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Minigames capturing the essence of Public Goods experiments
show that even in the absence of rationality assumptions, both
punishment and reward will fail to bring about prosocial behavior.
This result holds in particular for the well-known Ultimatum Game,
which emerges as a special case. But reputation can induce fairness
and cooperation in populations adapting through learning or
imitation. Indeed, the inclusion of reputation effects in the corre-
sponding dynamical models leads to the evolution of economically
productive behavior, with agents contributing to the public good
and either punishing those who do not or rewarding those who do.
Reward and punishment correspond to two types of bifurcation
with intriguing complementarity. The analysis suggests that rep-
utation is essential for fostering social behavior among selfish
agents, and that it is considerably more effective with punishment
than with reward.

Experimental economics relies increasingly on simple games
to exhibit behavior that is blatantly at odds with the assump-

tion that players are uniquely attempting to maximize their own
utility (1–4). We briefly describe two particularly well-known
games that highlight the prevalence of fairness and solidarity,
without delving into experimental details and variations.

In the Ultimatum Game, the experimenter offers a certain
sum of money to two players, provided they can split it among
themselves according to specific rules. One randomly chosen
player (the proposer) is asked to propose how to divide the
money. The coplayer (the responder) can either accept this
proposal, in which case the money is accordingly divided, or else
reject the offer, in which case both players get nothing. The game
is not repeated. Because a ‘‘rational’’ responder ought to accept
any offer, as long as it is positive, a selfish proposer who thinks
that the responder is rational, in this sense, should offer the
minimal positive sum. As has been well documented in many
experiments, this is not how humans behave, in general. Many
proposers offer close to one-half of the sum, and responders who
are offered less than one-third often reject the offer (5, 6).

In the Public Goods Game, the experimenter asks each of N
players to invest some amount of money into a common pool.
This money is then multiplied by a factor r (with 1 , r , N) and
divided equally among the N players, irrespective of their
contribution. The selfish strategy is obviously to invest nothing,
because only a fraction ryN , 1 of each contribution returns to
the donor. Nevertheless, a sizeable proportion of players invest
a substantial amount. This economically productive tendency is
further enhanced if the players, after the game, are allowed to
impose fines on their coplayers. These fines must be paid to the
experimenter, not to the punisher. In fact, imposing a fine costs
a certain fee to the punisher (which also goes to the experi-
menter). Punishing is therefore an unselfish activity. Neverthe-
less, even in the absence of future interactions, many players are
ready to punish free riders, and this behavior has the obvious
effect of increasing the contributions to the common pool (refs.
3, 4, 7–9; for the role of punishment in animal societies, see
ref. 10).

Simple as they are, both games have a large number of possible
strategies. For the Ultimatum Game, these consist in the amount
offered (when proposer) or the aspiration level (when respond-
er); any amount below the aspiration level is rejected. For the
Public Goods Game with Punishment, the strategies are defined

by the size of the contribution and the fines meted out to the
coplayers. To achieve a better theoretical understanding, it is
useful to reduce these simple games even further and to consider
minigames with binary options only. In doing this, we are
following a distinguished file of predecessors (5, 11, 12). We shall
then use the results from Gaunersdorfer et al. (13) (see also refs.
14, 15) to analyze these games by studying the corresponding
replicator dynamics. It turns out that the Ultimatum minigame
is just a special case of the Public Goods with Punishment
minigame. Evolutionary game theory—like the classical theo-
ry—predicts the selfish ‘‘rational’’ outcome. But if an arbitrarily
small reputation effect is included in the analysis, a bifurcation
of the dynamics allows for an outcome that is more ‘‘social’’ and
closer to what is actually observed in experiments.

We analyze similarly a minigame describing the Public Goods
Game with Rewards (in which case the recipient of a gift has the
option of returning part of it to the donor). Again, evolutionary
game theory and classical theory predict the selfish outcome: no
gifts and no rewards. This time, the corresponding reputation
effect introduces another type of bifurcation. The outcome is
more complex and less stable than in the punishment case.

