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Zinc knuckle of TAF1 is a DNA 
binding module critical for TFIID 
promoter occupancy
Elizabeth C. Curran1, Hui Wang1,2, Thomas R. Hinds1, Ning Zheng   1,2 & Edith H. Wang1

The general transcription factor IID (TFIID) is the first component of the preinitiation complex (PIC) 
to bind the core promoter of RNA polymerase II transcribed genes. Despite its critical role in protein-
encoded gene expression, how TFIID engages promoter DNA remains elusive. We have previously 
revealed a winged-helix DNA-binding domain in the N-terminal region of the largest TFIID subunit, 
TAF1. Here, we report the identification of a second DNA-binding module in the C-terminal half of 
human TAF1, which is encoded by a previously uncharacterized conserved zinc knuckle domain. We 
show that the TAF1 zinc knuckle aids in the recruit of TFIID to endogenous promoters vital for cellular 
proliferation. Mutation of the TAF1 zinc knuckle with defects in DNA binding compromises promoter 
occupancy of TFIID, which leads to a decrease in transcription and cell viability. Together, our studies 
provide a foundation to understand how TAF1 plays a central role in TFIID promoter binding and 
regulation of transcription initiation.

The formation of the preinitiation complex (PIC) is a step-wise process required for eukaryotic transcription of 
protein-encoded genes1,2. The highly-orchestrated assembly of the general transcription factors (GTFs) TFIIA, 
B, D, E, F, and H is responsible for properly positioning RNA polymerase II (RNAPII) at core promoters and ini-
tiating transcription. TFIID nucleates PIC formation by directly binding to promoter sequences. TFIIA further 
stabilizes this interaction, while TFIIB association is firmly established by TFIIF/Pol II recruitment, and TFIIE/
TFIIH are essential for promoter clearance3,4.

TFIID is a multi-subunit complex comprised of the TATA binding protein (TBP) and 14 TBP associated 
factors (TAFs) in humans5. A small subset of these factors recognizes specific core promoter elements (CPEs) 
to orient the PIC at the transcription start site6–8. TFIID’s ability to selectivity recognize promoter sequences 
was initially thought to be largely dictated by TBP binding to the TATA box9. The primary evidence for this 
model centers on TBP’s ability to support a low level of transcription in the absence of TAFs, whose roles include 
responding to transcriptional activators10,11. Growing evidence supports the idea that TBP alone does not identify 
gene promoters, especially in higher organisms5,11,12. The majority of human protein-coding genes lack a TATA 
box sequence, yet TFIID is still able to engage the initiator and direct transcription from TATA-less promoters13. 
Therefore, other PIC components must be involved in dictating DNA specificity. A recent study demonstrated 
the TAF components of TFIID are vital for sequence selectivity while TBP alone showed no sequence prefer-
ence14. This expands upon previous DNA footprinting analyses that illustrated an extended region of protection 
by TFIID compared to TBP, which was interpreted as TAFs binding near the transcriptional start site and down-
stream promoter sequences6,15.

The specific combination of CPEs varies from gene to gene, and their unique arrangement may help to ensure 
genes are expressed at specific times in response to cellular needs. Most of these elements are recognized by TAFs 
to enhance the interaction between TFIID and promoter DNA2. The Initiator (Inr) is positioned at the transcrip-
tion start site of over 40% of human protein-encoding genes and is enriched at TATA-less promoters16,17. Motif 
ten element (MTE), downstream promoter element (DPE), and downstream core element (DCE) are located 
downstream of the transcription start site and thought to contribute to promoter recognition in the absence of a 
TATA box2,18,19. TAF1, the largest subunit of TFIID, has been shown to associate with the DCE, a discontinuous 
sequence found in viral promoters as well as the human beta globin gene19. TAF1 also interacts with the Inr when 
in complex with TAF26. While there is a wealth of knowledge about promoter sequences, little is known about 
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TAF/DNA binding interfaces and their mode of interaction. Characterizing these protein-DNA interactions will 
advance our understanding of how the entire TFIID complex mediates transcriptional initiation.

Our previous work describing a winged helix (WH) located in the central DUF3591 domain provided the first 
look at TAF1’s promoter recognition capabilities20. When our structure of TAF1 DUF domain bound to TAF7 was 
modeled into the cryo-EM structure of promoter bound TFIID, it confirmed the WH can contact downstream 
promoter sequences21. The cryo-EM structure further revealed a small secondary density of protein contacting 
the Inr, which the authors attribute to TAF1. The advancements in cryo-EM have given us a general idea of the 
overall shape of TFIID and insights into the topological rearrangements that ensue upon promoter binding21,22. 
Yet, further refinements are necessary to definitively resolve all the crucial interfaces between the TAF subu-
nits of TFIID and core promoter sequences during the dynamic structural reorganization evoked by promoter 
engagement.

The idea that TAF1 contains multiple DNA binding domains is supported by several pieces of evidence. 
In addition to structural data, TAF1 has been shown to bind two entirely distinct and separate promoter ele-
ments (i.e. Inr and DCE) implying multiple binding modules6,19. The DCE is a cluster of three non-contiguous 
sequences. Each was shown to be important for transcription and can crosslink to TAF1; the current model 
suggests TAF1 directly binds the entire DCE, a region too large to be bound by the WH alone. Moreover, yeast 
TAF1 has been shown to contain a promoter-binding region near its C-terminus outside the WH23. This region 
corresponds to sequence adjacent to the double bromodomain in the human homolog, and yeast TAF1 lacking 
this region was unable to bind promoter DNA. Multiple DNA binding domains in TAF1 may convey plasticity 
to allow recognition of diverse promoter sequences and permit structural rearrangements during promoter 
engagement.

