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There is considerable heterogeneity in social cognitive and neurocognitive performance among people with schizophrenia spectrum
disorders (SSD), autism spectrum disorders (ASD), bipolar disorder (BD), and healthy individuals. This study used Similarity Network
Fusion (SNF), a novel data-driven approach, to identify participant similarity networks based on relationships among demographic, brain
imaging, and behavioral data. T1-weighted and diffusion-weighted magnetic resonance images were obtained for 174 adolescents and
young adults (aged 16–35 years) with an SSD (n= 51), an ASD without intellectual disability (n= 38), euthymic BD (n= 34), and healthy
controls (n= 51). A battery of social cognitive and neurocognitive tasks were administered. Data integration, cluster determination, and
biological group formation were then obtained using SNF. We identified four new groups of individuals, each with distinct neural circuit-
cognitive profiles. The most influential variables driving the formation of the new groups were robustly reliable across embedded
resampling techniques. The data-driven groups showed considerably greater differentiation on key social and neurocognitive circuit nodes
than groups generated by diagnostic analyses or dimensional social cognitive analyses. The data-driven groups were validated through
functional outcome and brain network property measures not included in the SNF model. Cutting across diagnostic boundaries, our
approach can effectively identify new groups of people based on a profile of neuroimaging and behavioral data. Our findings bring us closer
to disease subtyping that can be leveraged toward the targeting of specific neural circuitry among participant subgroups to ameliorate social
cognitive and neurocognitive deficits.
Neuropsychopharmacology (2018) 43, 1180–1188; doi:10.1038/npp.2017.274; published online 6 December 2017
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INTRODUCTION

Schizophrenia spectrum disorders (SSDs), autism spectrum
disorders (ASD), and bipolar disorder (BD) exact enormous
personal, social, and economic costs, and significantly impact
quality of life and functional independence (Lazoff et al,
2010; Saha et al, 2005; Schaffer et al, 2006). All of these
disorders are considered neurodevelopmental in origin,
although ASDs typically onset earliest in life. Situated at a
crucial phase of life, youth and emerging adults with mental
illness experience great difficulty transitioning to indepen-
dence, often due to impairment in functioning. Identification
of brain-behavior relationships in those experiencing

considerable impairment, as well as those who are less
impaired, could accelerate therapeutic innovation and reduce
disability at this critical developmental life stage.
The examination of social cognitive and neurocognitive

impairment in those with an ASD, SSD, or BD is supported
by a large body of literature citing the substantial overlap in
behavioral dysfunction among these disorders (Martins-
Junior et al, 2011; Millan et al, 2012). There is less overlap for
instance in those with a unipolar affective illness (even with
psychosis) and an SSD (Reichenberg, 2010). However,
within-diagnostic heterogeneity can sometimes lead to even
greater differences in cognition among those with the same
diagnosis than between different diagnoses. Furthermore,
among those with a diagnosis, performance may be no
different than a person without mental illness.
Neuroimaging studies have also identified both similar and

different brain circuitry vulnerability across these disorders.
Abnormalities in these structures are often replicated, but
recent large n studies by the ENIGMA Network suggest
effect sizes are small likely due to heterogeneity. Biomarker
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identification in subgroups of individuals relevant for social
cognitive and neurocognitive performance may be facilitated
by cutting across disorders, including control participants,
and using data integration approaches.
A recent study (Clementz et al, 2016) demonstrated the

potential of a transdiagnostic clustering approach by
characterizing neurobiological variation in relation to
neurocognitive performance across individuals with schizo-
phrenia, schizoaffective or bipolar disorder. Such an
approach has yet to be studied for social cognitive
performance, for which there is considerable overlap among
those with an SSD or ASD. In addition, understanding
potential overlap with healthy control populations, as in the
RDoC approach, may enhance knowledge of the continuum
of brain-behavior relationships.
In the present study, we used a novel approach known as

Similarity Network Fusion (SNF) (Wang et al, 2014), which
identifies participant similarity networks within and across
data types. Our aims were to: (1) identify the profiles,
reliability, and validity of the new data-driven groups across
participants with an SSD, ASD, BD or matched controls based
on the final SNF matrix, and (2) determine how SNF,
diagnostic, and dimensional analyses compare on key variables
identified in our model that have also been implicated in prior
neuroimaging studies of SSDs, ASD, or BD. We hypothesized
(Ameis and Catani, 2015; Behdinan, 2015; Voineskos et al,
2013), that we would discover new and robust participant
similarity networks cutting across our original diagnostic
categories revealing shared and divergent neural circuit—
social cognitive (or neurocognitive) impairments. We also
anticipated that these groups would be distinguished with
larger effect sizes in higher-order brain circuitry and cognitive
functions than have typically been shown in either diagnostic
comparisons or dimensional analyses.

