Propagation, Markov clustering (MCL), and Spectral clustering
are particularly suited for such an analysis, outperforming other
clustering methods on most datasets. However, because clustering
methods do not detect local co-expression effects, they could
potentially miss relevant modules or exclude important genes
from a module. In use cases where it can be desirable that all
modules are discovered in a dataset, e.g., to generate signatures
for disease, therapy and prevention®!1:32, or to find a set of genes
responsible for a biological function, methods that detect such
local co-expression and/or overlapping modules could therefore
provide a substantial advantage. Consistent with this, we found
that decomposition methods based on ICA were better at reco-
vering known modules consistently across datasets. Although a
handful of studies have already shown the potential of these
methods in true biological settings'®?>32, this was never shown
in direct comparison to alternative methods and/or based on
objective benchmarks. Finally, a third major application of co-
expression modules is in the inference of gene regulatory net-
works, where modules can be used to im};rove the network by
combining information from several genes®? but can also improve
the ease of interpretation. When we assessed the accuracy of the
inferred network by combining a state-of-the-art network infer-
ence methods with different module detection methods, we found
that ICA-based decomposition methods lead to the highest
improvement in accuracy (primarily on yeast and synthetic
datasets), closely followed by clustering and graph clustering
methods (Supplementary Fig. 16). For most methods, free
implementations are available either with a graphical or pro-
gramming interface, of which we give an overview in Supple-
mentary Table 1.

The choice of method influences subsequent steps of parameter
estimation, visualization, and functional interpretation
(Fig. 5c-e). For parameter estimation we found that cluster
validity indices, the Davis-Bouldin and Kim-Ramakrishna

| (2018)9:1090

indices in particular, are sufficient to estimate the parameters for
most top clustering methods. However, the performance of these
measures on alternative module detection methods was generally
worse than randomly selecting parameters. For these methods,
biclustering, decomposition, and direct NI in particular, we found
that a measure based on functional enrichment provides a better
alternative (Fig. 5¢). The kind of visualization of the modules also
heavily depends on the method. Although the results of a non-
overlapping clustering analysis can be readily visualized using
heat maps or networks®, visualizing overlapping modules
requires more complex and hierarchical visualizations (which,
e.g., indicate the overlap between modules) and is still an active
research field*>3¢ (Fig. 5d). In both cases, additional annotations
can be added to the visualization to improve interpretation of the
modules, e.g., to indicate the functional annotation of the genes,
and interactivity can be used to accelerate the exploration of the
modules. Finally, several tools and databases can be used to
functionally interpret the modules, to analyze what biological
functions and pathways are enriched within the modules or to
find whether the module could be associated with certain dis-
eases. To reduce redundancy in the results of such enrichment
analysis, alternative visualization and trimming methods can be
used to extract the main biological functions, pathways, or dis-
eases associated with particular modules (Fig. 5e). We give an
overview of freely available methods that can be used to interpret
co-expression modules in Supplementary Tables 2-5.

Apart from those listed in Fig. 2b, there are also several other
characteristics of module detection methods, which are important
to consider in practice. Non-exhaustive module detection meth-
ods, which include some clustering methods such as FLAME and
WGCNA, do not necessarily assign every gene to at least one
module. Although this has the advantage that the method itself
detects noisy expression profiles, users should be aware that it can
also remove a lot of relevant expression profiles if the parameter
values are too stringent. Network inference-based methods are
unique among the different approaches, because they also gen-
erate hypotheses that can explain molecularly why certain genes
are grouped in a module. Despite their lower performance

| DOI: 10.1038/541467-018-03424-4 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

according to our evaluation, they could therefore still be advan-
tageous in certain use cases. Finally, we note that some methods
are stochastic, and to assure the robustness of the results users
should consider re-running the methods several times in different
random states. We list these different properties of a method in
Supplementary Note 2, along with a brief discussion about their
algorithmic approach, important parameters, and directions to
freely available implementations.