Hidden between the double bromodomain and the DUF domain of TAF1, we discovered a strictly conserved 
CCHC zinc knuckle (ZnK) that plays a vital role in transcriptional regulation. By examining human TAF1 ZnK 
function under both native and in vitro conditions, we identified a second previously uncharacterized DNA bind-
ing module in the largest subunit of TFIID. Our study shows that TAF1 ZnK is important for cellular viability and 
helps to direct TFIID to endogenous core promoters through its DNA binding abilities. This work establishes a 
basis for dissecting the complexity of TFIID promoter recognition.

Results
TAF1 contains an evolutionarily conserved zinc knuckle motif.  TAF1 is an essential protein found 
in all eukaryotic organisms. The preservation of TAF1 across these kingdoms signifies its biological importance. 
By using sequence information and mapping regions of high conservation, we identified portions of the protein 
that were selectively maintained throughout evolution. A sequence alignment performed on full-length TAF1 
using eight species that span the eukaryotic kingdom revealed two domains characterized by strictly conserved 
residues, which are absent in other regions of the protein (Fig. 1A). The DUF3591 domain is the largest region of 
conservation. Notably, in the ts13 mutant cell line, this domain harbors a temperature-sensitive point mutation 
(G716D) that causes cells to cell cycle arrest in late G1 and eventually undergo apoptosis24–26. We previously 
characterized the structural features of this domain with its binding partner TAF7 and discovered a winged-he-
lix (WH)20. The second region of strict conservation sits between DUF3591 and the double bromodomain 
(2 × Bromo). Zooming in on the amino acid sequence within this region reveals an invariable Cx2Cx4Hx6C motif 
(Fig. 1B). Bioinformatics predicts this motif as a putative zinc knuckle (ZnK), a common bimolecular interacting 
domain.

The CCHC ZnK is a widely occurring domain commonly found in nucleic acid binding proteins27–29. A large 
fraction of CCHC-domain containing proteins, which can be aligned with TAF1 ZnK, are involved in DNA bind-
ing, hinting that TAF1 ZnK also may interact with DNA (Fig. 1C). In addition to the zinc coordinating residues, 
several other amino acids are common to the majority of CCHC motifs: glycine following the second cysteine, 
glycine preceding the histidine, and proline after the third cysteine. The consistent location of these residues 
suggests that they may be important for proper domain folding. The spacing of the first two cysteines and histi-
dine is strictly conserved; however, the spacing between the histidine and third cysteine can vary. Interestingly, 
TAF1 shares the same spacing of two proteins: I-factor from Drosophila and FAM90a in humans30–32. I factor is a 
LINE-like transposable element and contains a ZnK in ORF1, which has been shown to bind DNA31. FAM90 is a 
protein family found in primates, thought to have arisen during multiple duplication and rearrangement events32. 
The ZnK in FAM90 has been proposed to function as a DNA binding domain. The commonality of DNA binding 
to this similarly spaced group of zinc knuckle proteins further suggests that TAF1 ZnK may interact with DNA.

A structural model of TAF1 ZnK was generated using I-TASSER33 and shows a compact fold with the 
C-C-H-C side chains pointing towards the center, allowing for coordination of a zinc ion (Fig. 1D). Our analysis 
estimated the probability of ligand binding for the C-C-H-C to be above 90% based on the COACH binding 
prediction. A structural homology search identified HIV-1 nucleocapsid protein and lin-28 as top hits. Both 
proteins are known to interact with nucleic acid, and solution structures of these proteins bound to RNA have 
been solved28,34,35. An alignment between these structures reveals substantial similarities in the zinc coordinating 
residues as well as overlapping charged residues (Fig. 1D). Charged surface analysis on ZnK of TAF1 identified 
one side of the ZnK fold that is enriched with positively charged residues with positive electrostatic potential 
(Fig. 1E). Positive electrostatic patches are a highly predictive hallmark of DNA binding proteins. Furthermore, 
this charged surface displays considerable similarity to the HIV-1 nucleic acid binding surface and contains two 
strictly conserved positively charged amino acids that may be critical for electrostatic interactions (Fig. 1E). These 
outward facing positively charged residues produce an interface to presumably interact with negatively charged 
nucleic acids. Taken together, these features signify TAF1 ZnK has the potential to function as a DNA binding 
domain and thus contribute to TFIID promoter recognition.
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TAF1 zinc knuckle motif is essential for cell viability.  Given the strict conservation of the TAF1 
ZnK domain, we asked whether it plays a physiological function in cells. We used the ts13 cell viability assay to 
determine if the ZnK domain is required to complement the ts13 temperature-sensitive G1 growth defect. ts13 
cells contain a conditional mutation in TAF1 and proliferate at the permissive temperature of 33.5 °C24,25. When 
shifted to 39.5 °C, the cells arrest in late G1 and undergo apoptosis unless a functional copy of TAF1 is exoge-
nously expressed25,36,37. Cells transfected with wild-type TAF1 continue through the cell cycle and proliferate at 
the elevated temperature. Conversely, non-functional TAF1 results in a decrease in the number of viable cells. 
We chose to mutate the first two cysteines in the ZnK domain of TAF1 to ensure the motif was fully compro-
mised. Changing the cysteines to alanines resulted in a ~60% reduction in cell viability, indicating a structurally 
intact ZnK is vital for full physiological function (Fig. 2A,B). The level of cell survival was comparable to point 
mutations in the previously characterized TAF1 winged helix (Fig. 2B). Moreover, combining the ZnK and WH 
mutations (3AZnM) tended to further reduce cell viability compared to the single mutants but the decrease was 
not statistically significant. This finding can be taken to suggest that both domains must be fully functional for 
proper TAF1 activity. Importantly, all TAF1 constructs were expressed at equivalent levels according to western 
blot analysis, indicating that the mutations do not cause protein instability (Fig. 2C).

