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Subcellular localisation modulates 
ubiquitylation and degradation of 
Ascl1
Sébastien Gillotin   1,2, John D. Davies1,2 & Anna Philpott   1,2

The proneural transcription factor Ascl1 is a master regulator of neurogenesis, coordinating 
proliferation and differentiation in the central nervous system. While its expression is well 
characterised, post-translational regulation is much less well understood. Here we demonstrate that 
a population of chromatin-bound Ascl1 can be found associated with short chains of ubiquitin while 
cytoplasmic Ascl1 harbours much longer ubiquitin chains. Only cytoplasmic ubiquitylation targets Ascl1 
for destruction, which occurs by conjugation of ubiquitin to lysines in the basic helix-loop-helix domain 
of Ascl1 and requires the E3 ligase Huwe1. In contrast, chromatin-bound Ascl1 associated with short 
ubiquitin-chains, which can occur on lysines within the N-terminal region or the bHLH domain and is 
not mediated by Huwe1, is not targeted for ubiquitin-mediated destruction. We therefore offer further 
insights into post-translational regulation of Ascl1, highlighting complex regulation of ubiquitylation 
and degradation in the cytoplasm and on chromatin.

During neurogenesis, the fate determination of neural stem cells (NSCs) is coordinated by the activity of proneu-
ral basic Helix-Loop-Helix (bHLH) transcription factors and their downstream target genes, acting in a for-
ward genetic cascade during development1,2. This hierarchical order of activity also occurs in transcription factor 
reprogramming models that can directly convert somatic cells into neurons3,4. To ensure the correct progression 
of neuronal differentiation, the expression of proneural transcription factors must be tightly regulated at both the 
transcriptional and post-translational levels5–8.

The proneural factor Ascl1 acts early on in neurogenesis in the central nervous system, particularly in the 
generation of GABA-ergic interneurons, where it is best characterised as an activator of fate choice and differ-
entiation9,10. Recent work demonstrates that it plays an additional role in neural progenitor maintenance during 
embryonic development, and it also controls cycling of adult neural stem cells between an active state and quies-
cence11. Thus, Ascl1’s central roles in developmental and homeostatic regulation of stem/progenitor proliferation 
and differentiation have focused attention on the multiple levels of control of this key regulator12.

Ascl1 is dynamically regulated in proliferating neural progenitor cells where protein levels oscillate, while 
commitment to differentiation is accompanied by a shift to sustain Ascl1 expression13. In addition, Ascl1 protein 
is regulated by cdk-dependent multi-site phosphorylation that restrains its ability to drive differentiation in the 
face of proliferative cues14. In common with other bHLH proneural transcription factors, Ascl1 protein has a 
short half-life and can be targeted for degradation by ubiquitin-mediated proteolysis7,15. Recently, Huwe1 (HECT, 
UBA and WWE domain-containing 1), a HECT domain E3 ubiquitin ligase, has been shown to bind to Ascl1 and 
target it for proteasome-mediated degradation11, a process that is required to allow proliferating adult NSCs to 
return to quiescence. However, mechanisms and control of Ascl1 ubiquitylation remains to be explored in detail.

Here, we investigate ubiquitin-mediated degradation of Ascl1 during proliferation and differentiation of 
mammalian neural stem cells (NSCs) and in mouse P19 embryonal carcinoma cells, which represent a classic 
model system that can respond to proneural protein overexpression by undergoing differentiation16,17.

Results
Ascl1 degradation rate is similar in proliferating and differentiating neural progenitors.  The 
stability of a number of proneural transcription factors is tightly regulated to control protein function7,11. To deter-
mine how the stability of Ascl1 is regulated in proliferating and differentiating NSCs, we used the differentiation 
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protocol established by Spiliotopoulos et al.18, incorporating slow reduction of FGF with increasing BDNF con-
centration that promotes enhanced cell viability and a high conversion rate of NS cells to neurons (Fig. 1A). 
qPCR analysis confirmed that pro-proliferative genes decreased once NSCs were transferred into the differen-
tiation medium (Supplementary Fig. S1A) with a concomitant upregulation of Neurod1 and Tubb3, consistent 
with neuronal differentiation (Supplementary Fig. S1B). During neuronal differentiation, Ascl1 mRNA reached 
maximal expression after transfer from the standard proliferation medium to the priming medium (Euromed), 
where EGF is withdrawn. This was followed by a gradual decline in Ascl1 mRNA levels over the following 9 
days of differentiation (Fig. 1B). Following the same time course, we next investigated levels of Ascl1 protein. 
Maximum expression of Ascl1 protein was reached when cells were transferred to the priming medium (Fig. 1C), 
and then declined rapidly in differentiation medium to the point where it was undetectable by d13 (9 days in 
differentiation media). This is consistent with previous studies suggesting that Ascl1 protein levels are tightly 
regulated in co-ordination with neurogenesis11,19. As bHLH transcription factors are known to be regulated at the 
level of protein half-life, we next examined whether Ascl1 protein stability differs as NSCs progress through the 
differentiation programme, determining protein abundance after the addition of cycloheximide to block ongoing 
protein synthesis. In proliferation conditions, Ascl1 half-life was around 30 min as reported previously (11 and 
Supplementary Fig. S1D) and we found that it remained broadly similar throughout the process of differentiation 
(Fig. 1D–F). Together, these results suggest Ascl1 protein stability is not closely correlated with the transition 
from proliferation to differentiation, yet a short half-life against a backdrop of declining mRNA contributes to 
dynamic regulation of Ascl1 protein levels.