It is tempting to suggest that this finding reflects why, in
experiments, results obtained by including rewards are consid-
erably less pronounced than those describing punishment (Ernst
Fehr, personal communication). We concentrate in this note on
the mathematical aspects of the minigames, but we argue in the
discussion that reduction to a minigame is also interesting for
experimenters, because the options are more clear-cut.

Public Goods with Punishment
For the minigame reflecting the Public Goods Game, we shall
assume that there are only two players, and that both can send
a gift g to their coplayer at a cost 2c to themselves, with 0 , c ,
g. The players have to decide simultaneously whether to send the
gift to their coplayer. They are effectively engaged in a Prisoner’s
Dilemma. We continue to call it a Public Goods Game, although
the reduction to two players may affect an essential aspect of the
game.

After this interaction, they are offered the opportunity to
punish their coplayer by imposing a fine. The fine amounts to a
loss 2b to the punished player, but it entails a cost 2g to the
punisher. Defecting and refusing to punish is obviously the
dominating solution.

If we assume that players can impose their fine conditionally,
fining only those who have failed to help them, the long-term
outcome will still be the same as before: no prosocial behavior
emerges. Indeed, let us label with e1 those players who cooperate
by sending a gift to their coplayer and with e2 those who do not,
i.e., who defect; similarly, let f1 denote those who punish
defectors and f2 those who do not. The payoff matrix is given by
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f1 f2

e1 2c, g 2c, g
e2 2b, 2g 0, 0

. [1]

Here, the first number in each entry is the payoff for the
corresponding row player and the second number, for the
column player.

For the minigame corresponding to the Ultimatum Game, we
normalize the sum to be divided as 1 and assume that proposers
have to decide between two offers only, high and low. Thus
proposers have to choose between option e1 (high offer h) and
e2 (low offer l) with 0 , l , h , 1. Responders are of two types,
namely f1 (accept high offers only) and f2 (accept every offer).
In this case, the payoff matrix is

f1 f2

e1 1 2 h, h 1 2 h, h
e2 0, 0 1 2 l, l

. [2]

A Minicourse on Minigames
More generally, let us assume that players are in two roles, I and
II, such that players in role I interact only with players in role II
and vice-versa. Let there be two possible options, e1 and e2, in
role I, and f1 and f2 in role II, and let the payoff matrix be

f1 f2

e1 A, a B, b
e2 C, c D, d

. [3]

If players find themselves in both roles, their strategies are G1 5
e1f1, G2 5 e2f1, G3 5 e2f2 and G4 5 e1f2. Therefore we obtain a
symmetric game, and the payoff for a player using Gi against a
player using Gj is given by the (i, j)-entry of the matrix

M 5 1
A 1 a A 1 c B 1 c B 1 a
C 1 a C 1 c D 1 c D 1 a
C 1 b C 1 d D 1 d D 1 b
A 1 b A 1 d B 1 d B 1 b

2 . [4]

For instance, a G1 player meeting a G3 opponent plays e1 against
the opponents f2 and obtains B and plays f1 against the opponents
e2, which yields c. In the Public Goods with Punishment minig-
ame, the two roles are that of potential donor and potential
punisher, and both players play both roles. In the Ultimatum
Game, a player plays only one role and the coplayer the other,

but because they find themselves with equal probability in one
or the other role, we only have to multiply the previous matrix
with the factor 1y2 to get the expected payoff values. We shall
omit this factor in the following.

We turn now to the standard version of evolutionary game
theory, where we consider a large population of players who are
randomly matched to play the game. We denote by xi(t) the
frequency of strategy Gi at time t and assume that these
frequencies change according to the success of the strategies.
Thus the state x 5 (x1, x2, x3, x4) (with xi $ 0 and ( xi 5 1)
evolves in the unit simplex S4. The average payoff for strategy Gi

is (Mx)i. We shall assume a particularly simple learning mech-
anism and postulate that the rate according to which a Gi-player
switches to strategy Gj is proportional to the payoff difference
(Mx)j 2 (Mx)i (and is 0 if the difference is negative). We then
obtain the replicator equation (14, 16, 17),