Zinc knuckle and winged helix of TAF1 are necessary for cyclin gene transcription.  TAF1 is 
known to be important for transcription of the cell cycle genes cyclin A, D1 and E36–38. The failure of ZnM and 
WH3A to complement the growth defect in ts13 cells signifies that these mutations possibly compromise a func-
tion of TAF1 important for cyclin gene expression. We determined that this functional defect is not due to an ina-
bility to incorporate into TFIID, but rather a deficiency in promoter recognition. We verified the TAF1 mutants 
can successfully integrate into the TFIID complex by expressing each TAF1 variant as an N-terminal HA-fusion 
protein (HA-TAF1), using an antibody against the TAF4 subunit to immunoprecipitate the entire TFIID com-
plex, and immunoblotting for exogenously expressed TAF1 variants using an anti-HA antibody. The presence of 
other TFIID subunits was examined by western blotting (Fig. 3A) and silver staining (Supplemental Figure S5). 
We observed that all TAF1 variants incorporated into TFIID at relatively equal levels compared to the wild-type 
protein (Fig. 3A). By contrast, the TAF1 mutants did not associate with core promoters of cell cycle genes in chro-
matin immunoprecipitation experiments (Fig. 3B). For these studies, different HA-TAF1 variants were expressed 
in HEK293 cells and TAF1-bound promoter fragments were recovered and quantified by qPCR. Cyclin D1 and 

Figure 1.  TAF1 contains an evolutionarily conserved zinc knuckle. (A) Linear schematic of full length 
human TAF1 with percent conservation in eukaryotes shown. (B) Annotated TAF1 zinc knuckle conservation 
alignment spanning vertebrates, insects, nematodes, plants, and fungi. Zinc knuckle cysteines and histidine are 
boxed in blue. Conserved positive residues indicated by the green dots. (C) Sequence alignment of zinc knuckle 
containing proteins from eukaryotes and viruses. (D) Alignment of TAF1 ZnK model (blue) from I-TASSER 
prediction analysis with known structure of ZnK of HIV-1 nucleocapsid protein (green) and lin28 (purple); (E) 
Electrostatic surface map of HIV-1 nucleocapsid protein nucleic acid binding surface (right) and corresponding 
region of TAF1 ZnK (left).
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cyclin A2 were chosen as target promoters because the proper expression of these genes is required for cell cycle 
progression; their promoter function also has been shown to be dependent on TAF1 activity37–39. The specific 
promoter regions for qPCR amplification were selected based on ENCODE ChIP data for TAF1. Additionally, 
TAF1 promoter binding is considered synonymous with canonical TFIID binding, because TAF1 is unique to 
TFIID whereas other TAFs and TBP are found in additional auxiliary transcription regulatory complexes2,40. We 
detected that wild type TAF1 effectively bound to cyclin D1 and A2 promoter regions, while neither the ZnM nor 
WH3A mutant selectively enriched for these promoter fragments (Fig. 3B). Promoter association of the double 

Figure 2.  TAF1 zinc knuckle is required for cell viability. (A) Phase contrast images of ts13 cells transfected 
with pCS2 + (vector), wild type TAF1 (WT), winged-helix mutant (WH3A), zinc knuckle mutant containing 
two cysteine to alanine mutations (ZnM), and double mutant (3AZnM) at 39.5 °C for 72 hrs. (B) Quantitation 
of viable DAPI stained cells (n = 3). Error bars represent standard deviation. Two-tailed analysis compared to 
vector with a 95% confidence, ***p < 0.0001 (Unpaired t-test). (C) Western blot of ts13 lysates expressing HA-
tagged TAF1 proteins. Proteins were immunoprecipitated with TAF1 specific double bromodomain antibody 
and immunoblotted for exogenously expressed TAF1 using anti-HA antibody. The full-length blot is presented 
in Supplemental Figure S4.
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mutant (3AZnM) was not significantly lower than either single domain mutant. The overall conclusion is that the 
WH3A and ZnM mutants consistently bind less efficiently to cyclin genes and that both domains can contribute 
equally to TFIID promoter recognition.