MATERIALS AND METHODS

Study Participants

A total of 174 participants (SSDs, N= 51; ASD, N= 38; BD,
N= 34; controls, N= 51) in this study were recruited through
the Slaight Family Centre for Youth in Transition at the Centre
for Addiction and Mental Health (CAMH) in Toronto,
Canada. All participants provided voluntary written informed
consent after having received a complete description of the
study which was approved by the CAMH research ethics
board. SSD, ASD, and BD participants were included if they
were aged 16 to 35 years and stable with no psychiatric
hospitalizations, changes in medication dose or type, or
decrement in functioning or support level in the last 30 days.
In addition, participants with BD were required to be euthymic
based on Hamilton Rating Scale for Depression (HRSD)
(Hamilton, 1980) and Young Mania Rating Scale (YMRS)
(Young et al, 1978) scores of 10 or below. The Structured
Clinical Interview for DSM-IV-TR (SCID) Axis I Disorders
was administered by a trained interviewer to participants with a
DSM-IV diagnosis of schizophrenia, schizoaffective disorder,
psychotic disorder not otherwise specified, and bipolar disorder
as well as healthy controls to confirm diagnostic eligibility. The
Autism Diagnostic Observation Schedule-II (ADOS-II) (Lord
et al, 2000) was administered by a child and youth psychiatrist
(SHA) to confirm diagnostic eligibility of verbal ASD without
intellectual disability. All ratings took into consideration a
review of the participants’ electronic health record and a
consultation with each participant’s treating psychiatrist.
Exclusion for all participants included: a history of substance

use disorder (other than tobacco) in the past 6 months, a
positive urine toxicology screen, contraindications for MRI, a
concomitant major medical illness, a neurologic illness affecting
the central nervous system, or a head trauma resulting in loss of

Table 1 Demographic and Clinical Characteristics of Adolescents and Young Adults with ASD, BD, SSD, and Healthy Controls (N= 174)

Characteristic Group Analysis

Controls (N= 51) BD (N=34) ASD (N= 38) SSD (N=51)

Mean SD Mean SD Mean SD Mean SD F p

Age (years) 24.20 4.24 26.41 4.56 22.55 4.64 26.49 4.81 6.71 o0.01

Education (years) 15.43 1.77 14.65 1.70 13.89 2.95 13.51 1.91 9.74 o0.001

N % N % N % N % ×2 p

Gender (female) 27 53 15 44 12 31 19 37 4.74 0.19

N N N N

Handedness 48R, 3L, 0A 31R, 2L, 0A 32R, 4L, 2A 41R, 7L, 3A — —

BPRS — — — — — — 28.72 6.83 — —

RBS — — — — 29.95 21.70 — — — —

SRS — — — — 94.39 28.99 — — — —

YMRS — — 1.85 2.16 — — — — — —

HRSD — — 4.82 2.49 — — — — — —

Abbreviations: ASD, autism spectrum disorder; BD, bipolar disorder; BPRS, Brief Psychiatric Rating Scale; HRSD, The Hamilton Rating Scale for Depression; RBS, The
Repetitive Behavior Scale; SSD, schizophrenia spectrum disorder; SRS, Social Responsiveness Scale; YMRS, Young Mania Rating Scale.
Handedness: R= right, L= left, A= ambidextrous.
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consciousness for more than thirty minutes. Further exclusions
for controls included the presence of any current DSM-IV
disorder, or any past DSM-IV disorder with the exception of
specific phobia or adjustment disorder. The demographic
characteristics of the sample are summarized in Table 1 and
the psychotropic medication information is provided in
Supplementary Table S1.
To further characterize the clinical status of each disease group,

the Brief Psychiatric Rating Scale (BPRS-18) (Overall and
Gorham, 1962) was administered to participants with SSDs to
measure the severity of positive, negative, and affective symptoms.
The Repetitive Behaviors Scale – Revised (RBS-R) (Lam and
Aman, 2007) and Social Responsiveness Scale (SRS) (Bölte et al,
2008) were administered to participants with ASD to provide
quantitative severity measures of repetitive behaviors and social
responsiveness. The HRSD and YMRS were administered to
participants with BD to verify euthymic status (see above).