ẋ i 5 xi@~Mx!i 2 M# #, [5]

for i 5 1, 2, 3, 4, where M# 5 ( xj(Mx)j is the average payoff in
the population. It is well known that the dynamics does not
change if one modifies the payoff matrix M by replacing mij by
mij 2 m1j. Thus, we can use, instead of Eq. 4, the matrix

M 5 1
0 0 0 0
R R S S

R 1 r R 1 s S 1 s S 1 r
r s s r

2 , [6]

where R 5 C 2 A, r 5 b 2 a, S 5 D 2 B and s 5 d 2 c.
Alternatively, we could have normalized the payoff matrix (Eq.
3) to

f1 f2

e1 0, 0 0, r
e2 R, 0 S, s

. [7]

The matrix M has the property that m1j 1 m3j 5 m2j 1 m4j for
each j, so that (Mx)1 1 (Mx)3 5 (Mx)2 1 (Mx)4 for all x. From
this equality follows that (x1x3)y(x2x4) is an invariant of motion
for the replicator dynamics: the value of this ratio remains
unchanged along every orbit. Hence the interior of the state
simplex S4 is foliated by the invariant surfaces WK 5 {x [ S4:
x1x3 5 Kx2x4}, with 0 , K , `. Each such saddle-like surface
is spanned by the frame G1 2 G2 2 G3 2 G4 2 G1 consisting of

Fig. 1. Public Goods with Punishment but without Reputation.
Dynamics on the four faces of the simplex S4 and on the invariant
manifold WK with K 5 1. The edge G1G4 is line of fixed points. On
G1Q, they are stable (filled circles) and on QG4 unstable (open circles).
In addition, there are two saddle points P and F on the edges G1G3

and G2G4. The social state G1 (donations and punishment) and the
asocial state G3 (no gifts, no punishment) are both stable. However,
random shocks eventually drive the system to the asocial equilibrium
G3. Parameters: c 5 1, g 5 3, b 5 2, g 5 1, m 5 n 5 0.
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four edges of S4. The orientation of the flow on these edges can
easily be obtained from the previous matrix. For instance, if R 5
0, then the edge G1G2 consists of fixed points. If R . 0, the flow
points from G1 towards G2 (G2 dominates G1 in the absence of
the other strategies), and conversely from G2 to G1 if R , 0.
Similarly, the orientation of the edge G2G3 is given by the sign
of s, that of G3G4 by the sign of S, and that of G4G1 by the sign
of r.

Generically, the parameters R, S, r, and s are nonzero.
Therefore we have 16 orientations of G1G2G3G4, which, by
symmetry, can be reduced to 4. In Gaunersdorfer et al. (13), all
possible dynamics for the generic case have been classified.

Public Goods with Punishment and Ultimatum Minigames
If we apply this to the Public Goods with Punishment minigame,
we find R 5 c 2 b, S 5 c, r 5 0, and s 5 g. For the Ultimatum
minigame, we get R 5 2(1 2 h), S 5 h 2 l, r 5 0, and s 5 l.

In fact, the Ultimatum minigame is a Public Goods minigame,
with l 5 g, b 5 1 2 l, and g 5 c 5 h 2 l. Intuitively, this rejection
simply means that in the Ultimatum minigame, the gift consists
in making the high instead of the low offer. The benefit to the
recipient (i.e., the responder) h 2 l is equal to the cost to the
donor (i.e., the proposer). The punishment consists in refusing
the offer. This costs the responder the amount l (which had been
offered to him) and punishes the proposer by the amount 1 2
l, which can be large if the offer has been dismal.

We can therefore concentrate on the Public Goods minigame.
Note that it is nongeneric (r is zero), because the punishment
option is excluded after a cooperative move (and in the Ulti-
matum minigame, no responder rejects the high offer).