Figure 3.  TAF1 zinc knuckle and winged helix are imperative for effective cyclin promoter activity. (A) 
Incorporation of TAF1 proteins into TFIID. TFIID complexes were isolated by immunoprecipitation 
and incorporated HA-TAF1 variants detected by anti-HA immunoblotting. Additional TFIID subunits 
immunoprecipitated were detected by immunoblotting. The full-length blots are presented in Supplemental 
Figure S5. Quantitation of normalized HA-TAF1 and TAF protein levels are provided in Supplemental Table 2. 
(B) Chromatin immunoprecipitation of HA-TAF1 variants expressed in HEK293 cells followed by qPCR for 
cyclin D1 and cyclin A2 promoters (n = 4). (C) Luciferase assay of cyclin D1 and cyclin A2 promoter driven 
reporter constructs co-transfected with TAF1 variants. Luciferase activity was normalized for total protein and 
expressed relative to reporter activity without exogenous TAF1 (Empty), given a value of 1.0 (n = 3). All error 
bars represent standard deviation. Two-tailed analysis compared to WT with a 95% confidence, **p < 0.01, 
***p < 0.0001 (Unpaired t-test).
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Next, we determined the impact loss of promoter recognition had on transcription levels from the cyclin D1 
and A2 promoters. By leveraging a luciferase reporter assay, a conventional method for studying gene expression, 
we asked whether exogenously expressed TAF1 variants affected cyclin promoter function. The luciferase gene 
was placed under the control of the human cyclin D1 or cyclin A2 promoter. TAF1 variants were co-transfected 
with each luciferase reporter construct, and the amount of luciferase activity, a measure of promoter activity, was 
assessed approximately 36 hours post-transfection. Reporter activity in the absence of exogenously expressed 
TAF1 was quantified to assess the endogenous transcriptional activity of the cyclin promoters. This signal was 
used to normalize across experiments and served as a control ensuring transcription was not negatively impacted 
by expressing a single TFIID subunit. A nominal increase in TAF1 should enhance TFIID formation because 
under normal conditions TAF1 is in limited supply compared to other TFIID components41. Indeed, the expres-
sion of wild type TAF1 significantly increased the level of luciferase activity from both promoters compared to 
basal levels (Fig. 3C). In contrast, TAF1 with mutations to either the ZnK or WH failed to significantly stim-
ulate the activity of the cyclin promoters above background levels. Similarly, the double mutant had no effect 
on cyclin promoter activity (Fig. 3C). Hence, there was no statistical difference between all TAF1 mutants and 
background levels. We also examined the effects of WT and mutant TAF1 expression on transcription from the 
endogenous cyclin D1 promoter in ts13 hamster cells, which were used for the cell complementation assays. We 
observed reduced stimulation of cyclin D1 transcription by the TAF1 domain mutants compared to WT TAF1 
(Supplemental Figure S1). Collectively, these data suggest ZnK and WH are critical to recruit TFIID to core pro-
moters and transcriptional initiation.

TAF1 Zinc Knuckle Binds DNA.  Structure homology modeling predicts that TAF1 ZnK potentially inter-
acts with nucleic acids. We performed electrophoretic mobility shift assays (EMSA) to determine if the ZnK 
domain binds DNA. The protein fragment used in this assay contained the annotated ZnK domain and flanking 
regions (ZnA, aa 1234–1375) so as to not exclude any potential interacting residues. Increasing concentrations 
of ZnA protein were incubated with three different 32P-labeled double-stranded DNA fragments then subjected 
to native polyacrylamide gel electrophoresis. The fragments represent an optimized promoter containing an Inr, 
MTE and DPE (IMD); an endogenous promoter, cyclin D1 (CD1P); and a random DNA sequence (Random). We 
observed that TAF1 ZnA bound to all three DNA fragments (Fig. 4A–C). We followed up this analysis by using 
an orthogonal technique, bio-layer interferometry (BLI), for a more quantitative measurement of binding affinity. 
Biotinylated double-stranded IMD, CD1P and Random oligonucleotides were loaded on streptavidin probes and 
incubated with different concentrations of ZnA protein. Association and dissociation kinetics were monitored in 
real-time over two consecutive 5-minute periods, respectively (Fig. 4D–F). Dissociation of the protein from the 
probe indicated that the proteins were not irreversibly aggregating on DNA. Because of the slow off rate observed, 
binding affinities were calculated based on steady state levels for each protein concentration and involved plotting 
steady state binding levels against protein concentration for each DNA. ZnA binds significantly better to the 

Figure 4.  TAF1 zinc knuckle binds DNA. (A,B,C) EMSA of TAF1 ZnA (aa 1234–1375) and three radiolabeled 
DNA fragments: IMD of super core promoter (position −6 to +38), cyclin D1 promoter (position −22 to 
+29, CD1P), and Random DNA sequence. (D,E,F) Bio-layer interferometry binding curves using biotinylated 
double-stranded DNA fragments described in above and the following ZnA protein concentrations: 3 μM, 1 μM, 
333 nM, 111 nM, 37 nM, 12 nM. Raw data was plotted with GraphPAD Prism. Kd was calculated from plotting 
steady-state binding levels against protein concentration.
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optimized promoter (IMD) and CD1P DNA (288 nM ± 46 nM, and 411 nM ± 101 nM, respectively) over ran-
dom DNA (1011 nM ± 228 nM). This data correlates with the promoter strength of each fragment in luciferase 
reporter assays, where IMD exhibits the highest activity followed by the CD1 promoter (Supplemental Figure S2). 
Interestingly, the null construct lacking a promoter sequence is still able to support low levels of transcription 
indicating general transcription factors are able to bind and initiate transcription from random sequences. The 
lack of strong specificity may in fact be a necessary feature of TAF1 given the sequence diversity within Pol II 
promoters. Overall, these studies provide a possible mechanism for how compromising the TAF1 ZnK leads to 
diminished transcription.

Zinc Knuckle is critical for DNA binding.  To delineate the minimal ZnK DNA binding domain, TAF1 
ZnA protein was incubated with IMD DNA fragment, and the mixture subsequently exposed to increasing con-
centrations of subtilisin protease. Digestion products were separated by SDS-PAGE, and the pattern of protein 
fragments compared to the apo-ZnA digestion pattern, generated in the absence of IMD incubation. Protein 
regions bound to DNA were protected from proteolytic cleavage and led to three stabilized species (Fig. 5A). As 
anticipated, at the higher concentrations of protease, ZnA is fully degraded as DNA-binding is a dynamic pro-
cess and the DNA is unable to permanently protect the protein from enzymatic degradation. Quantification of 
the relative intensity of the different proteolytic products (Supplemental Figure S3) revealed that the full-length 
construct (ZnA) was considerably stabilized along with two smaller fragments (ZnC and ZnD), which were sub-
sequently N-terminally sequenced. Surprisingly, fragment ZnC began at the same amino acid as the intact ZnA 
protein (aa 1234). The conversion of ZnA into ZnC, therefore, must be due to cleavage of the C-terminus. The 
N-terminus of the ZnD fragment was mapped to amino acid 1256, indicating that N-terminal cleavage of ZnC 
results in ZnD production. Interestingly, ZnC was the least stabilized by the IMD promoter, suggesting that DNA 
binding more effectively prevents cleavage of the C-terminus than the N-terminus of the ZnA fragment.