As most of the evaluation studies in the past focused only on a
limited number of methods, a direct comparison with our eva-
luation study is difficult'”-!9-22, Furthermore, in these evaluations
major conclusions frequently rely on synthetic datasets, and
although it can certainly give insights into assumptions made by
certain algorithms, it cannot be used to make conclusions about
the usefulness of a particular algorithm on real datasets. Still, we
acknowledge two noteworthy differences as follows: most studies
find that biclustering methods outperform clustering!®?° or
observe substantial performance differences between graph-
based, hierarchical, and representative-based clustering meth-
0ds??2, We relate these differences mainly to issues with para-
meter estimation, reliance on synthetic datasets and use of a
limited number of evaluation metrics. In Supplementary Note 4
we give an overview of past evaluation studies, the methods they
evaluated, and the evaluation aspects where we believe these
studies are lacking. Similar to a recent study evaluating clustering
methods on several biological datasets?®, we found that no single
clustering is the best performer on all datasets, although certain
methods are certainly better than others at retrieving the known
modular structure within the data.

Nonetheless, we acknowledge that our evaluation workflow still
has some limitations for particular applications. As we wanted to
make sure that most of the modules present in our gold standard
were also differentially expressed in the expression data, we used
large expression compendia from very different biological con-
ditions. However, this means that when expression differences are
very subtle, other methods such as biclustering could perform
better. Indeed, some biclustering methods such as FABIA are
frequently used in drug discovery®’. An evaluation focusing on
these kind of subproblems is still a possibility for future research.

The detection of overlapping and locally co-expressed modules
has been a longstanding challenge in transcriptomics research.
Despite great efforts towards the development of these methods,
their application on real biological data has been hampered
because of several practical challenges. Foremost, the visualization
and interpretation of overlapping and locally co-expressed
modules is more difficult. Despite some efforts*»3®, current
visualization tools, e.g., do not directly show why certain genes
are grouped in a module, which can make the module detection
methods seem like a black box with unclear biological relevance.
Moreover, decomposition and biclustering methods usually have
several parameters, which need to be tuned on a dataset and
which can affect the biological interpretation. Although we found
that external functional information can be used to estimate the
parameters of these methods on most datasets, the requirement
for such external information can limit their applicability on well-
studied organisms. Parameter estimation of biclustering and
decomposition methods, which uses only the expression matrix
itself, therefore remains an open issue. Finally, our evaluation also
indicates that the top performing decomposition methods are
much more sensitive to the number of samples in a dataset and are
outperformed by clustering methods when the number of samples
is limited. We anticipate that improvements on these points
(visualization, parameter estimation, and data requirements), will
allow these advanced module detection methods to gain more
traction in biological research. We list some past accomplishments
and points for future research in Supplementary Fig. 15.
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Regulatory networks and module definitions. For E. coli datasets, we used a
regulatory network from the RegulonDB database version 8 (regulondb.ccg.unam.
mx, accessed 03/06/2015), a database integrating both small-scale experimental
evidence as well as genome-wide data of transcriptional regulation®®. We only
included interactions with at least one strong evidence type (APPH, BPP, FP, IDA,
SM, TA, CHIP-SV, GEA, ROMA, and gSELEX). We did not group the regulatory
interactions at operon level, as we found that this has only minimal impact on the
overall ranking of the different methods (Supplementary Fig. 17a). We also did not
include sigma factor regulations as we found that this would have a negligible effect
on performance (Supplementary Fig. 17b). For the yeast datasets we used two reg-
ulatory networks. One network was generated from an integration of chromatin
immunopurification-on-chip data and conserved binding motifs as described by
Maclsaac et al.*. Another regulatory network was generated by combining genome-
wide transcription factor binding data, knockout expression data, and sequence
conservation’. We used the most stringent dataset, which required evolutionary
conservation in at least two species. For the human datasets we used the ‘regulatory
circuits’ generated by Marbach et al#! in which regulators were linked with target
genes through a series of steps starting from binding motifs in active enhancers using
FANTOMS5 project data.