In the interior of S4 (more precisely, whenever x2 . 0 or x3 .
0) we have (Mx)4 . (Mx)1, and hence x4yx1 is increasing.
Similarly, x3yx2 is increasing. Therefore, there is no fixed point
in the interior of S4. Thus the fixed points in WK are the corners
Gi and the points on the edge G1G4. To check which of these are
Nash equilibria, it is enough to check whether they are saturated.
We note that a fixed point z is said to be saturated if (Mz)i # M#
for all i, with zi 5 0. G3 is saturated; G2 is not. A point x on the
edge G1G4 is saturated whenever (Mx)3 # [x1(Mx)1 1 (1 2
x1)(Mx)4], i.e., whenever x1 $ cyb (using (Mx)4 5 (Mx)1). The
condition (Mx)2 # M# reduces to the same inequality. Thus if c .
b, G3 is the only Nash equilibrium. This case is of little interest.

From now on, we restrict our attention to the case c , b: the
fine costs more than the cooperative act. We note that this
inequality is always satisfied for the Ultimatum minigame and for
public transportation. We denote the point (cyb, 0, 0, (b 2 c)y
b) with Q and see that the closed segment QG1 consists of Nash
equilibria.

In this case, R , 0, and the orientation of the edges of WK is
given by Fig. 1. On the edge G2G4, there exists another fixed
point F 5 (0, cy(b 1 g), 0, (b 1 g 2 c)y(b 1 g)). It is
attracting on the edge and in the face G2G4G1 but repelling on
the face G2G4G3. Finally, there is also a fixed point on the edge
G1G3, namely the point P 5 ((c 1 g)y(b 1 g), 0, (b 2 c)y
(b 1 g), 0). It is attracting in the face spanned by that edge and
G2 but repelling in the face spanned by that edge and G4. In the
absence of other strategies, the strategies G1 and G3 are bistable.
The strategy G1 is risk dominant (i.e., it has the larger basin of
attraction) if 2c , b 2 g. We note that in the special case of the
Ultimatum minigame, this reduces to the condition h , 1y2.

Apart from G3 and the segment QG1, there are no other Nash
equilibria. Depending on the initial condition, orbits in the
interior of S4 converge either to G3 or to a Nash equilibrium on
QG1. Selective forces do not act on the edge G1G4, because it
consists of fixed points only. But the state x f luctuates along the
edge by neutral drift (reflecting random shocks of the system).
Random shocks will also introduce occasionally a minority of a
missing strategy. If this happens while x is in QG1, selection will
send the state back to the edge, but a bit closer to Q (because
x4yx1 increases). Once the state has reached the segment QG4
and a minority of G3 is introduced by chance, this minority will
be favored by selection and eventually become fixed in the
population. Thus in spite of the segment of Nash equilibria, the
asocial state G3 will get established in the long run. This result
plays the central role in Nowak et al. (18).

Bifurcation Through Reputation
In the Ultimatum Game and the Public Goods Game, experi-
ments are usually performed under conditions of anonymity.
The players do not know each other and are not supposed to
interact again. But let us now introduce a small probability that
players know the reputation of their coplayer and, in particular,
whether the coplayer has failed to punish a defector on some
previous occasion. This reputation creates a temptation to
defect.

Let us assume that with a probability m, cooperators (e1
players) defect against nonpunishers (f2 players), i.e., m is the
probability that (i) the f2 type becomes known, and (ii) the e1
type decides to defect. Let us similarly assume that with a small
probability n, defectors (e2 players) cooperate against punishers
(f1 players), i.e., n is the probability that (i) the f1 type becomes
known, and (ii) the e2 type decides to cooperate. The payoff
matrix for this ‘‘Public Goods with Second Thoughts’’ minigame
becomes

f1 f2

e1 2c, g 2c~1 2 m!, g~1 2 m!
e2 2~1 2 n!b 2 nc, 2~1 2 n!g 1 ng 0, 0

.

[8]

Fig. 2. Invariant manifold WK for K 5 1 in the simplex
S4. Without reputation (m 5 n 5 0), the line of fixed
points L intersects S4 in Q. With reputation (m . 0
andyor n . 0), L runs through the interior of S4 and
intersects WK in m. The graphs refer to the punishment
scenario, but in the case of reward, an analogous bifur-
cation occurs on the edge G2G3.
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We obtain R 5 (1 2 n)(c 2 b) , 0, S 5 c(1 2 m) . 0, s 5 g 2
n(g 1 g), which is positive for small n and r 5 2gm , 0. Thus
the edge G1G4 consists no longer of fixed points but of an orbit
converging to G1. This is a generic situation, and we can use the
results from Gaunersdorfer et al. (13).