To further define the TAF1 ZnK domain, we analyzed ZnA sequence with EVfold, a program that mines evo-
lutionary information to detect connections between residues in a protein and predicts a three-dimensional shape 
based on the co-conservation of amino acids42. Strong connections are given high coupling scores and indicate 
the residues have a high probability of existing in the same three-dimensional space. Plotting the connections 
illustrates the distance between co-evolved residues and identifies modular domains within proteins. EVfold anal-
ysis revealed the ZnA construct contains two smaller subdomains: the N-terminus from aa 1234–1313, which 
contains the ZnK, and a C-terminal domain spanning aa 1313–1375 (Fig. 5B). It is very striking that the defining 
boundary between these two subdomains corresponds to the end of the yeast TAF1 homolog. An alignment 
of fungal TAF1 proteins reveals that sequence conservation ends three amino acids after the last zinc knuckle 
cysteine residue. Taken together, we mapped the potential minimal ZnK binding domain to be aa 1256–1303 
(ZnD) (Fig. 5C). We then generated two constructs, ZnC (aa 1234–1303) and ZnD, and purified these protein 
fragments, which were further analyzed by BLI using IMD loaded probes (Fig. 5D,G). The Kd values for ZnC 
(343 nM ± 42 nM) and ZnD (503 nM ± 67 nm) were similar to that obtained for ZnA, indicating that ZnD rep-
resents the core domain of DNA binding. As expected, mutations to the strictly conserved cysteines completely 
abolished binding (Fig. 5E,H). Due to the lack of appreciable signal above background, this binding data could 
only be used for qualitative assessment. Next, we sought to determine the residues critical for DNA binding. 
Guided by our predicted structural model, we mutated two positively charged residues between the histidine and 
third cysteine, which are located on the ZnK predicted DNA binding surface and are conserved across species 
(see Fig. 1B,E). Consistent with a critical role in binding DNA, mutation of these two positively charged residues 
either substantially compromised or completely abrogated the DNA binding activity of ZnC and ZnD, respec-
tively (Fig. 5F,I). The residual DNA binding activity of the ZnC_RK mutant is most likely attributable to several 
additional positively charged residues at the N-terminal region of the ZnC fragment. Together, these experiments 
demonstrate the capacity of TAF1 ZnK to bind to DNA and map two charged residues essential for this activity. 
The identification of an additional DNA binding module in human TAF1 implies TFIID employs a multi-level 
approach to engage DNA, and with this knowledge we will continue to progress our understanding of promoter 
recognition and transcriptional initiation.

Discussion
CCHC zinc knuckles are critical physiological domains and are found across the biological spectrum. The major-
ity of ZnKs are involved in nucleotide processing including chaperoning, splicing, transcriptional activation and 
termination27–29. The ZnK found in TAF1 has a unique spacing shared by only a small number of annotated ZnK 
proteins, I factor and FAM90a, both of which have been annotated as interacting with DNA31,32. Given the pro-
pensity for zinc knuckles to bind DNA and TFIID’s role in transcription, we set out to determine if TAF1 ZnK 
interacts with promoter DNA. We found that TAF1 ZnK can bind to DNA with an affinity similar to other zinc 
knuckles43,44 and identified the residues important for this function. The sequence specificity of the ZnK, while 
significant, is not absolute. This mirrors ChIP-seq studies that fail to identify any sequences enriched by endoge-
nous TAF1. This data strengthens our findings that show a marginal yet significant preference for promoter DNA 
over a random sequence. TAF1 ZnK is still able to bind random DNA with considerable affinity, 1 μM, suggesting 
ZnK may bind with high affinity at some promoters and low affinity at others. This also could be argued as a 
caveat of using an in vitro system to understand the complexities of physiological conditions. Follow-up exper-
iments such as ChIP seq with mutant forms of TAF1 could help resolve this proviso and identify any sequences 
that preferentially bind an intact ZnK domain over WHD. Likewise, structural studies would definitely establish 
the mechanism of binding to DNA and can be used to clearly visualize if the protein/DNA contacts could allow 
for flexibility in sequence recognition.