For every gold standard, we obtained sets of known modules based on three
different module definitions. We defined minimally co-regulated modules as
overlapping groups of genes that shared at least one regulator. Strictly co-regulated
modules were defined as groups of genes known to be regulated by exactly the same
set of regulators. Strongly interconnected known modules, on the other hand, were
defined as groups of genes that are strongly interconnected, and this does therefore
not necessarily reflect co-regulation. We used three different graph cluster
algorithms (markov clustering, transitivity clustering, and affinity propagation)
with in every case three different parameter settings representing different levels of
cluster compactness. For the Markov Clustering A1§orithm42 we used inflation
parameters 2, 10, and 50. For transitivity clustering®® we used two different cutoff
parameters for the fuzzy membership 0.1 and 0.9. These two parameter settings
allowed the modules to overlap (Supplementary Fig. 18). In the third parameter
setting for transitivity clustering, we assigned every gene to the module with the
highest fuzzy membership value. For affinity propagation*! we varied the
preference value between 0.5, 2, and an automatically estimated value (see
Supplementary Note 2). All known modules were then filtered for the genes present
in the expression matrix. Finally, we filtered strongly overlapping known modules
by merging two modules if they overlapped strongly (Jaccard coefficient > 0.8) and
removed small modules by requiring at least five genes. The latter cutoff was
defined based on where the average optimal performance of all methods reached a
maximum.

To further validate the known modules, we assessed the extent to which the
modules are co-expressed in our expression datasets. We found that all three main
module definitions generate modules which are both more globally and more
locally (according to extreme expression biclustering definition, see Supplementary
Note 2) co-expressed compared with permuted modules (Supplementary Fig. 19).
Certain module definitions, strict coregulation in particular, and datasets, E. coli,
and synthetic data generate modules that are better co-expressed within the
expression data, which could explain why module detection methods generally also
perform better on these datasets and module definitions (Fig. 2c,d). We further
confirmed the biological relevance of the known modules by investigating their
functional enrichment. We found that on the E. coli datasets, 50-70% of all
functional terms (both for Gene Ontology (GO)** and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways*®) were enriched in at least one known
module, and that 60-80% of all known modules were enriched in at least one
functional term (Supplementary Fig. 20). The coverage of the whole functional
space was much less on the yeast data, with about 5-15% GO terms and 10-30%
KEGG pathways covered (Supplementary Fig. 20a). On the other hand, a
substantial number of all known modules were enriched in at least one functional
term, ranging from 30% to 60% on GO terms and 30% to 50% on KEGG pathways
(Supplementary Fig. 20b). Compared with known modules, observed modules
covered the functional space in most cases a little bit better for the top methods
(Supplementary Fig. 21).

Gene expression data. We used a total of nine expression datasets for the study,
two from E. coli, two from Saccharomyces cerevisae, three human datasets, and two
synthetic datasets. Datasets consisted of hundreds of samples in various genomic
and/or environmental perturbational settings.

We obtained a first E. coli dataset from the Colombos database (version 2.0,
colombos.net)?’. This dataset is unique among the four because it does not contain
raw expression values from one sample but instead contains log ratios between test
and reference conditions, which allowed the authors to integrate across different
microarray platforms and RNA-sequencing experiments. A second E. coli dataset
was downloaded from the DREAMS5 network inference challenge!® website
(synapse.org/#!Synapse:syn2787209/wiki/70349).

For S. cerevisiae, we aggregated an expression compendium by integrating data
from 127 experiments (filtered on S. cerevisae samples) using the GPL2529
platform from Gene Expression Omnibus (ncbi.nlm.nih.gov/geo). Raw expression
data were normalized using Robust Multichip Average as implemented in the
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Bioconductor affy package. A second yeast dataset was obtained from the
DREAMS5 website (synapse.org/#!Synapse:syn2787209/wiki/70349).