Social Cognitive and Neurocognitive Assessments

The Awareness of Social Inference Test – Revised (TASIT)
Parts I, II, and III were used to assess social cognitive deficits.
The TASIT I is used to assess a participant’s ability to gauge
emotional expressions, TASIT II assesses the evaluation of
social interactions at a minimal level, and the TASIT III
assesses the evaluation of social interactions at an enriched
level, including detection of lies and sarcasm (McDonald
et al, 2003).
Neurocognition was assessed using the MATRICS Con-

sensus Cognition Battery (MCCB) in those with an SSD, BD,
and healthy controls. For participants with ASD the
Wechsler Adult Intelligence Scale (WAIS) was administered.
Subtests assessing working memory (spatial span) and
processing speed (coding task) were identified as shared
across the MATRICS and WAIS, and the scores were
standardized across batteries.

MRI

All brain imaging for the present study was performed on a 3
Tesla Discovery MR750 (General Electric) system at CAMH
using an 8-channel head coil. Detailed acquisition parameters
for the anatomical and diffusion scans are provided in the
supplemental material. All diffusion scans were acquired with
60 non-collinear directions, using 2mm isotropic voxels.
T1-weighted images were processed on the same workstation

using FreeSurfer’s fully automatic structural imaging software
package (version 5.3.0) (http://surfer.nmr.mgh.harvard.edu/).
Both cortical thickness and subcortical volumes were then
processed using the ENIGMA processing protocol (http://
enigma.usc.edu/) and values were normalized using the
standardNormalization function in the SNFtool R package.
For white matter analyses, tensors and fiber tracts were
generated in 3D Slicer (Fedorov et al, 2012) via the SlicerDMRI
project (dmri.slicer.org; Norton et al, 2017) and an automated
method was used for tractography segmentation (dmri.slicer.
org/whitematteranalysis). This fiber clustering method has been
previously applied in a number of studies (O’Donnell et al,
2009, 2017; Propper et al, 2010; Voineskos et al, 2009, 2010,
2012; Whitford et al, 2010; Zhang et al, 2016) and has been
validated against expert tract selection (Voineskos et al, 2009).
An advantage of the method is that it enables a study-specific

anatomical definition of tracts of interest that are relevant for
testing a particular hypothesis. See supplemental material for
more detail on atlas generation and measurement (fractional
anisotropy and mean diffusivity) from the 19 white matter
tracts segmented.

Data Integration and Cluster Determination

R statistical software v.3.3.2 (www.r-project.org) with the
SNFtool package v.2.2 was installed (https://cran.r-project.
org/web/packages/SNFtool/) to run the SNF algorithm. SNF
methods have been previously described (Wang et al, 2014)
and are freely available (http://compbio.cs.toronto.edu/SNF/).
Briefly, SNF combines a number of data types for a given set
of patients, constructs a similarity network for each data
source, and iteratively updates and integrates these networks
using a nonlinear fusion method into one global network.
More details regarding the mathematical underpinnings of
the algorithm and its key advantages are outlined in the
supplemental methods.
Performance of the SNF algorithm was assessed by testing

the stability of the model, ranking variables using Normal-
ized Mutual Information (NMI), and annotating the clusters
to match individual participants to their cluster assignment.
The rankfeaturesbyNMI function calculates the relative
contribution of each variable in driving the patient groups.
NMI is a measure of similarity between a clustering outcome
defined by all of the data combined and a clustering outcome
defined by the single feature of interest.
The SNFtool package was customized to integrate demo-

graphic, social cognitive, neurocognitive, cortical thickness,
subcortical volume, and diffusion tensor imaging tractogra-
phy data (n= 137 variables). For a full variable list see
Supplementary Table S2. Based on the number of partici-
pants in our sample, the optimal clustering range for the
model was first determined using the guideline for K
(~ participant n/10) (Wang et al, 2014), then confirmed
using a grid search function whereby each value for variable
K between the recommended range of 10–30 was applied to
the estimatenumberofcluster function.