Figure 1.  Ascl1 protein is unstable in proliferating and differentiating neural stem cells. (A) Schematic 
representation of the experimental procedure to differentiate neural stem cells and timeline, harvesting time 
points represented by arrows. (B) Endogenous Ascl1 levels measured by qPCR, fold increase is relative to 
the sample harvested at day 1. Error bars = SEM; n = 3 independent experiments; two-tailed unpaired t-test 
n.s = p > 0.05. (C) Western blot analysis detecting endogenous Ascl1 and α-Tubulin (loading control) in total 
cell lysate at each time point (cropped); Full length western blots are provided in Supplementary Fig. S1C.  
(D–F) Cor3-1 NSCs were treated with cycloheximide at three different time points during neuronal 
differentiation. Ascl1 protein in whole cell lysates collected at increasing time after cycloheximide addition 
was detected by western blot and protein abundance quantitated to determine Ascl1 half-life. Representative 
western blots (cropped) for each time point are shown below the respective graph; Full length western blots for 
Ascl1 are provided in Supplementary Fig. S1E–G. Error bars = SEM; n = 3 independent experiments.
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Ascl1 is ubiquitylated differently in the cytoplasm and on chromatin.  Little is known about the 
post-translational regulation of Ascl1. Therefore, we next set out to determine mechanisms regulating control of 
Ascl1 protein, first assessing its sub-cellular localisation. For this, we used two models, looking at endogenous 
Ascl1 protein in NSCs and looking at overexpressed Ascl1 in mouse P19 embryonic carcinoma cells (Fig. 2A and B  
respectively). Endogenous Ascl1 protein was detected by immunostaining in both the nucleus and cytoplasm of 
NSCs with a comparable pattern in proliferation and differentiation media. Similarly, in P19 cells, transfected 
Ascl1 was detected in both cellular compartments in proliferation and differentiation media. To confirm that 
Ascl1 could be detected in both subcellular compartments, we performed cellular fractionation of NSCs subject 
to the NS cells differentiation protocol, fractionating into cytoplasm, nuclear and chromatin components at day 4 
in priming medium when Ascl1 protein was at its peak (Fig. 2C).

The fractionation of the cells was efficient, as assayed by α-tubulin, laminB and histone H3 partitioning denot-
ing cytoplasmic, nuclear and chromatin fractions respectively, and Ascl1 protein was detected at a similar level 
in all 3 sub-cellular compartments. However, strikingly, in addition to monomeric Ascl1, high molecular weight 
forms of the protein (i.e., >100 kDa, blue bracket) were detected in the cytoplasm fraction. These cytoplasmic 
slow migrating forms of Ascl1 were enhanced in the presence of the proteasome inhibitor MG132, consistent with 
their origin being Ascl1 covalently attached to long chains of ubiquitin moieties. In addition, shorter ladders of 
slower migrating forms of Ascl1 were observed in the chromatin fraction, which were not obviously augmented 
by the addition of MG132 (black bracket). Similar patterns were observed in cells transferred to differentiation 
medium (Supplementary Fig. S2C). While these results are consistent with Ascl1 undergoing ubiquitylation in the 
cytoplasm and also on chromatin, the differing lengths of presumptive ubiquitin chains in the two compartments 
indicate the possibility of differing regulation.

Ascl1 is degraded more rapidly in the cytoplasm than on chromatin.  To confirm that ubiquityla-
tion is occurring and then to further characterise the pattern and consequences of Ascl1 ubiquitylation in differ-
ent cellular compartments, we turned to P19 cells as low levels of endogenous Ascl1 protein in NSCs precluded 
biochemical analysis. To confirm over-expressed Ascl1 protein is also regulated by ubiquitin-mediated proteol-
ysis in P19 cells in a similar manner to endogenous Ascl1 in NSCs, we first determine Ascl1 protein stability in 
transfected P19 cells (Fig. 3A). Ascl1 half-life was 31.6 ± 5.8 mins, very similar to the half-life of Ascl1 in NSCs, 
suggesting the ectopic Ascl1 protein half-life may be regulated in a similar manner to endogenous Ascl1 in NSCs.

To confirm ubiquitylation of transfected Ascl1, we then used the Tandem-repeated Ubiquitin-Binding Entities 
(TUBEs) method20 to directly capture ubiquitylated proteins in cytoplasmic and chromatin fractions (Fig. 3B) 
and western blotted for Ascl1 to analyse its ubiquitination. Similar to our findings in NSCs, very high molec-
ular weight forms of Ascl1 were captured by the TUBEs from the cytoplasmic fraction of P19 cells confirming 
that these are indeed ubiquitylated forms of Ascl1 (Fig. 3B, blue bracket). These high molecular weight forms 
of Ascl1 showed greater accumulation in the presence of MG132, indicating that they were targeting Ascl1 
for ubiquitin-mediated degradation. Ubiquitylated forms of Ascl1 were also detected in the chromatin frac-
tion of P19 cells but these ran considerably faster than those seen in the cytoplasmic fraction, indicating the 
attachment of much shorter ubiquitin chains on chromatin-associated Ascl1 (Fig. 3B, black bracket), as we had 
observed in NSCs. Addition of MG132 made a more modest difference to accumulation of these forms of Ascl1. 
To be degraded through the proteasome, the addition of minimum 4 ubiquitin moieties is required21, and our 
results are consistent with short chains of ubiquitin on chromatin-bound Ascl1 being less efficient at driving 
ubiquitin-mediated proteolysis than the longer chains found in the cytoplasm.

To test whether Ascl1 would have different stability in the two subcellular fractions of P19 cells, we deter-
mined the half-life of Ascl1 protein in the cytoplasm and on chromatin after cycloheximide addition in both 
proliferation and differentiation media (Fig. 3C and D). In the cytoplasm, Ascl1 half-life was around 21 min both 
in proliferation and in differentiation media but was more than double that in the chromatin fraction under both 
conditions, consistent with longer ubiquitin chains in the cytoplasm targeting Ascl1 for faster degradation than 
short chains on chromatin-bound Ascl1.