The fixed points in the interior of S4 must satisfy (Mx)1 5
(Mx)2 5 (Mx)3 5 (Mx)4 (and, of course, x1 1 x2 1 x3 1 x4 5
1). There exists now a line L of fixed points in the interior of S4,
satisfying (Mx)1 5 (Mx)2, which reduces to

x1 1 x2 5 Sy~S 2 R!, [9]

and also satisfying (Mx)1 5 (Mx)4, which reduces to

x1 1 x4 5 sy~s 2 r!. [10]

This yields solutions in the simplex S4 if, and only if, RS , 0 and
rs , 0. Both conditions are satisfied for the new minigame. It is
easily verified that the line of fixed points L is given by li 5 mi 1
p for i 5 1, 3, and li 5 mi 2 p for i 5 2, 4, with p as parameter
and

m 5
1

~S 2 R!~s 2 r!
~Ss, 2Sr, Rr, 2Rs! [11]

(see Fig. 2). Setting n 5 0 for simplicity, this yields in our case

m 5
1

~g 1 gm!~b 1 2cm!

z ~cg~1 2 m!, bcm~1 2 m!, bm~b 2 c!, g~b 2 c!! [12]

and reduces for the Ultimatum minigame to

m 5 k21~l~h 2 l!~1 2 m!,

~h 2 l!2m~1 2 m!, ~h 2 l!~1 2 h!m, l~1 2 h!!, [13]

with k 5 (1 2 l 2 m(h 2 l))(l 1 m(1 2 l)). This line passes
through the quadrangle G1G2G3G4 and hence intersects every
WK in exactly one point (it intersects W1 in m). Because Rr . 0,
this point is a saddle point for the replicator dynamics in the
corresponding WK (see Fig. 3). On each surface, and therefore
in the whole interior of S4, the dynamics is bistable, with
attractors G1 and G3. Depending on the initial condition, every
orbit, with the exception of a set of measure zero, converges to
one of these two attractors (see Fig. 3).

For m 3 0, the point m, and consequently all interior fixed
points (which are all Nash equilibria), converge to the point Q.
At m 5 0, we observe a highly degenerate bifurcation. The (very
short) segment of fixed points is suddenly replaced by a trans-
versal line of fixed points, namely the edge G1G4, of which one
segment, namely QG1, consists of Nash equilibria.

Thus, introducing an arbitrarily small perturbation m (which is
proportional to the probability of having information about the
other player’s punishing behavior) changes the long-term state
of the population. Instead of converging in the long run to the
asocial regime G3 (defect, do not punish), the dynamics has now
two attractors, namely G3 and the social regime G1 (cooperate,
punish defectors). For small m and n, this new attractor is even
risk-dominant (in the sense that it has the larger basin of
attraction on the edge G1G3) provided 2c , b 2 g, which for the
Ultimatum case reduces to h , 1y2. One can argue that, in this
case, random shocks (or diffusion) will favor the social regime.

If m 5 1, i.e., if there is full knowledge about the type of the
coplayer, we obtain S 5 0. This case yields in some way the
mirror image of the case m 5 0. G3G4 is now the fixed point edge;
the points on Q̂G3 are Nash (with Q̂ 5 (0, 0, gy(g 1 g),
gy(g 1 g)) if we assume additionally that n 5 0), and fluctua-
tions send the state ultimately to the unique other Nash equi-
librium, namely G1, the social regime.