We obtained the human TCGA datasets from a pan-cancer study of 12 cancer
types (synapse.org/#!Synapse:syn1715755)%8, The human GTEX dataset, which
contains expression profiles from different organs from hundreds of donors*’, was
downloaded from the GTEX website (gtexportal.org). The SEEK GPL5175 dataset
is an aggregation of public datasets using the GPL5175 microarray platform and
was retrieved from seek.princeton.edu.

We generated two synthetic datasets starting from the E. coli regulondb network
and yeast MacIsaac network (both described above) using GeneNetWeaver.

This network simulator models the gene regulation using a detailed
thermodynamic model and simulates this model using ordinary differential
equations™’. Different experimental conditions were simulated using the
‘Multifactorial Perturbations’ setting, where transcription rates for a subset of genes
are randomly perturbed.

For all expression datasets we filtered out the least variable genes by requiring a
minimal standard deviation in expression of 0.5 (for yeast and E. coli) and 1 (for
human datasets). Heatmaps for every dataset (Supplementary Fig. 21).

Each dataset has its own advantages and disadvantages. Real datasets better fit
the real use case and are thus the most biologically relevant, although limited
availability of gold standard can make an evaluation on real data challenging.
Although our knowledge of the regulatory networks of model micro-organisms,
primarily E. coli, is already substantial, it is still far from complete®!. While
evaluating on data with more complex regulatory networks such as humans is
certainly necessary to ensure the broad relevance of the evaluation, the definition of
gold standards on these datasets can be even more problematic because of the
broad prevalence of false-positive and false-negative interactions due to a variety of
reasons, such as cellular context!? and non-functional binding2. We therefore also
included synthetic datasets where the known regulatory network is completely
given and thus estimates of both sensitivity and precision of a method can be
accurately estimated. Together, we believe these datasets give complementary
support to our evaluation strategy and assure its broad relevance.

Similar to a previous evaluation study of biclustering methods>>, our datasets
can contain both large differences between samples, as well as small differences, as
indicated by the distribution of all log-fold changes between samples
(Supplementary Fig. 22).

Module detection methods. We chose a total of 42 module detection methods
based on (i) a freel_}l available implementation, (ii) performance within previous
evaluation studies'”1%2!, and (iii) novelty of the algorithm. See Supplementary
Note 2 for a brief overview of every method and Supplementary Table 1 for an
overview of the implementations used in this study and alternative implementa-
tions. We classified all module detection methods in five major categories. We
acknowledge however that the boundaries between the different categories are not
always clear, as certain clustering and biclustering methods, e.g., also use a matrix
decomposition step within their algorithm. The common theme of clustering
methods is that they group genes according to a global similarity in gene
expression. Even if clustering methods can detect (after some post-processing)
overlapping clusters, this overlap is detected only because a certain gene is still
globally similar to both two clusters, and not necessarily because of a local
co-expression. Decomposition methods try to approximate the expression matrix
using a product of smaller matrices. Two of these matrices contain the individual
contributions of respectively genes and samples to a particular module. As samples
are allowed to contribute to a particular module only to a certain degree,
decomposition methods can detect local co-expression. Related to these methods
are biclustering methods, which detect groups of genes, and samples, which show
some local co-expression only within the bicluster. In biclustering, samples either
contribute to a particular module or not, in contrast to decomposition methods
where all samples contribute to a certain extent. Modules detected by biclustering
methods can therefore be easier to interpret compared with those of decomposition
methods, as the exact origin of the local co-expression is better defined. In some
cases, a biclustering method is simply an extension of an existing decomposition
method but with an extra requirement that the contribution of a gene and sample
to a module is sparse (i.e., contains lots of zeros). Direct NI methods try to generate
a simple model of gene regulation, in most cases by using the expression matrix to
assign a score to every regulator-gene pair'®. Although their primary application is
to predict novel regulatory relationships between genes, some studies have also
used the resulting weighed regulatory network to detect gene modules®>°. A list of
regulators was generated for E. coli by looking for genes annotated by GO with
either “transcription, DNA-templated,” or “DNA binding,” and for yeast and
human with “sequence-specific DNA-binding RNA polymerase II transcription
factor activity.” The same list was also used for iterative NI methods, which start
from an initial clustering, and iteratively refine this clustering and an inferred
regulatory network.