Model Stability and Reliability

Once hyperparameter optimization was complete and a
fused network was produced, a two-step approach was used
to assess the stability of the model and reliability of the new
data-driven groups. First, an embedded robust core cluster-
ing function sampled 80% of participants (N= 139) for a
total of 100 random draws to determine the stability of
participant cluster membership. Second, an embedded
replication technique was applied whereby 50% of partici-
pants (N= 87) were randomly sampled for a total of 100
random draws. Data integration, cluster determination, and
biological group formation were obtained for each draw. The
top 15 variables ranked by NMI were compared between the
primary analysis and the replication groups.

Brain Circuit and Behavior Comparisons Among the
New Data-Driven Groups

Welch’s ANOVA was used to compare the 15 most
influential variables (out of a total of 137 demographic,
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neuroimaging and cognitive variables) between the new
SNF-derived groups followed by multiple comparison
correction. Selecting the top 15 ensures a focus on variables
with medium or large effect sizes. This test was used due to
lack of homogeneity of variance. Results were validated using
Kruskal–Wallis tests and post hoc testing followed, when
applicable, using the Dunn test. Fisher’s exact test/χ2 test
were used for categorical variables. These analyses were
conducted for a second time in a more restricted age-range
(16–29) with no age range skew due to the slight upward
skew of the schizophrenia and bipolar groups in the full
sample.

Independent Validation of Data-Driven Groups

In order to examine whether the data-driven groups provide
clinically meaningful information at a real-world level, the
total score from the Birchwood Social Functioning Scale,
which was employed in the SSD participants and healthy
controls to assess social function, was compared among the
data-driven groups. The Mayer-Salovey-Caruso Emotional
Intelligence Test (MSCEIT) total score, which was employed
to assess emotional intelligence, was also compared among
the data-driven groups.
In addition, data-driven groups were validated using new

neuroimaging data. The graph theory metric of global
efficiency for structural networks was evaluated using
cortical thickness data. A permutation test was run to
compare the identified distribution of differences to those if
the structure correlations were randomized.

RESULTS

Rank of Variable Importance Contributing to Formation
of New Groups

Of the 137 neuroimaging, behavioral, and demographic
variables in the model, the top 15 ranked by NMI are shown

in Table 2 with standardized mean values for each group.
The most influential demographic variable was age. The
most influential neuroimaging variables were volume of the
right pallidum, FA of the right arcuate fasciculus and right
cingulum bundle, and thickness of the superior frontal gyrus
and right inferior parietal gyrus, and the most influential
cognitive variables were processing speed and TASIT 3 score.

Composition and Reliability of New Data-Driven Groups

The fused network revealed four new participant similarity
network groups. For diagnostic and clinical properties of the
new groups see Figure 1 and Supplementary Table S3
respectively. Group 1 was an ASD primary group with SSD
secondary; Group 2 was an SSD primary group with minor
distribution of the other groups; Group 3 was comprised of
approximately 50% healthy controls, with distribution of the
other three groups, while Group 4 had sizeable proportion of
each of the four diagnostic groups.
On average, 80% of the top 15 variables overlapped across

analyses speaking to the stability of the brain-circuit
cognitive profiles. See Supplementary Table S4 for the rank
order of the top 15 variables based on their average NMI
score across resampling.

Brain Circuit-Cognitive Profiles of the Data-Driven
Groups

We found significant differences in: age (Welch’s F
(3,68)= 33.36, po0.001, ƞ2= 0.40), in right pallidum
(Welch’s F(3,66)= 30.16, po0.001, ƞ2= 0.32) and hippo-
campus volumes (Welch’s F(3,69)= 18.15, po0.001,
ƞ2= 0.23), in cortical thickness of the superior frontal gyrus
(Welch’s F(3,71)= 11.14, po0.001, ƞ2= 0.17), and right
inferior parietal gyrus (Welch’s F(3,68)= 7.43, po0.001,
ƞ2= 0.14), in right arcuate fasciculus (Welch’s F
(3,66)= 11.79, po0.001, ƞ2= 0.19), and bilateral cingulum
bundle FA (Welch’s F(3,65)= 18.93, po0.001, ƞ2= 0.25), and

Table 2 Top 15 Variables by NMI Score: Mean Values Per Data-Driven Group (z-Scored) and Collapsed When Bilateral Representation
Occurred