Reward and Reputation
Let us now consider another minigame, a variant of Public
Goods with Second Thoughts, where reward replaces punish-
ment. More precisely, two players are simultaneously asked
whether they want to send a gift to the coplayer (as before, the
benefit to the recipient is g, and the cost to the donor 2c).
Subsequently, recipients have the possibility to return a part of
their gift to the donor. We assume that this costs them 2g and
yields b to the coplayer (if g 5 b, this is simply a payback). We
assume 0 , c , b and 0 , g , g. We label the players who
reward their donor with f1 and those who don’t with f2. We shall
assume that with a small likelihood m, cooperators defect if they
know that the other player is not going to reward them, i.e., m is
the probability that (i) the f2 type becomes known, and (ii) the
e1 type decides to defect. Similarly, we denote by n the small
likelihood that defectors cooperate if they know that they will be
rewarded. (n is the probability that (i) the f1 type becomes known
and (ii) the e2 type reacts accordingly). We obtain the payoff
matrix

Fig. 3. Public Goods with Punishment and Reputation. Dynamics on
the four faces of the simplex S4 and on the invariant manifold WK

with K 5 1. Introducing reputation produces a bistable situation.
Depending on the initial configuration, the system ends up either
close to the asocial equilibrium G3 or near the social equilibrium G1.
Replacing the line of fixed points G1G4 (see Fig. 1), a transversal line
of fixed points L runs through S4 and intersects WK in m (see Fig. 2).
The position of m depends on the parameters and determines which
corner, G1 or G3, corresponds to the ‘‘risk-dominant’’ solution. Pa-
rameters: c 5 1, g 5 3, b 5 2, g 5 1, m 5 0.1, n 5 0.1.

10760 u www.pnas.orgycgiydoiy10.1073ypnas.161155698 Sigmund et al.



f1 f2

e1 b 2 c, g 2 g 2c~1 2 m!, g~1 2 m!
e2 ~b 2 c!n, ~g 2 g!n 0, 0

. [14]

Now R 5 (c 2 b)(1 2 n) , 0, S 5 c(1 2 m) . 0, r 5 g 2 gm,
which is positive if m is small, and s 5 (g 2 g)n, which is negative.

If n 5 0 (no clue that the coplayer rewards), then G2G3 consists
of fixed points. As before, we see that the saturated fixed points
(i.e., the Nash equilibria) on this edge form the segment QG3
(with Q 5 (0, cyb, (b 2 c)yb, 0) if m is also 0). But now, the flow
along the edges leads from G2 to G1, from there to G4, and from
there to G3. All orbits in the interior have their a limit on G2Q
and their v limit on QG3. If a small random shock sends a state
from the segment G2Q towards the interior, the replicator
dynamics first amplifies the frequencies of the new strategies but
then eliminates them again, leading to a state on QG3. If a small
random shock sends a state from the segment QG3 towards the
interior, the replicator dynamics sends it directly back to a state
that is closer to G3. Eventually, with a sufficient number of

random shocks, almost all orbits end up close to G3, the asocial
state (see Fig. 4).

For n . 0, the flow on the edge G2G3 leads towards G3, so that
the frame spanning the saddle-type surfaces WK is cyclically
oriented (see Fig. 5). As before, there exists now a line L of fixed
points in the interior of S4. The surface W1 consists of periodic
orbits. If D :5 (b 2 g)(1 2 n) 1 (g 2 c)(m 2 n) is negative, all
nonequilibrium orbits on WK with 0 , K , 1 spiral away from
this line of fixed points. On WK, they spiral towards the hetero-
clinic cycle G1G2G3G4. All nonequilibrium orbits in WK with K .
1 spiral away from that heteroclinic cycle and towards the line
of fixed points. If D is positive, the converse holds. If D 5 0 (for
instance, if b 5 g and m 5 n), then all orbits off the edges and
the line L of fixed points are periodic. For n3 0, we obtain again
to a highly degenerate bifurcation replacing a one-dimensional
continuum of fixed points (which shrinks towards Q as n de-
creases) by another, namely the edge G2G3.

We stress the highly unpredictable dynamics if n . 0 and D Þ
0. For one-half of the initial conditions, the replicator dynamics

Fig. 4. Public Goods with Reward but without Reputation. Dynam-
ics on the four faces of the simplex S4 and on the invariant manifold
WK with K 5 1. The edge G2G3 is a line of fixed points, stable on G3Q
(closed circles) and unstable on QG2 (open circles). Random shocks
eventually drive the system to the stable asocial segment G3Q, where
no one makes any gifts but some players would reward a gift-giver.
Parameters: c 5 1, g 5 3, b 5 2, g 5 1, m 5 n 5 0.