Lysines used for ubiquitylation of Ascl1 differ between cytoplasm and chromatin.  Ubiquitylation 
classically occurs on lysine residues, although ubiquitylation has been reported to occur on the protein 
N-terminus as well as, highly unusually, on cysteines in the related bHLH proneural factor Neurog28. Sites of 
ubiquitylation on Ascl1 have not been investigated. Ascl1 has 9 lysine residues in total, with 5 lysines scattered 
throughout the N-terminus and 4 within the basic helix-loop-helix domains (Fig. 4A). To determine whether 
ubiquitylation of Ascl1 occurs on canonical lysine residues, we generated a mutant form where all lysines were 
mutated to arginines (Full K > R_Ascl1, Fig. 4A) and tested its ability to associate with a poly-ubiquitin-binding 
resin in the TUBEs assay after expression in P19 cells. Mutation of the lysines effectively blocked the formation of 
the short ladder of ubiquitylated species in the chromatin fraction of Ascl1 even after MG132 addition (Fig. 4B, 
left panel, black bracket). Similarly, high molecular weight forms of Full K > R_Ascl1 were not identified in the 
cytoplasm fraction even in the presence of MG132 (Fig. 4B, right panel, blue bracket). This indicates that ubiq-
uitylation of Ascl1 occurs predominantly on canonical lysine residues in both the cytoplasm and on chroma-
tin. Moreover, mutation of all 9 lysines resulted in an almost doubling of Ascl1 half-life from 31.6 ± 5.8 mins to 
56.7 ± 3.2 mins, demonstrating that ubiquitylation on lysines contributes to the short half-life of Ascl1, although 
proteolysis by other mechanisms clearly also limits Ascl1 protein stability.

While 9 lysines are theoretically available for ubiquitylation, the actual sites of ubiquitin attachment may 
be influenced by peptide sequence and/or protein structure22. Basic helix-loop-helix transcription factors are 
natively unstructured, but the bHLH region attains structure on dimerization with E proteins and binding to 
DNA23, and this may influence sites of ubiquitylation on chromatin versus cytoplasm. To determine whether sites 
of Ascl1 ubiquitylation differ in the cytoplasm and on chromatin, we next used the TUBEs assay to pull down 
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Figure 2.  Ascl1 ubiquitylation occurs both in the cytoplasm and on chromatin. (A) Immunostaining for 
Ascl1 (green) and DAPI staining for DNA (blue) in Cor3-1 NSCs under proliferation (day 1; top panels) and 
differentiation (day 10; bottom panels) conditions. Scale bar, 50 μm. (B) P19 cells transfected with (human) 
Ascl1 (0.25 μg) and immunostained for Ascl1 (green) and DAPI (blue) in proliferation media (top panels) or 
24 hours after transfer into differentiation media (bottom panels). Scale bar, 50 μm. (C) Neural stem cells at 
day 4 were either treated with MG132 or DMSO (control) for 2 hours. Cells were fractionated into whole cell 
lysate (input) and cytoplasm, nucleus and chromatin fractions for western blot analysis. Equal amounts of 
protein were separated by SDS PAGE and blotted in parallel for endogenous Ascl1, α-Tubulin (loading control 
for cytoplasmic fraction), LaminB (loading control for nuclear fraction) and histone H3 (loading control for 
chromatin fraction). Blue bracket, Ascl1 with putative long ubiquitin chains; black bracket, Ascl1 with putative 
short ubiquitin chains. Full length western blots are provided in Supplementary Fig. S2A and B.
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Figure 3.  Chromatin-bound Ascl1 is more stable than cytoplasmic Ascl1. (A) P19 cells transfected with 
(human) Ascl1 and growing in proliferation media were treat with cycloheximide to prevent ongoing protein 
synthesis. Samples were removed at the times indicated and western blot analysis of whole cell lysates was used 
to determine Ascl1 half-life. Representative western blots (cropped) are shown and full length western blots 
are provided in Supplementary Fig. S3A. Error bars = SEM; n = 3 independent experiments. (B) P19 cells 
transfected with (human) Ascl1 and transferred the day after to differentiation media for 24 hours. Cellular 
fractionation was performed after 2 hours treatment with or without MG132 and ubiquitin-bound proteins were 
isolated using the TUBEs method. Western blotting for Ascl1 compared input, resin-unbound and resin-bound 
fractions. Blue bracket, Ascl1 with long ubiquitin chains; black bracket, Ascl1 with short ubiquitin chains. 
Also shown are α-Tubulin (control for cytoplasmic fractionation) and histone H3 (control for chromatin 
fractionation). (C) P19 cells were transfected with (human) Ascl1 and treated the day after with cycloheximide 
for increasing times before sample withdrawl, as shown. Cytoplasm and chromatin fractions were processed 
for Ascl1 western blot analysis to determine Ascl1 half-life. Representative western blots (cropped) are 
shown below and full length western blots are provided in Supplementary Fig. S3B. Error bars = SEM; n = 3 
independent experiments. (D) As (C) but with P19 cells transferred to differentiation media for 24 hours prior 
to cycloheximide addition. Full length western blots are provided in Supplementary Fig. S3C.
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Figure 4.  Lysine residues are essential for Ascl1 ubiquitylation. (A) Schematic representation of human Ascl1 
indicating the localisation of lysine residues that are mutated to arginine in Full K > R_Ascl1. (B) P19 cells 
transfected with (human) Ascl1 and transferred the day after to differentiation media for 24 hours. Cellular 
fractionation was performed with or without MG132 addition for 2 hours, and ubiquitylated proteins were 
isolated using the TUBEs method. Western blotting for Ascl1 compared input, resin-unbound and resin-bound 
fractions from cytoplasmic and chromatin compartments as labelled. Black bracket, Ascl1 with short ubiquitin 
chains in the chromatin fraction; blue bracket, Ascl1 with long ubiquitin chains in the cytoplasmic fraction. 
Also shown are α-Tubulin (control for cytoplasmic fractionation) and histone H3 (control for chromatin 
fractionation). Western blots for loading control were cropped to show specific band of correct molecular 
weight. (C) P19 cells transfected with Full K > R_Ascl1 and growing in proliferation media were treated 
with cycloheximide for increasing times before sample withdrawl, as shown. Western blot analysis of whole 
cell lysates was used to determine Full K > R_Ascl1 half-life and compared to wild-type Ascl1 (see Fig. 3A). 
Representative western blots are shown; Nitrocellulose membrane was cut before probing with the respective 
primary antibody. Error bars = SEM; n = 3 independent experiments.