We further classified clustering methods according to their “induction
principle,” a classification that does not use the way clusters are represented in the
algorithm (the model), but rather looks at the optimization problem underlying the
clustering algorithm®®. Graph-based clustering algorithms make use of graph-like
structures, such as K-nearest-neighbor graphs and affinity graphs, and group genes
if they are strongly connected within this graph-like structure. Representation-
based methods iteratively refine a cluster assignment and representative (such as
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the centroid) of the cluster. Hierarchical clustering methods construct a hierarchy
of all the genes within the expression matrix. Finally, density-based methods detect
modules by looking at contiguous regions of high density. It should also be noted
that some clustering methods use elements from multiple categories. FLAME
(clustering method A), e.g., uses elements from graph-based, representative-based,
and density-based clustering, whereas affinity propagation contains both elements
from graph-based and representative-based methods. In cases like this, we
ultimately classified an algorithm based on which aspect of the algorithm we
believe has the major impact on the final clustering result. Biclustering methods
were further classified according to the type of biclusters they detect. The
expression within constant biclusters remains relatively stable, whereas the genes
within extreme biclusters have a relatively high expression in a subset of conditions
compared with other genes. The expression within pattern-based biclusters follow
more complex models such as additive models®, multiplicative models®3, and
coherent evolution®®.

Post-processing steps were required for certain methods to get the results in a
correct format for comparison with the known modules. All parameters for
these post-processing steps were optimized within the grid search approach (as
described in Supplementary Note 2 for every method). For fuzzy clustering
methods, we obtained crisp but potentially overlapping modules by placing a
cutoff on the membership values. For direct NI methods, we first used a cutoff to
convert the weighed to an unweighted network, and then detected modules
using the same module definitions as previously described. For decomposition
methods we explored several post-processing steps in literature (see Supplementary
Note 2).

As gene regulatory networks, even in these model organisms, are still very
incomplete®!, a small majority of the genes was not included in any known module
(Supplementary Fig. 23). Although we did retain these genes in the expression
matrix pbefore module detection, we removed these genes in the observed modules
before scoring. This was to avoid a strong overestimation of the number of false
positives in the observed modules, as most of these genes probably belong to one or
more co-regulated modules, which we do not yet know. Finally, similar to the
known modules, we filtered the observed modules so that each module contained at
least five genes.

Similar to our analysis with known modules, we assessed the extent to which the
genes detected by each of the methods are co-expressed in the datasets based on
three co-expression metrics inspired by the three types of biclustering metrics
(Supplementary Fig. 24). (1) An overall co-expression metric using the average
correlation, (2) an extreme expression metric by looking at the top 5% average
z-scores for every gene in the module, and (3) the root mean-squared deviation
within the expression values of each module. For each metric, we compared the
distribution of the real modules with permuted modules by calculating the median
difference using the wilcox.test function in R. We found that every module
detection method found modules, which were more strongly co-expressed than
permuted modules. Compared with the co-expression of known modules, the
module detection methods also produced modules that are more strongly
co-expressed. Specifically for biclustering methods, we also investigated the
co-expression only in those samples within each bicluster. Here we found that,
except for some pattern-based biclustering methods, most biclustering methods
detected the type of modules, which they are designed to detect (Supplementary
Fig. 24).