Fig. 5. Public Goods with Reward and Reputation. Dy-
namics on the four faces of the simplex S4 and on the
invariant manifold WK with K 5 1. Introducing reputa-
tion destabilizes the asocial segment G3Q (see Fig. 4),
leading to complex dynamical behavior. As before, the
line of fixed points G2G3 is replaced by the transversal
line L running through S4 and intersecting WK in m. For
K 5 1, periodic orbits appear with a center in m. De-
pending on the parameter values, D determines the
dynamics on WK for K Þ 1. If D , 0, then for K , 1, m
turns into a source, and the state spirals towards the
heteroclinic cycle G1G2G3G4 and for K . 1, m becomes
a sink, and all states spiral inwards and converge to m. If
D . 0, the converse holds, and for D 5 0 all orbits are
periodic. Small random shocks send the state from one
manifold to another and hence change the value of K.
Therefore, the system never converges. Parameters: c 5

1, g 5 3, b 5 2, g 5 1, m 5 0.1, n 5 0.1.
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sends the state towards the line L of fixed points. But there,
random fluctuations will eventually lead to the other half of the
simplex, where the replicator dynamics leads towards the het-
eroclinic cycle G1G2G3G4. The population seems glued for a long
time to one strategy, then suddenly switches to the next, remains
there for a still longer time, etc. However, an arbitrarily small
random shock will send the state back into the half-simplex
where the state converges again to the line L of fixed points, etc.
Not even the time average of the frequencies of strategies
converges. One can say only that the most probable state of the
population is either monomorphic (i.e., close to one corner of S4)
or else close to the attracting part of the line of fixed points (all
four types present, the proportion of cooperators larger among
rewarders than among nonrewarders).

In this paper, we have concentrated on the replicator dynam-
ics. There exist other plausible game dynamics, for instance, the
best reply dynamics (see, e.g., ref. 14), where it is assumed that
occasionally players switch to whatever is, among all pure
available strategies, the best response in the current state of the
population. Berger (19) has shown that almost all orbits con-
verge in this case to m. We note that if the values of m and n are
small, the frequency x1 1 x4 of gift-givers is small.

Discussion
In a minigame, players are in two roles with two options in each
role. Such games lead to interesting dynamics on the simplex S4.
The edges of this simplex span a family of saddle-like surfaces
that foliate S4. The orientation on the edges is given by the payoff
values, i.e., by the signs of R, S, r, and s. Generically, these
numbers are all nonzero. But in many games (especially among
those given in extensive form), there exists one option where the
payoff is unaffected by the type of the other player. In the Public
Goods with Punishment, this is the gift-giving option: the
coplayer will never punish. In the Public Goods with Reward, it

is the option to withhold the gift: the coplayer will never reward.
In each case, one edge of S4 consists of fixed points, one segment
of it (from a point Q up to a corner Gi of the edge) being made
up of Nash equilibria. A small perturbation leading from a point
x on QGi into the interior of the simplex (i.e., introducing missing
strategies) is offset by the dynamics, i.e., the new strategies are
eliminated again and the state returns to QGi. But in one case,
the state is closer to Q than before; in the other case, it is further
away. The corresponding bifurcation replaces the fixed points on
that edge by a continuum of fixed points, which, in one case, are
saddle points (on the invariant surface WK) and in the other case
have complex eigenvalues. There are two rather distinct types of
long-term behavior—in one case, bistability, and in the other
case, a highly complex and unpredictable oscillatory behavior.

It is obviously easy to set up experiments where the reputation
of the coplayer is manipulated. In particular, our model seems
to predict that in the punishment treatment, what is essential for
the bifurcation is a nonzero likelihood (corresponding to the
parameter m) that the cooperator believes that she is faced with
a nonpunisher. What is essential for the bifurcation to happen in
the rewards treatment, in contrast, is that there is a nonzero
likelihood (corresponding to the parameter n) that the defector
believes that he is faced with a rewarder.

The possibly irritating message is that for promoting cooper-
ative behavior, punishing works much better than rewarding. In
both cases, however, reputation is essential.
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