www.nature.com/scientificreports/

7SCIenTIfIC ReportS |  (2018) 8:4625  | DOI:10.1038/s41598-018-23056-4

forms of ubiquitylated Ascl1 in mutants where lysines had been mutated to arginines either in the N-terminal 
domain (N-term K > R_Ascl1) or in the bHLH region (bHLH K > R_Ascl1, Fig. 5A). In the chromatin fraction, 
as before, Ascl1 ubiquitylation was not detected when all lysines were mutated. However, and perhaps surpris-
ingly, on chromatin both the N-term K > R and the bHLH K > R mutants could be ubiquitylated generating 
conjugates of similar length even without MG132 treatment (Fig. 5B, left panel, black bracket).

Figure 5.  Sites available for ubiquitylation differ in cytoplasmic and chromatin bound Ascl1. (A) Schematic 
representation of human Ascl1 indicating mutation of lysines into arginines at the N-terminus and within the 
bHLH domain. (B) P19 cells transfected with wild-type Ascl1, N-term K > R_Ascl1, bHLH K > R_Ascl1 or 
Full K > R_Ascl1 were transferred the day after to differentiation media for 24 hours. Cellular fractionation 
was performed, and ubiquitylated proteins were isolated using the TUBEs method. Western blotting for Ascl1 
compared input, resin-unbound and resin-bound fractions from cytoplasmic and chromatin compartments 
as labelled. Black bracket, Ascl1 with short ubiquitin chains in the chromatin fraction; blue bracket, Ascl1 
with long ubiquitin chains in the cytoplasmic fraction. Also shown are α-Tubulin (control for cytoplasmic 
fractionation) and histone H3 (control for chromatin fractionation). (C) As (B) above, except cells were 
incubated with or without MG132 before harvesting to inhibit ubiquitin-mediated proteolysis. Western blots for 
loading control were cropped to show specific band of correct molecular weight.
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In the cytoplasm fraction, we again observed considerably longer ubiquitin chains compared to the 
chromatin-bound Ascl1 and ubiquitylation was not detected with the Full K > R mutant. However, in contrast to 
chromatin-bound Ascl1, poly-ubiquitylation occurred on the N-term K > R mutant, and was indeed somewhat 
enhanced compared to wild-type Ascl1, but the bHLH K > R lysine mutant was not pulled down in absence of 
MG132, indicating that lysines within the bHLH domain are predominant sites of ubiquitin modification in the 
cytoplasm (Fig. 5B, right panel, blue bracket). To determine whether any ubiquitylation was possible in the cyto-
plasm in the absence of bHLH domain lysines, we isolated poly-ubiquitylated forms of wild-type Ascl1 and bHLH 
K > R_Ascl1 from the cytoplasm fraction using the TUBEs assay (Fig. 5C) in the presence of MG132. In these 
conditions, wild-type Ascl1 harboured high molecular weights species while the bHLH K > R mutant was weakly 
detected, indicating that bHLH lysines are the predominant targets of ubiquitylation in the cytoplasm, but that 
weak ubiquitylation on the N-terminus can be detected when proteolysis is inhibited. Taken together, our data 
demonstrate that ubiquitylation occurs on a differing pattern of residues in cytoplasmic and chromatin-bound 
Ascl1.

Ubiquitylation of chromatin-bound Ascl1 is not required for activity.  Ubiquitylation has been 
previously proposed to play a direct role in the regulation of activity of a variety of transcription factors24. For 
instance, transcriptional activity of the c-Myc protein that also contains a bHLH domain is coupled to its ubiqui-
tylation, and indeed ubiquitin-mediated protein turnover is required to stimulate its transcriptional activity25. As 
short ubiquitin chains are readily detectable on chromatin-bound Ascl1, we investigated whether ubiquitylation 
of Ascl1 is coupled to its transcriptional activity. For this, we transiently transfected P19 cells with Ascl1 and 
treated with the transcriptional inhibitor α-Amanitin for 4 hrs in differentiation media before isolation of the 
chromatin fraction and western blotting for Ascl1 to detect ubiquitylated forms of the protein (Fig. 6A). Acute 
blocking of transcription using α-Amanitin led to a slight decrease in Ascl1 protein, consistent with a reduc-
tion in ongoing transcription of the transfected Ascl1 plasmid. However, Ascl1 ubiquitylation was very similar 
with and without α-Amanitin addition, indicating that active transcription is not required for ubiquitylation of 
chromatin-bound Ascl1.