Rank Variable NMI Score Group 1 Group 2 Group 3 Group 4

1 Age 0.13 − 0.89 1.22 − 0.33 0.11

2 Processing speed 0.13 − 0.66 − 0.28 0.50 − 0.07

3 Volume right pallidum 0.12 0.64 0.09 − 0.76 0.41

4 FA right arcuate fasciculus 0.11 − 0.72 − 0.28 − 0.13 0.53

5 FA right cingulum bundle 0.11 − 0.67 − 0.45 − 0.17 0.62

6 Thickness superior frontal gyrus (right reported as more influential) 0.11 0.46 − 0.83 0.28 − 0.07

7 FA left uncinate fasciculus 0.11 − 0.60 − 0.20 − 0.07 0.40

8 Thickness right inferior parietal gyrus 0.10 0.38 − 0.83 0.09 0.13

9 Volume right putamen 0.10 0.93 − 0.48 − 0.49 0.30

10 Volume right amygdale 0.10 0.93 − 0.47 − 0.51 0.32

11 Volume of the right hippocampus 0.09 0.68 − 0.38 − 0.51 0.37

12 FA left anterior thalamic radiations 0.09 − 0.42 − 0.27 − 0.25 0.51

13 Thickness left superior parietal gyrus 0.09 0.26 − 0.86 0.16 0.13

14 Part 3 total correct – TASIT 0.08 − 0.48 − 0.94 0.24 0.38

15 FA corpus callosum (premotor division) 0.08 − 0.70 −0.61 0.15 0.41

Note: Working memory NMI score= 0.03, Part 1 total correct – TASIT NMI score = 0.02, and Part 2 total correct – TASIT NMI score= 0.03.
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in processing speed (Welch’s F(3,75)= 14.21, po0.001,
ƞ2= 0.16), and TASIT3 (Welch’s F(3,65)= 16.58, po0.001,
ƞ2= 0.25) scores. All of these results survive multiple
comparison correction. Neural and cognitive profiles for
each of the new data-driven groups on some of these
influential variables can be seen in Figures 2 and 3. Post hoc
analyses in the 16–29 year age range showed similar results
(Supplementary Information).

Brain Circuit-Cognitive Profiles by Diagnostic and
Dimensional Comparisons Respectively

Our SNF results are a powerful contrast to the same plots
being generated by diagnostic group (see Supplementary
Figure S1 and S2). While FA of the cingulum bundle
(Welch’s F (3,84)= 4.67, po0.01, ƞ2= 0.10) and arcuate
fasciculus remain the lowest in the ASD group (Welch’s F
(3,88)= 3.76, p= 0.01, ƞ2= 0.09), and superior frontal
(Welch’s F(3,92)= 3.10, p= 0.03, ƞ2= 0.04) and right inferior
parietal (Welch’s F(3,91)= 1.91, p= 0.13, ƞ2= 0.03) cortical
thickness the lowest in the SSD group, these differences are
not nearly as pronounced and in some cases not statistically
significant between groups, with small effect sizes. When
participants were separated into quartiles based on TASIT
Part III scores, ie., a dimensional approach, effect sizes were
small and results did not survive multiple comparison
correction. See Supplementary Table S5 for effect sizes
across comparison types.

Independent Validation of the Data-Driven Groups

We found significant differences in Birchwood total score
(Welch’s t= 61.84, po0.0001, d= 0.82) across groups, with
Groups 1 and 2 having significantly lower scores (indicating
poorer functioning) (M= 140.88, SD= 24.96) than Groups 3
and 4(M= 160.23, SD= 23.01).
Groups 1 and 2 also had significantly lower MSCEIT

scores (indicating poorer emotional intelligence) than

Groups 3 & 4 (Welch’s F(3,18)= 4.85, p= 0.01, ƞ2= 0.10).
Groups 2 and 4 showed reductions in nodal global efficiency
relative to Group 1 (p= 0.026 and 0.041 respectively). There
was also a significant reduction in global efficiency for Group
4 relative to Group 3(p= 0.031). These significant differences
survived a Bonferroni multiple testing correction. More
detail on the analytic methodology is provided in the
Supplementary Material.