We further show that TAF1 ZnK is important for cellular viability. Mutations in the ZnK lead to a reduction 
in TFIID association with cyclin D1 and A2 promoter sequences, as shown by a decrease in TAF1 ZnM promoter 
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Figure 5.  Core Module and Key Residues in TAF1 Zinc Knuckle DNA Binding Domain. (A) TAF1 (aa 
1234–1375) was incubated without (upper) and with (lower) IMD promoter DNA followed by digestion 
with increasing concentrations of protease. Digestion products were resolved by SDS-PAGE and detected 
by coomassie blue staining. Arrowheads indicate fragments stabilized by DNA. Quantification of protein 
fragments are provided in Supplemental Figure S3. (B) EVfold map analysis of ZnA. Numbers represent amino 
acid residues of full-length TAF1. (C) Diagram of DNA stabilized regions of TAF1 with blue box indicating 
CCHC ZnK. DNA binding curves for (D) ZnC wild type, (E) ZnC cysteine mutant (C1285A and C1288A), (F) 
ZnC charge mutant (R1295A and K1298A), (G) ZnD wild type, (H) ZnD cysteine mutant, and (I) ZnD charge 
mutant. Raw data was plotted with GraphPAD Prism. Kd was calculated by plotting steady-state binding levels 
against protein concentration and determining the concentration needed for half maximal binding.
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binding by ChIP and a lack of transcriptional stimulation in luciferase reporter activity assays when compared 
to wild type TAF1. The discovery of a second DNA binding module in human TAF1 is a notable step forward for 
our understanding of transcriptional initiation. TAF1 DNA binding activity is a vital yet under studied aspect of 
transcription. Further elucidation of TAF1’s role in core promoter recognition will have a profound impact on our 
perception of transcriptional regulation.

TFIID promoter recognition is an essential step in transcriptional regulation, yet we are only beginning to 
untangle the complexities of its mechanism. Our data identified a new conserved element in TAF1 that can 
contribute to the stabilization of TFIID at RNAPII promoters during PIC formation. There are several possible 
explanations as to why TAF1 has evolved multiple DNA binding domains (DBDs). Firstly, several points of con-
tact could aid in forming a secure connection between TFIID and a corresponding promoter long enough to 
recruit the other essential components of the transcriptional machinery. Additionally, multiple DBDs could con-
fer TFIID the necessary flexibility to associate with a variety of core promoter sequences throughout the human 
genome, such that recognition of different promoters might involve different DNA binding domains. Last but 
not least, multiple DBDs might be important for the dynamic rearrangement of TFIID, which transitions from 
the conical form to the promoter bound form, as demonstrated by Cryo-EM studies21,22. Different DNA bind-
ing modules may be necessary to support this movement, properly orient TFIID, and load GTFs onto the core 
promoter. With these possibilities in mind, we raise two models for how TAF1 contributes to TFIID promoter 
recognition (Fig. 6). Either simultaneous binding where the WH and ZnK equally contribute to DNA binding or 
sequential binding where one DNA binding domain engages during the initial stages followed by a second DNA 
binding event in the rearranged conformation. Future studies using advanced high-resolution techniques will be 
needed to reveal the details of the elusive aspects of PIC assembly, as the current views may underestimate the 
complexity of TFIID promoter recognition.

Figure 6.  Model of TAF1’s Role in Promoter Recognition. (A) ZnK and WH Bind Simultaneously. (B) 
Sequential Binding of ZnK and WH.
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Cyclin proteins are master regulators of the cell cycle. Their phasic expression mediates enzymatic activities 
required for growth and proliferation45. The impact of the TAF1 ZnK mutations on cyclin transcription is not due 
to an inability to incorporate into TFIID, implying this domain is not involved in TAF interactions or the core 
structure of TAF1, both important for TFIID assembly. While, this study focuses on the ability of ZnK to bind 
nucleic acids, our findings do not exclude the possibility the ZnK may interact with other regulatory proteins. 
The close proximity of the ZnK to the double bromodomain suggests the ZnK could play a role in facilitating the 
recognition of epigenetic markings, which could influence promoter association. There is growing evidence that 
zinc fingers can play a dual role: supporting DNA binding and facilitating protein interactions with histones or 
transcriptional activators, such as those found in CBP and ZYMND1146–49. However, our experimental approach 
cannot rule out this possibility considering our transcription assays were conducted with luciferase reporter plas-
mids not known to incorporate histones; despite this caveat, we conclude that the impact on cyclin transcription 
results from a defect in active PIC formation, attributed to loss of promoter binding by the ZnK mutant contain-
ing TFIID complex. The inability to stimulate transcription from the cyclin promoters would explain why the 
ZnK mutant cannot rescue the ts13 growth defect in the cell complementation assay.

The mechanisms proposed in this work may also provide some insight into the pathologies of human disease 
states associated with TAF1 mutations by GWAS. The cBioPortal and catalog of somatic mutations in cancer 
(COSMIC) databases denote several mutations in the conserved CCHC residues of TAF1 including: C1285R, 
C1288R, H1293N, C1300W/R. While it is unknown whether these mutations are causative, they reinforce the 
notion that these residues are crucial for proper TAF1 function in cells. TAF1 is essential for cell viability with 
deletion of the gene lethal to cells. For this reason, it is doubtful that disease-associated mutations completely 
obliterate TAF1 function and cause global transcriptional dysfunction. More likely, TAF1 function is altered in 
some subtle manner that results in aberrant transcription from select genes. The role of TFIID in proliferation and 
cell survival makes it of particular interest to cancer biology50,51.

In summary, we uncovered a second critical DNA binding domain in TAF1, the largest subunit of the 
TFIID general transcription factor. The conserved zinc knuckle is essential for the full in vivo function of TAF1. 
Mutations within this region do not disrupt the stability of TAF1 or its incorporation into TFIID, but instead 
interfere with its ability to associate with core promoters. The loss of promoter association would result in ineffi-
cient transcription initiation. We speculate that two motifs in TAF1 provide greater flexibility within TFIID for 
promoter DNA sequence recognition.