To test whether ubiquitylation of Ascl1 stimulates its transcriptional activity as had been reported for c-Myc25 
and other transcription factors24, we compared the transactivation activity of wild-type Ascl1 with lysine mutants 
thereof (see Fig. 5A), using a luciferase reporter plasmid containing a part of the Delta promoter previously 
shown to be bound and activated by Ascl126 (Fig. 6B) in both proliferation and differentiation media. Mutation 
of all lysines in Ascl1 resulted in almost a doubling of reporter activity, as did mutation of lysines in the bHLH 
domain, while interestingly mutation of N-terminal lysines had no effect on transcriptional activity. This result 
indicates that ubiquitylation of Ascl1 on chromatin is not required for transcriptional activity, and indeed pre-
venting ubiquitylation results in a modest increase in activity, consistent with an increase in overall Ascl1 protein 
levels seen when ubiquitylation is prevented (Fig. 4).

Huwe1 targets cytoplasmic Ascl1 for degradation.  Short ubiquitin chains are associated with 
chromatin-bound Ascl1, but much longer chains are found attached to Ascl1 in the cytoplasm. Longer ubiq-
uitin chains are known to target proteins for degradation more efficiently so we next explored how Ascl1 might 
be ubiquitylated in the cytoplasmic compartment27. The HECT domain ubiquitin ligase Huwe1 is the only E3 

Figure 6.  Preventing ubiquitylation of Ascl1 enhances its transcriptional activation. (A) P19 cells transfected 
with wild-type Ascl1 and were transferred the day after to differentiation media for 24 hours, then treated with 
20 μg/ml α-Amanitin for 4 hours. Chromatin-bound proteins were isolated and western blotted for Ascl1, top 
Ascl1 panel long exposure, bottom Ascl1 panel, cropped lower exposure of the same blot to show decrease 
in Ascl1 protein due to block of ongoing transcription and histone H3 (chromatin marker, cropped to show 
specific band of correct molecular weight). (B) Gene reporter assay in P19 cells transfected with wild-type 
Ascl1 and mutants thereof as labelled to assay Ascl1 transcriptional activity. Fold activity relative to vector-only 
controls. Error bars = SEM; n = 3 independent experiments; two-tailed unpaired t-test (*p < 0.05, **p < 0.01).
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ubiquitin ligase currently known to target Ascl1 for ubiquitylation and degradation and knocking out Huwe1 
results in an increase in Ascl1 half-life in NSCs11. The interaction between Ascl1 and Huwe1 is not dependent on 
the presence of DNA11 and Huwe1 has also been previously detected in the cytoplasm28,29. To determine whether 
Ascl1 is specifically targeted for ubiquitylation by Huwe1 in the cytoplasm we used NSCs that have been engi-
neered to conditionally delete Huwe1 on expression of cre recombinase11 (Fig. 7A). Lentivirally-mediated Cre 
expression resulted in a significant knock-down of Huwe1 in the cytoplasm of a pool of infected cells, as detected 
by western blotting (Fig. 7B). Huwe1 was not detected on chromatin either before or after knock-out consistent 
with cytoplasmic localisation reported previously28,29.

To determine whether Huwe1 is responsible for the long chains of ubiquitin conjugated to Ascl1 in the cyto-
plasm, we examined the ubiquitin pattern of Ascl1 in Flox-Huwe1 NSCs after cellular fractionation and western 
blot analysis (Fig. 7C). High molecular weight of poly-ubiquitylated forms of Ascl1 were detected with the mock 
viral infection in the presence of MG132 but poly-ubiquitylated Ascl1 forms were severely reduced when Huwe1 
was knocked down. On the chromatin, we could not detect a change in the short ubiquitylation ladder associated 
with Ascl1 but Huwe1 knock-down led to the stabilisation of Ascl1 protein (Supplementary Fig. S4A). Thus, 
ubiquitylation of Ascl1 in the cytoplasm is predominantly mediated by Huwe1.

Figure 7.  Ascl1 is ubiquitylated by Huwe1 in the cytoplasm. (A) Schematic representation of experimental 
design. Adenovirally-mediated Cre expression was used to delete Huwe1 from NSCs harbouring the Flox-
Huwe1 allele and cells were harvested after 1 day in differentiation media. (B) Flox-Huwe1 NSCs at day 5 were 
incubated +/− MG132 for 2 hours, and cytoplasmic and chromatin fractions were processed for western 
blot analysis to detect Huwe1 as well as α-Tubulin (loading control for cytoplasmic fraction) and histone H3 
(loading control for chromatin fraction). (C) Cytoplasmic fractions with and without cre-mediated knockdown 
of Huwe1 (see panel B), were incubated with and without MG132 for 2 hours and western blotted to detect free 
and ubiquitin-conjugated (blue bracket) forms of Ascl1. Top panel is long exposure to reveal high molecular 
weight ubiquitylated forms of Ascl1 (blue bracket), bottom Ascl1 panel is lower exposure (cropped from the 
same blot) to show stabilisation of Ascl1 after Huwe1 knockdown, α-Tubulin (loading control for cytoplasmic 
fraction, cropped to show specific band of correct molecular weight), n = 3.
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All together, these results suggest that Huwe1 targets Ascl1 for ubiquitylation degradation specifically in the 
cytoplasm, and that preventing cytoplasmic destruction leads to more Ascl1 protein that is available to bind to 
chromatin.