DISCUSSION

Following the acquisition of neuroimaging, social cognitive,
neurocognitive, and demographic data in adolescents and
young adults with SSD, ASD, or BD, and typically developing
(‘healthy’) controls, we applied SNF to identify new
participant similarity networks. We identified four new
groups of individuals, each with different neural circuit-
cognitive profiles. In both the 16–35 and16–29 age range
analyses, the neuroimaging variables with the highest NMI
values, and thereby those of greatest importance in the
integrated clustering matrix, were: the right cingulum and
arcuate fasciculus (two higher-order white matter tracts),
cortical thickness (fronto-parietal regions), and subcortical
volume (hippocampus/amygdala and striatal). These struc-
tures are consistent with known social cognitive and
neurocognitive brain circuit nodes of the right fronto-
parietal mirror neuron system (MNS), and cortical midline
circuit (Carr et al, 2003; Mancuso et al, 2011). The data-
driven groups showed considerably greater differentiation, as
measured via effect size, on these neuroimaging measures
than the original categorical (diagnostic) groups or groups
from the dimensional analyses. The validity of these new
groups was independently demonstrated through differences
in social function and brain network organization.
Group 1 revealed deficits in white matter tracts and nodes

of the MNS and limbic system including the right arcuate
fasciculus, bilateral cingulum bundle, and the left uncinate
fasciculus. These findings are consistent with robust evidence

Figure 1 Outline representation of the fused matrix and the diagnostic composition of the data driven groups. Four groups of participants identified using
Similarity Network Fusion with different profiles of brain-behavior relationships that cut across conventional DSM diagnostic categories.
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pointing to alterations in white matter tracts during early
development in ASD (that are also present in adult samples)
for the arcuate and uncinate fasciculi (Ameis and Catani,
2015). Deficits in these same white matter tracts are also seen
in individuals with SSD, which is the second-most prevalent
diagnostic category in this group. Group 2, characterized by
SSD as the most common category, also demonstrated
impairment in these white matter tracts but not to the same
extent as Group 1. However, Group 2 showed the greatest
impairments in social cognitive and neurocognitive perfor-
mance, along with the greatest cortical thickness reductions
among all groups in a number of mentalizing and executive

function nodes. In contrast, Group 1 showed the greatest
cortical thickness among all four groups. A study design
using traditional categorical diagnostic groups may not have
been able to parse this brain-behavior heterogeneity. In
addition, our diagnostic group comparisons showed only
small effect size among the brain circuitry and structures
most influential (based on NMI score and rank) in
separating the new groups, consistent with large n studies
from the ENIGMA work group (van Erp et al, 2016; Kelly
et al, 2017). Further, the small effect sizes when using a
dimensional approach (based on quartiles of social cognitive
performance) indicate that the integration of multi-

Figure 2 Distinct neural circuit profiles of the data-driven groups. Evidence of distinct brain-circuit profiles for the data-driven groups. Pictured are the most
influential regions or tract for each neuroimaging index (left to right): differing fractional anisotropy profiles of groups for the right arcuate fasciculus, differing
cortical thickness profiles of groups for left superior frontal gyrus, and differing subcortical volume profiles of groups for the right pallidum. Note: median (solid)
and mean (broken line) scores depicted.

Figure 3 Distinct cognitive profiles of the data-driven groups. Evidence of distinct cognitive profiles for the data-driven groups. Pictured are the most
influential cognitive measures (left to right): differing social cognitive profiles of groups for the TASIT Part III and differing neurocognitive profiles for the Coding
Task (Performance Speed Index). Note: median (solid) and mean (broken line) scores depicted.
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dimensional data is critical for both biological group
formation and detection of brain-behavior relationships.
We suggest that Group 1 and Group 2 may represent

‘tipping point’ subsamples (Cuthbert and Insel, 2013), as per
the RDoC model, with extremes of neural substrates (low FA
and high cortical thickness in Group 1 vs low cortical
thickness in Group 2). Given the genetic overlap between
SSDs and ASDs some with an SSD might have generalized
cerebral cortical enlargement, exemplified by those who were
similar to ASDs in Group 1. Our approach also identified
those individuals with an SSD with statistically lower tract-
specific FA, and greater neurobiological similarity to those
with an ASD in Group 1, and those with an ASD or BD with
severe cortical thickness reductions more commonly identi-
fied in SSDs in Group 2. The high cortical thickness in
Group 1 may be suggestive of brain growth abnormalities—a
feature of some patients with ASD (Courchesne and Pierce,
2005). The validation approach using a network efficiency
measure supports the divergence in cortical thickness seen in
Group 1 (highest thickness in key social and neurocognitive
nodes) relative to Group 2 (lowest thickness). The ineffi-
ciencies in Groups 2 and 4 suggest the network organization
may lead to a reduced capacity to integrate information
required for effective social and neurocognitive task
performance.
Nearly 50% of the participants in Group 3 were healthy,