Parameter tuning. Parameter tuning is a necessary but often overlooked challenge
with module detection methods. All too often, evaluation studies use default
parameters which were optimized for some specific test cases by the authors. This
does not correspond well with the true biological setting, where some parameter
optimization is almost always necessary to make sense of the data. Therefore, to
make sure an evaluation is as unbiased as possible, some parameter optimization is
always required. However, one should be careful of overfitting parameters on
specific characteristics of one dataset, as such parameters will lead to suboptimal
results when generalizing the parameter settings to other datasets. This could again
introduce a bias in the analysis, where methods with a lot of parameters would
better adapt on particular datasets, but would not generalize well on other datasets.
In this study we tried to address both problems as follows. We first used a grid
search to explore the parameter space of every method and determine their most
optimal parameters given a certain dataset and module definition, which resulted
in a training scores. Next, in a process akin to cross-validation, we used the optimal
parameters of one training dataset from another organism to score the perfor-
mance on another test dataset, which resulted in a test scores for every training
dataset. As we saw that optimal parameters were in most cases very different
between synthetic and real datasets, we only used real datasets to train parameters
for other real datasets and synthetic datasets for other synthetic datasets. We refer
to Supplementary Note 2 for an overview of what parameters were varied for every
method.

Evaluation metrics. We used four different scores to compare a set of known

modules with a set of observed modules and, after normalization, combined them
in one overall score. Note that classical scores comparing clusterings, such as the
Rand index, the F1, or the normalized mutual information, could not be used as
these scores are unable to handle overlap and/or overlap>® (Supplementary Note 1).
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The recall and specificity within the recently proposed CICE-BCubed scoring
system measure whether the number of modules contamm% a certain pair of genes
is comparable between the known and observed modules®. It is based on the
Extended BCubed>?, but reaches the perfect score of 1 only when both known and
observed overlapping clusterings are equal. If G represents all genes, M a set of
known modules, M’ a set of observed modules, M(g) the modules that contain g,
and E(g, M) the set of genes that are together with g in at least one module of M
(including g itself), the precision is defined as:

Precision =
Gl Z |E(g, M")

%G
min(|M’(g) N M'(g')|~|M(g) NM(g))) - (g g)
o () M)
where
1
D(g,g) = max Jaccard(m’, m)
©8) =g, 2, W)

Recall is calculated in the same way but with M’ and M switched. The recovery
and relevance scores, which have been previously used in evaluation studies of
biclustering methods, assess whether each observed module can be matched with a
known module and vice versa!”!®. Relevance is defined as

Relevance = L Z max Jaccard(m’, m)
‘M | mem ™

Recovery is calculated in the same way but with M and M switched.

Before combining scores across different datasets and module definitions, we
first normalized every score by dividing it by an average score of 500 permuted
versions of the known modules (Supplementary Fig. 25). The goal of this step was
to prevent easier module structures (small modules, low number of modules, and
no overlap) of certain module definitions and datasets from disproportionally
influencing the final score. Permuted modules were generated by randomly
mapping the genes of a dataset to a random permutation of the genesand replacing
every occurrence of a gene in a known module with its mapped version. Based on
this random model, module structure (size, number, and overlap) remained the
same, while only the assignment changed. We also tested two alternative random
models. The STICKY random model has been previously described®!. We adapted
this model for directed networks by calculating the stickiness index separately for
incoming and outgoing edges. For the scale-free network®?, we used the networkx
Python package with default parameters.

We finally calculated the harmonic mean between the normalized versions of all
four scores to obtain a final score representing the performance of a particular
method on a given dataset and module definition.

For human data we used an alternative score that assesses the extent to which
the targets of every regulator are enriched with at least one module of the dataset.
As described earlier, we used the clustered version of the regulatory circuits
dataset*!, which contains weights for every regulator and target gene combination
across 32 tissue and cell-type contexts. For every combination of target genes and
observed module we calculated a p-value of enrichment using a right-tailed Fisher’s
exact test (corrected for multiple testing using the Holm-Sidak procedure®®) and
the strength of this enrichment using the odds ratio. Although we calculated these
values within every cell type and tissue context separately, we retained for every
regulator its minimal p-value and the corresponding odds ratio across the different
contexts, as we do not know the exact cell-type and tissue context in which the
genes of the observed modules are co-expressed. We then extracted for every
regulator its maximal odds ratio across the observed modules where the targets of
the regulators were enriched (corrected p-value < 0.1). The aucodds score was then
calculated by measuring the area under the curve formed by the percentage of
regulators with an odds ratio equal or larger than a particular cutoff and the log;o
odds ratios within the interval 1 and 1000-fold enrichment. To work in a cutoff-
independent manner we averaged the aucodds scores over a range of weight
cutoffs. Performance generally decreased with more stringent cutoffs
(Supplementary Fig. 26a,b) although some biclustering methods and direct NI
methods remained more stable across a wide range of cutoff values (Supplementary
Fig. 26¢,d). This score was normalized in a similar way as previously described,
where the initial known modules were defined using the minimal co-regulation
module definition and subsequently randomly permuted by mapping the genes
within the modules to a random permutation.