Discussion
Ascl1 is a central regulator of neural stem and progenitor maintenance that is dynamically regulated at the pro-
tein level1,11,13 (Fig. 1). In this study, we explored regulation of ubiquitylation and degradation of Ascl1 in both 
neural stem cells and in P19 embryonal carcinoma cells that have long served as a model for studying proneural 
protein-mediated neuronal differentiation16–18,30,31. Total cellular Ascl1 has a short half-life of about 30 minutes in 
both cell lines (Figs 1 and 3), consistent with previous analysis of Ascl111, and with the short half-lives reported 
for other bHLH proneural proteins7,8. It is of note that Ascl1 had a similar half-life in proliferation and at differ-
ent stages of our differentiation protocol (Fig. 1D,E and F and Supplementary Fig. S1D), indicating that altering 
the half-life of Ascl1 is not a central mechanism used to regulate proliferation versus differentiation of these cell 
types. However, our analyses revealed different rates of degradation of Ascl1 in the cytoplasm and when bound to 
chromatin; chromatin-bound Ascl1 is twice as stable as cytoplasmic Ascl1.

To understand better how degradation of Ascl1 is regulated we looked further at the ubiquitylation of Ascl1 
protein in both cytoplasm and on chromatin and uncovered distinct modes of ubiquitin modification in the 
two sub-cellular compartments. Cytoplasmic Ascl1 is conjugated to long chains of ubiquitin moieties (Fig. 2C), 
resulting in a substantial decrease in migration of conjugated Ascl1 on SDS PAGE and clear association with a 
ubiquitin-binding resin (Figs 3B, 4B and 5B). Moreover, addition of the proteasome inhibitor MG132 resulted in 
significant stabilisation of ubiquitylated Ascl1, demonstrating that these long chains target Ascl1 for proteolysis 
(Figs 2C, 3B and 4B). In contrast, chromatin-bound Ascl1 displays much shorter and generally less prominent 
ubiquitin chains (Figs 2C and 3B); for instance chains of only 3 ubiquitin moieties were visible in wild-type Ascl1 
P19 cells (Fig. 4B, first lane). Ubiquitin-binding resin concentrates forms of chromatin-bound Ascl1, but even 
these enriched forms of ubiquitylated Ascl1 run much more rapidly than Ascl1 conjugated to longer chains in the 
cytoplasm (e.g., Fig. 3B).

We do not see a significant stabilisation of chromatin-bound Ascl1 in the presence of MG132, indicating that 
ubiquitylation does not target for significant proteasome-mediated destruction in this context (Fig. 3B). Our 
results are consistent with a requirement for long ubiquitin chains to target proteins to the proteasome22 and 
indeed, we see that chromatin-bound Ascl1 has more than twice the half-life of cytoplasmic Ascl1 (Fig. 3C). 
Nevertheless, chromatin-bound Ascl1 is still unstable, with a half-life of less than 1 hour, indicating that other 
modes of Ascl1 destruction contribute to protein turnover. Consistent with this, even in whole cell lysates, Ascl1 
mutants lacking all lysines that act as sites for canonical ubiquitylation still readily degraded, albeit less rapidly 
than the wild-type protein.

Interestingly, ubiquitylation of Ascl1 on the chromatin can occur on either N-terminal or bHLH domain 
lysines, despite binding to DNA and dimerization with E protein partners23, while mutation of bHLH lysines dra-
matically reduces ubiquitylation in the cytoplasm (Fig. 5). Thus, not only do chromatin-bound and cytoplasmic 
Ascl1 accumulate ubiquitin chains of differing length, they also differ in the lysines that can be used to anchor 
those chains.

Ubiquitylation of a number of transcription factors has been described to either stimulate or inhibit their 
transcriptional activity, with or without activity of the proteasome24. In addition, coupling of transcription to 
ubiquitylation on chromatin has also been reported25. We blocked transcription with α-Amanitin and saw no 
significant effect on Ascl1 ubiquitylation (Fig. 6A), indicating that close coupling between ongoing transcription 
and Ascl1 modification does not occur. However, we did see a modest but significant increase in the activation of 
an Ascl1-responsive reporter construct when ubiquitylation was blocked by mutation of lysines (Fig. 6B). Taken 
together, these results suggest that Ascl1 does not require ubiquitylation for its activity and indeed, that blocking 
its ubiquitylation enhances transcriptional activity, likely through an increase in protein levels due to a doubling 
of its half-life (Fig. 4C).

Finally, only the E3 ligase Huwe1 has been identified thus far as targeting Ascl1 for ubiquitylation, though the 
sub-cellular location where ubiquitylation occurs has not been described. We see that Huwe1 is found exclusively 
in our cytoplasmic fractions in neural stem cells, and significantly, is not found associated with chromatin so is 
unlikely to be directly controlling ubiquitination and destruction of Ascl1 at sites of active transcription (Fig. 7). 
Instead, our results support a model where Huwe1 is acting as the major E3 ligase for Ascl1 but it is targeting it for 
destruction by ubiquitylation in the cytoplasm. While Huwe1 targets Ascl1 for cytoplasmic destruction and is not 
present on chromatin, nevertheless, Huwe1 knock-down leads to more chromatin-bound Ascl1 (Supplementary 
Fig. S4A), presumably because more stable protein shuttles from the cytoplasm to the nucleus. Consistent with 
this, mutation of lysines in the bHLH domain only inhibit ubiquitylation in the cytoplasm, yet results in enhanced 
activation of an Ascl1 reporter, again pointing to cytoplasmic stabilisation ultimately resulting in an accumulation 
of chromatin-bound Ascl1 and leading to an increase in its transcriptional activity.

Taken together, our results point to a more complex regulation of Ascl1 subcellular localisation, stability and 
activity than has previously been described. As we uncover more about the pivotal role Ascl1 plays in devel-
opmental and adult neurogenesis as well as in cellular reprogramming, it will be important to have a complete 
understanding of regulation of post-translational control of this key master regulator.