Materials and Methods
ts13 Complementation Assay.  Mammalian TAF1 expression plasmids contain N-terminal HA-tagged 
human TAF1 coding sequence inserted downstream of the CMV promoter in CS2 + vector52. Point mutations 
in TAF1 were introduced by site-directed mutagenesis and confirmed by DNA sequencing (Supplemental 
Table S1,20). ts13 cells were grown at 33.5 °C in Dulbecco’s modified Eagles medium (Gibco) supplemented with 
10% fetal bovine serum, 2 mM L-glutamine, and penicillin/streptomycin. For complementation assays, cells were 
seeded into 6-well plates, grown overnight to 70–80% confluency and transfected with 2 μg of CS2 + or TAF1 
expression plasmids using polyethylenimine (PEI) transfection reagent (ratio 2.5:1 of PEI:DNA) according to pre-
viously described protocol53. Transfected cells were maintained for an additional 18–24 h at 33.5 °C, then either 
harvested for Western Blot analysis or shifted to nonpermissive temperature of 39.5 °C. Number of DAPI positive 
viable cells was determined after 36–48 h at 39.5 °C, and the percentage relative to WT-TAF1 transfected cells 
(given the value of 100%) was calculated.

Luciferase Reporter Assay.  Human cyclin D1 luciferase construct was constructed by subcloning the 
EcoRI to PvuII fragment of pD1-G065 (kindly provided by Yue Xiong) into the SmaI site of pGL2-basic as previ-
ously described54. The human cyclin A2 luciferase construct has been described55. The IMD luciferase construct 
is previously described in Juven-Gereshon et al.56 and a gift from J. Kadonaga. HEK293 cells were grown at 37 °C 
in Dulbecco’s modified Eagles medium (Gibco) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 
and penicillin/streptomycin. For luciferase assays, cells were seeded into 24-well plates, grown overnight to 60%-
70% confluency and cotransfected with 100 ng of CS2 + or TAF1 expression constructs and 50 ng luciferase 
reporter construct using FuGene transfection reagent (ratio 2.5:1 of FuGene:DNA) according to the manufac-
turer’s protocol (Roche). Transfected cells were maintained an additional 36 h at 37 °C, after which cells were 
harvested and lysed in 100 μL of 1× Passive lysis buffer (Promega). Luciferase activity was measured according to 
manufacturer’s protocol (Promega) on Lumat LB 9507 (Berthold Technologies) and normalized for total protein. 
Transcriptional activity was expressed relative to CS2+/reporter construct transfected cells (set to 1).

Cyclin D1 RT-qPCR.  ts13 cells seeded into 35-mm dishes were grown at 33.5 °C to 60–70% confluency 
and transfected with 500 ng of CS2 + or HA-TAF1 expression plasmids using PEI (2.5:1 PEI:DNA ratio). Total 
RNA was isolated approximately 24–36 hours post-transfection and 1 μg RNA reverse transcribed in cDNA 
using iScript cDNA synthesis kit (BioRad). Cyclin D1 transcript levels were measuring by qPCR using SsoFast 
EvaGreen Supermix (BioRad) on the Applied Biosystems 7500Fast Real-Time PCR system. Relative transcript 
levels were determined by calculating 2−ΔCt.

Chromatin Immunoprecipitation.  HEK 293 cells were seeded into 10-cm dishes and transfected 
with CS2 + or TAF1 expression constructs and incubated for 24–36 h at 37 °C. Before harvesting, cells were 
cross-linked with 400 μl of 37% formaldehyde and analyzed as previously described57. In brief, cells were lysed in 
0.5 mL immunoprecipitation (IP) buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 
and 0.5% Nonidet P-40) containing protease inhibitors and sonicated 8 times for 20 s at 40% amplitude (Branson 
Digital Sonifier). Nuclear extract was incubated overnight at 4 °C with either anti-HA (clone 3F10, Sigma Aldrich) 
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or mouse IgG (Abcam). Immunoprecipitated complexes were washed and eluted. Cross-links were reversed and 
DNA was isolated. Input DNA was purified from 100 μl extract. Fifty nanograms of input DNA and 2 μL of puri-
fied TAF1 bound DNA was amplified with SsoFast EvaGreen Supermix (Bio-Rad) using primers spanning the 
promoters of cyclin D1 and cyclin A2 (Supplemental Table S1). Quantitative PCR was performed on the Applied 
Biosystems 7500Fast Real-Time PCR system and the data expressed as percent input.

TFIID and TAF1 Immunoprecipitation.  For preparation of nuclear extracts, HEK293 cells were resus-
pended in buffer A (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT) and incubated on ice 
for 15 min. Cells were lysed by pushing through a 25-gauge needle 5 times. The crude nuclear pellet was isolated 
by centrifugation for 20 s at 12,000 g, resuspended in buffer C (20 mM HEPES, pH 7.9, 25% glycerol, 420 mM 
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM phenylmethylsulfonyl fluoride, 0.5 mM DTT), and incubated for 
30 min at 4 °C. After centrifugation for 5 min at 12,000 g, the supernatant/nuclear extract was incubated with 
anti-TAF4 (mAb 3A6, ref.58) or anti-HA antibody overnight at 4 °C. Ten microliters of protein A–Sepharose 
CL-4B (GE Healthcare) was added, and the samples were nutated for 2 h at 4 °C. Isolated proteins were washed 
5 times with Buffer C and analyzed by silver stain or immunoblotting using antibodies against HA (clone 3F10, 
Sigma Aldrich), TAF1 bromodomain (Ab1230, ref.59), TBP (gift from R. Tjian, ref.5), TAF4 (mAb 3A6), and TAF5 
(mAb 6C1, unpublished data).