We reweighted the scores between datasets and module definitions using a
weighted mean so that module definitions (minimal co-regulation, strict co-
regulation, and interconnected subgraphs) and each organism (E. coli, yeast,
human, and synthetic) had equal influence on the final score.

Influence of overlap. We split the genes of every datasets based on whether they
belonged to only one or multiple modules using the minimal co-regulation module
definition. If G* denotes such a subset of genes in the expression matrix, we
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calculated a precision* score speciﬁcally for this subset using:
Precision” Z
IG*\gGG‘ |E(g, M

min(|M’(g) N M’(g’ |7|M(g) NM(g))) - (g8
IM(g) N M'(g")]

g'€E(g.M')

A Recall* score was calculated similarly but with M’ and M switched. A final
score for a particular set of genes was obtained by taking the harmonic mean
between the normalized versions of the Recall* and Precision*.

Automatic parameter estimation. The four cluster validity indices evaluated in
this study all performed well in a recent evaluation study and are defined there?®
Most indices try to optimize the balance between tightness (the expression varia-
bility within a module) and separation (the expression differences between mod-
ules). For metrics requiring a distance matrix, we subtracted the absolute Pearson’s
correlation from one.

We also investigated two metrics to assess the functional coherence of the
modules according to the GO database’® and the KEGG pathways database®. We
filtered redundant gene sets by, starting from the largest gene set, removing gene
sets if they overlap too much with larger non-removed gene sets (Jaccard index >
0.7). The biological homogeneity index measures the proportion of gene pairs
within a module which are also matched within a functional class?2. For the F-
aucodds score we calculated an aucodds score as described earlier in both the
dimension of the gene sets (denoting how well all functional sets are covered by the
observed modules) and the dimension of the observed modules (denoting how well
the modules are enriched in at least one function gene set), and combined both
scores by calculating its harmonic mean.

As automatic parameter estimation performed very poorly on non-exhaustive
module detection methods (which include some clustering methods, see
Supplementary Note 2), we assigned every unassigned gene to the module with
which the average correlation was the highest prior to calculating the cluster
validity indices.

Similarity measures. For clustering methods requiring a similarity matrix as
input, we used the Pearson’s correlation in our initial evaluation. For methods
requiring a dissimilarity matrix, we subtracted the Pearson’s correlation values
from two. For the comparison of different similarity measures, we selected four top
clustering methods that require a similarity measure as input. We compared a total
of 10 alternative measures that are briefly described in Supplementary Note 3 along
with directions to implementations. We did not evaluate the distance correlation,
percentage bend correlation, Hoeffding’s D, and maximal information coefficient®?,
because they required excessive amounts of computational time and/or memory,
which would be impractical for module detection in general use cases. To convert a
similarity matrix to a dissimilarity matrix or vice versa, we subtracted the values
from the maximal value between all gene pairs on a given dataset. To determine the
influence of an alternative similarity measure on the performance of clustering
methods, we re-ran all parameter optimization steps for every alternative measure
and again calculated test scores as described earlier.

Code availability. Code to evaluate module detection methods and further expand
the evaluation are available as Jupyter Notebooks®>%° (jupyter.org) at www.github.
com/saeyslab/moduledetection-evaluation.

Data availability. Data is available in a Zenodo repository®” (doi: 10.5281/
zenodo.1157938).
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