Methods
Cell culture, neuronal differentiation and cell transfection.  Neural stem cells, Cor3–1 were grown 
in Complete media (DMEM/HAM’S-F12 (Sigma, D8437), 1.45% Glucose (Sigma, G28644), 1 × MEM-NEAA 
(Gibco, 11140-035), 100 units/ml penicillin and 100 μg/ml streptomycin (Gibco, 15140-122), 0.16% BSA (Gibco, 
15260-037), 0.1 mM β-Mercapto-ethanol (Gibco 31350-010), 1% B-27 supplement (Gibco, 17504-044) and 0.5% 
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N2 supplement (Gibco, 17502-048)). Before changing the medium or passaging the cells, 10 ng/ml mouse EGF 
(Peprotech, 315-09), 10 ng/ml human FGF (R&D systems, 233-FB) and 1 μg/ml Laminin (Sigma, L2020-1MG) 
were added to the required volume of Complete media. For neuronal differentiation, 24 hours after seeding, cells 
were transferred into a priming medium Euromed-N (Euroclone) supplemented with 1% B-27 without vitamin 
A (Gibco, 12587010), 0.5% N2 and 10 ng/ml human FGF for 3 days. Cells were then transferred into a differentia-
tion medium (1:3 ratio DMEM/HAM’S-F12:Neurobasal (Gibco, 21103-049) supplemented with 1% B-27 without 
vitamin A, 0.5% N2, 10 ng/ml human FGF, 20 ng/ml BDNF (R&D systems, 248-BD) and 1μg/ml Laminin for 3 
days followed by a change of medium every 3 days with reduction of the FGF concentration by half to zero and a 
constant concentration of BDNF at 30 ng/ml.

Neural stem cells (Floxed-Huwe1-RYFP) used for Huwe1 knock-out were described in King et al.32 and in 
Urban et al., 201711 and maintained as described above. Transduction of CRE recombinase was performed with 
the adenovirus CMV-CRE (Vector Biolabs, 1045 N) at a MOI of 100. Empty adenovirus (CMV-null) was used as 
control at the same MOI.

P19 cells were maintained in MEM-α (Gibco, 41061-029) supplemented with 10% FBS and 100 units/ml pen-
icillin and 100 μg/ml streptomycin. For differentiation, cells were transferred into Neurobasal medium supple-
mented with penicillin/streptomycin, 1% B-27 without vitamin A, 1 × GlutaMAX (Thermo, 35050061) and 1μg/
ml Laminin. Differentiation medium was changed every 24 hours if required. P19 cells were transfected at 80% 
confluence with Lipofectamine 2000 (Invitrogen, 11668-027) in proliferation medium following the manufactur-
er’s instructions with a 1:2 ratio (DNA:Lipofectamine). A list of plasmids is provided in Table S2 in supplementary 
information.

Quantitative Real-Time PCR.  Total RNA was extracted from cells using the RNeasy kit (Qiagen). Template 
cDNAs were synthesised using the QuantiTect Reverse Transcription Kit (Qiagen), and qRT-PCR was performed 
using QuantiFast SYBR Green Master Mix (Qiagen) in a Lightcycler 480 PCR system (Roche). EiF1α was used as 
housekeeping gene to normalise each qPCR target and the values were calculated as fold increase to proliferation 
samples. Thermal cycling conditions: 95 °C for 5 mins, then 40 cycles of 95 °C for 10 seconds, 60 °C for 10 seconds 
and 72 °C for 30 seconds. The primer sequences are provided in Table S1 in supplementary information. Data are 
presented as means ± SEM of normalised values from at least three independent experiments.

Western blotting.  Western blots were either performed from total cell lysates obtained by lysing cells 
directly with RIPA buffer (Sigma-Aldrich) complemented with protease inhibitor cocktail (cOmplete, Roche) 
or from fractionated lysates (see below). Proteins concentration was determined using BCA protein assay kit 
(Thermo). SDS-PAGE electrophoresis was carried out in 10% pre-cast polyacrylamide gels (Novex) in MOPS 
buffer. After transfer onto nitrocellulose, membranes were blocked for 1hr with 10% non-fat milk in TBS-0.1% 
Tween solution and probed overnight with primary antibody: Ascl1 (1:300, hybridoma supernatant, gift from 
David Anderson and François Guillemot), Histone H3 (1:10,000, Abcam, ab1791) and α-Tubulin (1:10,000, 
Abcam, ab7291), LaminB (1:500, Santa Cruz, sc-6216) and Huwe1 (1:1,000, Bethyl Laboratories, A300-486A). 
Mouse secondary (goat anti-mouse HRP 1:10,000, Millipore, 71045-3) or rabbit secondary (1:5,000, Rabbit IgG 
HRP linked, GE Healthcare, NA934V) antibodies were used for detection in 5% milk in TBS-0.1% Tween solu-
tion for 1 hour. Membranes were developed using ECL Prime (GE Healthcare, RPN2232) for Ascl1 or ECL detec-
tion reagents (GE Healthcare, RPN2106) for the other antibodies. All western blots were performed at least in 
triplicate.