Protein Purification.  For expression of His-tagged TAF1 proteins, cDNA of TAF1 (ZnA-1234–1371, 
ZnC-1234–1303, ZnD-1256–1303) was PCR amplified from CS2 + containing full length TAF1 and cloned into 
pAL-GB1 using ligase independent cloning; site-directed mutagenesis was used to introduce point mutations 
into ZnC and ZnD constructs (Supplemental Table S1). TAF1 ZnK expression constructs were transformed into 
BL21* cells for protein expression. Starter cultures of 10 mL were diluted into 1 L LB containing 30 μg/ml chlo-
ramphenicol, and cells were grown to an optical density of 0.8–1.0 at 600 nm and chilled on ice for 1 h. TAF1 
expression was induced by addition of 0.2 mM IPTG (isopropyl–D-thiogalactopyranoside) for 18 h at 16 °C. Cells 
were harvested by centrifugation and lysed by pulse-sonication in 50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 5 mM 
imidazole, 5% glycerol, 0.05% Triton-X, 1 mM DTT supplemented with protease inhibitors. His-GB1-TAF1 was 
purified using Ni-nitrilotriacetic acid (NTA)- agarose (Qiagen), washed with Buffer A (50 mM Tris-HCl, pH 8.0, 
150 mM NaCl, 10 mM imidazole, 5% glycerol, 1 mM DTT) followed by a high salt wash (50 mM Tris-HCl, pH 
8.0, 1 M NaCl, 5% glycerol, 1 mM DTT) and a final wash with Buffer A. Protein was eluted with 50 mM Tris-HCl, 
pH 8.0, 150 mM NaCl, 200 mM imidazole, 5% glycerol, 1 mM DTT. For proteolytic digestion and electrophoretic 
mobility shift assays, ZnA was further purified by cation exchange (GE Healthcare) after off-column cleavage by 
the tobacco etch virus (TEV) protease. Proteins for biolayer interferometry were further purified by size-exclusion 
chromatography (GE Healthcare) using 10 mM HEPES, pH 7.9, 150 mM NaCl, 1 mM DTT.

Electrophoretic Mobility Shift Assay.  Purified TAF1 (ZnA-1234–1371) (7.6–61.3 pmoles) purified from 
E. coli was incubated with 4 ng of 32P 5′-end labeled DNA in 10 mM HEPES pH 7.9, 5 mM MgCl2, 100 mM NaCl, 
10% glycerol, 20 mM tetrasodium pyrophosphate, 0.2 mM dI:dC for 1 h at 25 °C. For gel electrophoresis, 6× 
loading buffer (20% Ficoll, 0.025% bromophenol blue) was added and binding reactions were loaded onto non-
denaturing 5% polyacrylamide (37.5:1 acrylamide:bis) pre-run in 0.5× TBE at 100 V for 30 min. Samples were 
resolved for 1.5 h at 100 V and shifted complexes detected by autoradiography. The sequences of DNAs used for 
EMSA are provided in Supplemental Table S1.

Biolayer Interferometry.  5′-biotinylated oligonucleotides were annealed to their complement (IDT, USA) 
in 1× binding buffer (10 mM HEPES pH 7.9, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT) by heating at 72 °C for 
5 minutes and slow cooling to 25 °C. Double-stranded oligos (Supplemental Table S1) were purified by extraction 
from agarose after gel electrophoresis then ethanol precipitated. Purified biotinylated double-stranded oligos were 
loaded onto streptavidin-coated (SA) sensors and the interactions between the DNA coated probes and TAF1 
proteins were measured using ForteBio Octet RED96 system (Pall Life Sciences). For loading, SA sensors were 
prewetted in assay buffer (10 mM HEPES pH 7.9, 5 mM MgCl2, 100 mM NaCl, 10% glycerol, 0.1% ovalbumin, 
0.2 mM dI:dC) for 30 min then dipped into individual wells on 96-well plates (200 μL/well) containing biotiny-
lated DNA (100 nM) in assay buffer. Unbound DNA was removed by washing and exposed streptavidin blocked 
with biocytin. Protein was diluted in assay buffer to 3 μM, 1 μM, 333 nm 111 nm, 37 nm, and 12 nm. Association 
of the protein to the probe was observed for 300 s followed by dissociation in assay buffer for 300 s. Throughout 
loading, association and dissociation sensors were shaking (1,000 rpm) at a constant 30 °C to promote specific 
interaction and to reduce non-specific binding. A reference sensor (no biotinylated DNA loaded) was included 
and subjected to the same procedure to control for non-specific interactions. Sensors were regenerated (10 mM 
HEPES pH 7.9, 1 M NaCl) between experiments and a new baseline established. Reference-subtracted data 
was used to calculate the equilibrium dissociation constant (Kd) by steady-state response analysis assuming 1:1 
kinetics.

DNA Protection Assay.  TAF1 (aa 1234–1371) was exposed to limited proteolytic digestion in the presence 
and absence of DNA (IMD) to determine DNA-bound stabilized regions. TAF1 (625 pmol) was incubated with 
or without DNA (700 pmol) in 10 mM HEPES pH 7.9, 5 mM MgCl2, 100 mM NaCl, 10% glycerol, 20 mM tet-
rasodium pyrophosphate, 0.2 mM dI:dC) for 1 h at 25 °C. Subtilisin (0.002, 0.006, 0.02, 0.06, 0.2, and 0.6 μg/ml) 
was added to each sample and incubated overnight on ice at 4 °C. Samples were divided in two and analyzed as 
follows: SDS-PAGE, coomassie stained, and scanned for analysis; SDS-PAGE, transferred to PVDF membrane, 
coomassie stained and stabilized fragments excised and N-terminally sequenced.
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Data availability.  All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information files).
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