but the remainder were participants with ASD, SSD, or BD.
These individuals may represent patient participants who
show no differences on cognitive or neuroimaging measures
from controls, and may represent a higher-functioning and
resilient patient group. Our findings supports those of
Clementz and colleagues (Clementz et al, 2016) who
identified a higher-functioning psychosis biotype for whom
measures of cognitive control did not differ between the
cluster members and healthy controls. A total of 20–40% of
individuals with schizophrenia spectrum disorders have
minor cognitive impairment compared to normative data
(Rund et al, 2007; Vaskinn et al, 2009; Weickert et al, 2000).
In euthymic BD, the literature suggests that high functioning
BD does not differ from low functioning BD based on
clinical variables (Martinez-Aran et al, 2007), but rather the
number of medications and the level of cognitive function,
which was the case in our BD participants. Group 4 consisted
mostly of participants with SSD or BD with relatively
preserved social cognition but more impaired in processing
speed compared to Group 3. A number of studies have
documented qualitatively similar cognitive deficits in SSD
and BD, with a general consensus that deficits are milder in
patients with BD (Czobor et al, 2007; Green, 2006; Schretlen
et al, 2007; Vöhringer et al, 2013). It is possible that the
overlap in impairment captures why these two diagnostic
groups are most represented in Group 4.
The post hoc analysis was conducted to address the relative

importance of age in the SNF matrix for the primary
analysis. The upper boundary of 29 years of age was selected
to maximize our sample size while eliminating the statisti-
cally significant mean age differences between the diagnostic
groups that were skewed toward older BD and SSD
participants. Moreover, the emerging adulthood literature
has recognized that while the focus of the developmental
period is 18–25 years of age, the upper age boundary is
flexible and spans up to 29 years of age (Arnett, 2004; Arnett

et al, 2014) or even into one’s early 30 s (Trible, 2015). Data
from this analysis provided preliminary evidence for the
stability of the structural markers of impairment for social
cognition across multiple iterations of the model and showed
that qualitative similarities in both the diagnostic distribution
and brain-behavior profiles of the groups persisted irrespec-
tive of the influence of age. This new analysis primarily
eliminated participants with an SSD (n= 17), and a small
number of BD and HC individuals. Group 1 and Group 2
show nearly exactly the same mean z-scores on both social
cognitive and neurocognitive performance. This post hoc
analysis, therefore, even more clearly demonstrates that these
two more impaired groups, while showing similar neuro-
cognitive and social cognitive difficulties, show completely
different neural substrates of that impairment.
Our study has some limitations that should be considered.

First, most of the participants with ASD, SSD, or BD were
medicated and this was not taken into consideration in the
SNF model. However, post hoc analyses examining the
relationship between mean chlorpromazine index values (for
the data-driven groups) and the top NMI variables revealed
that these variables are not significantly correlated. Second,
we have not tested the longitudinal stability of our groups.
Third, while we cannot completely rule out the effects of age
in our model, the post hoc analysis in 16–29 year olds
provides compelling evidence that when age distribution is
similar, the participant groups are driven more by stable
brain and behavior markers than age. We also acknowledge
that with an even larger sample size we may have had the
power to detect other relationships between neural circuit
structure and social cognition, and despite our re-sampling/
reliability results, our findings require validation on inde-
pendent datasets.
The clinical utility of SNF addresses the need for

advancements in precision medicine in psychiatry. While
the original paper introducing the method was applied to
genomic data (Wang et al, 2014), SNF is not specifically
suited to cancer genomics and has already been applied to
different data types, including successful application to
neuroimaging data (Li et al, 2015). The application of
transdiagnostic data integration algorithms like SNF take
advantage of the heterogeneity in a clinical sample to identify
groups of individuals with greater homogeneity in brain
circuit and behavioral measures. It can also serve to
differentiate among individuals with similar behavioral
impairments, but different brain circuit impairments.
Analyzing the structural correlates of social cognitive deficits
has the potential to identify intervention targets. The goal of
our work in this field is to provide clear targets for
intervention that may cut across disorders with demon-
strated relevance for social functioning in the community.
Two randomized controlled trials by our group showed the
potential for this approach either in study design or
therapeutic efficacy (Ameis et al, 2017; Barr et al, 2013).
Independent validation of the SNF approach and the

neural circuit structure-performance relationships reported
in our analyses may ultimately lead to the implementation of
clustering and clinical predictive algorithms in a clinical
setting with a number of disease groups. Improvements in
etiological subtyping would also have larger implications for
therapeutic innovation in social cognitive and neurocognitive
domains.
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