Cellular Fractionation.  Cor3–1 cells were seeded at 1.5 × 106 in 10 cm dishes and P19 were seeded at 
1.0 × 106 in 10 cm dishes. P19 were transfected with 3 μg of Ascl1 plasmid constructs (Supplementary Table S2). 
Cells were washed once with room temperature PBS and scraped into 1 ml PBS. Cells were pelleted at 1,200 rpm 
in an eppendorf tube at 4 °C for 3 min. Pellets were covered with 5 volumes of ice-cold E1 buffer (50 mM 
Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH8.0, 10% glycerol, 0.5% NP-40, 0.25% triton X-100, 1 mM 
DTT) complemented with 1 × protease inhibitor cocktail and were gently pipetted up and down (5 times) before 
centrifugation at 3,400 rpm at 4 °C for 2 min. The supernatant was collected in a fresh tube (cytoplasm fraction) 
and the pellet was resuspended by gentle pipetting in the same volume of E1 buffer and centrifuged as before. The 
supernatant was discarded and the pellet was resuspended by gentle pipetting in the same volume of E1 and left 
for 10 min on ice. After centrifugation at 3,400 rpm at 4 °C for 2 min, the supernatant was discarded and the pellet 
was resuspended by gentle pipetting in 2 volumes of ice-cold E2 buffer (10 mM Tris-HCl pH8.0, 200 mM NaCl, 
1 mM EDTA pH8.0, 0.5 mM EGTA pH8.0) complemented with 1 × protease inhibitor cocktail and centrifuged 
at 3,400 rpm at 4 °C for 2 min. The supernatant was collected in a fresh tube (nucleus fraction) and the pellet was 
resupsended in the same volume of E2 and centrifuged as before. The supernatant was discarded and the pellet 
was resuspended in the same volume of E2 and left for 10 min on ice. After centrifugation at 3,400 rpm at 4 °C for 
2 min, the supernatant was discarded and the pellet was resuspended in ice-cold E3 buffer (500 mM Tris-HCl, 
500 mM NaCl) complemented with 1 × protease inhibitor cocktail by gentle pipetting in the same volume used 
for E1. The solution (chromatin fraction) was sonicated in a Bioruptor (Diagenode) for 5 min on setting H, 30 sec 
ON/30 sec OFF for western blot analysis or was digested with Benzonase (1:1,000, Novagen, 70664-3) for TUBEs 
pull down. All fractions were centrifuged at 13,000 rpm at 4 °C for 10 min and protein concentration was deter-
mined using BCA protein assay kit.

Agarose-TUBEs pull down.  15 μl of 50% Agarose-TUBEs (LifeSensors, UM401) were used to pull down 
between 350 μg and 450 μg of ubiquitylated proteins from the cytoplasm and chromatin fractions in 500 μl final 
volume of respective buffers. Incubation was performed for 1 hour at 4 °C on a rocker platform. Agarose-TUBEs 
were collected by centrifugation at 1,000 × g at 4 °C for 5 min. The supernatant was collected in a fresh tube 
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(unbound fraction). Agarose-TUBEs were washed 3 times following the manufacturer’s instructions and were 
boiled in reducing sample buffer (25 μl) for 5 min, centrifuged at maximum speed in a top bench centrifuge for 
1 min and eluted samples were loaded onto gels (Bound fraction: 15 μl for Ascl1 and 5 μl for loading controls) 
alongside 5 μg of proteins from the unbound fraction and 5 μg from fractionated lysates (Input).

Protein Stability Assay.  Cor3-1 cells or transfected P19 cells (2 μg Ascl1 plasmid DNA in 6 cm dishes) were 
treated with 10 μg/ml cycloheximide (Sigma-Aldrich, C4859). At define time points, cells were harvested with 
RIPA lysis buffer (Sigma-Aldrich, R0278) or fractioned. Equal amount of each whole cell lysate or fractionated 
lysate was separated on SDS-PAGE and immmunoblotted with mouse anti-Ascl1 and mouse anti-α-Tubulin 
(1:10,000, Abcam). Protein levels were quantified with FiJi software. Half-lives were calculated using a nonlinear 
regression analysis (One phase decay, Prism).

Immunocytochemistry.  Cor3-1 or P19 cells were plated onto ECM-coated (Sigma, E1270) 24-well plate 
(25,000 cells per well). At indicated time, cells were fixed in 4% paraformaldehyde for 10 min at room temper-
ature. Cells were then washed twice in PBS and permeabilised in 0.2% Triton X-100 PBS for 10 min at room 
temperature. Blocking was performed in PBS with 3% BSA for 60 min at room temperature. Anti-Ascl1 primary 
antibody (Abcam, ab74065) was used at 5 μg/ml final concentration in PBS with 2% FBS and 0.02% Triton X-100 
overnight at 4 °C without rocking. The next day, cells were washed 3 times in 0.02% Triton X-100 PBS for 5 mins 
and incubate with secondary antibody (Alexa488 goat anti-rabbit IgG, Life Technologies) diluted 1:500 in PBS 
with 2% FBS and 0.02% Triton X-100 for 1 hour at room temperature in the dark. Cells were next washed 3 times 
in 0.02% Triton X-100 PBS for 5 mins and incubated in 4′,6-diamidino-2-phenylindole (DAPI, 1:10,000) in PBS 
for 20 min at room temperature in the dark. After 2 washes in PBS, fluorescence labelling was visualised with Axio 
Scan (Zeiss).

Gene Reporter Assay.  P19 cells were plated into 48-well plates (75,000 cells per well) and transfected the 
day after with 100 ng ΔM short-Luciferase (Supplementary Table S2), 50 ng pRL-TK (Renilla, Promega) and 100 
ng Ascl1 using Lipofectamine 2000 in proliferation media. One set of cells was harvested the day after (prolifera-
tion samples) with the Dual-Luciferase Reporter Assay System (Promega, E1910) while the other set of cells was 
transferred into differentiation media and harvested 24 hours later. Luciferase assay was performed following the 
manufacturer’s instructions (Promega) using a Tecan Infinite 200Pro microplate reader. Values for Luciferase 
were normalised to Renilla-Luciferase values and data are presented as means ± SEM of duplicate and experi-
ments were repeated three times.

Data availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files).
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