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Abstract

Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA 

and histone proteins. All nuclear processes take place in the context of chromatin. Modifications 

of either DNA or histone proteins have fundamental effects on chromatin structure and function, 

and thus influence processes such as transcription, replication or recombination. In this review we 

highlight histone modifications specifically associated with gene transcription by RNA polymerase 

II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these 

histone modifications perturbs chromatin organization over coding regions and results in the 

appearance of aberrant, intragenic transcription.

1. Introduction

Chromatin is a nucleoprotein complex built from nucleosomal repeat units. Nucleosomes 

themselves consist of 147 bp of DNA wrapped 1.7 times around a histone octamer core 

particle (two copies of histones H2A, H2B, H3 and H4 each) [1]. Chromatin not only allows 

for the compaction of DNA within the nucleus, it also ensures that a large fraction of 

genomic DNA is not readily accessible and thus has drastic consequences for the regulation 

of gene expression. Transcription, as well as other cellular processes, require a veritable 

arsenal of factors in the form of activators and repressors that enable correct temporal and 

spatial access to specific DNA sequences. Nucleosome dynamics, histone modifications and 

chromatin remodeling are three aspects of chromatin structure that are closely interlinked, 

and perturbation in any one part can have severe consequences for a number of cellular 

processes.

2. The basics of RNA polymerase II transcription

2.1 Transcription of chromatin

Polynucleosomes are extremely stable and represent the first order of packaging, often 

referred to as “beads-on-a-string” or 11 nm fiber [2]. While further compaction of chromatin 

into higher order structures does take place, most chromatin is transcribed in this 
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configuration. Nucleosomes represent a major barrier for Pol II transcription in vivo and in 
vitro. Unlike phage SP6 RNA polymerase or yeast Pol III, Pol II cannot transcribe efficiently 

through an intact nucleosome by itself but requires additional factors that enable it to 

overcome the barrier represented by nucleosomes [3, 4].

2.2 Pol II transcription cycle

Transcription by Pol II (reviewed in [5]) is initiated by activator proteins binding upstream 

of the core promoter and signals for the subsequent recruitment of coactivators such as 

mediator or the SAGA histone acetyltransferase (HAT), as well as chromatin remodelers 

whose function it is to alter chromatin architecture for assembly of the general transcription 

machinery. A series of protein-protein interactions results in the recruitment of Pol II and 

general transcription factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and 

formation of the pre-initiation complex (PIC). Following PIC assembly, the DNA at the 

transcription start site (TSS) is unwound by Rad25 (human XBP of TFIIH), thus allowing 

the single-stranded DNA template to be positioned in the Pol II active site. Concomitantly, 

the carboxy-terminal heptad repeat sequences (C-terminal domain; CTD) of Rpb1, the 

largest Pol II subunit, are phosphorylated by Kin28 (CDK7 in human TFIIH) specifically on 

Ser5. Pol II then loses contact with some GTFs and escapes into early elongation.

Efficient elongation requires a further phosphorylation step by Ctk1 (human P-TEFb) on the 

Ser2 position of the Pol II CTD that helps to recruit factors important for transcription 

elongation, termination and mRNA processing as well as histone modifiers and remodelers. 

Throughout the transcriptional cycle the Pol II CTD – whether phosphorylated or not – 

functions as a recruitment platform for a large number of stage-specific factors required for 

efficient transcription.

3. Influencing nucleosome dynamics

3.1 Chromatin remodeling and histone dynamics

One way of changing chromatin structure is by using chromatin remodelers. This class of 

enzymes uses the energy of ATP hydrolysis to break existing DNA-histone contacts in order 

to slide or evict histones/nucleosomes from the DNA (reviewed in [6]). Nucleosomes are 

turned over at different rates depending on their genomic location as well as on their 

modification status [7]. Several studies have shown that H2A/H2B dimers are rapidly 

exchanged in and out of existing nucleosomes over transcribed regions [8, 9]. In contrast, 

histone exchange of H3/H4 tetramers occurs at high rates over the promoters of actively 

transcribed genes, but is limited to highly transcribed genes over ORFs [8, 10, 11]. This is 

linked to the observation that in vitro Pol II can transcribe through hexasomal nucleosomes 

following the eviction of a single H2A/H2B dimer, while the H3/H4 tetramer is retained on 

the DNA [12, 13]. Only in highly transcribed genes that contain multiple elongating Pol II 

molecules is there evidence to suggest complete dissociation of histone octamers from the 

DNA over coding regions, which are subsequently reassembled in the wake of Pol II 

passage. Both eviction and reassembly of nucleosomes depend on histone chaperones, such 

as Asf1, Nap1, Spt6 or FACT which often work in conjunction with remodeling complexes 

[14-20].
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3.2 Histone variant incorporation

Apart from the canonical versions of histone proteins, there are several variant forms that 

perform specialized functions. Variants can differ in histone tails, histone fold domains or 

amino acid sequence. In higher eukaryotes histone H3.3 is incorporated preferentially over 

transcribed regions independent of DNA replication [21]. Interestingly, the single version of 

histone H3 present in yeast most closely resembles the H3.3 variant rather than the 

replication-dependent H3.1 [22].

Histone H2A.Z (Htz1 in yeast) is another important histone variant involved in a variety of 

different and sometimes opposing processes. Initially identified in preventing the spread of 

heterochromatin to euchromatic regions [23, 24], it is involved in gene activation, gene 

silencing, nucleosome turnover, chromosome segregation and differentiation (reviewed in 

[25]). H2A.Z is highly conserved from yeast to humans. It is not essential in yeast, although 

deletion of HTZ1 results in transcriptional defects [26, 27]. However, loss of H2A.Z is lethal 

in higher eukaryotes [25]. Genome-wide studies have found H2A.Z associated with 

promoters at practically all +1 nucleosomes (relative to the transcription start site) and also 

at a large proportion of −1 nucleosomes [28-33]. A similar pattern is also found in human 

cells, although enhancers and insulators are also marked by H2A.Z [34]. Interestingly, in 

Drosophila H2A.Z associates only with the +1 nucleosome [33].

The involvement of H2A.Z in transcription regulation has been clearly established, yet the 

mechanistic details remain a focus of ongoing research. Suggestions range from H2A.Z-

mediated effects on nucleosome stability, nucleosome positioning and establishing contacts 

with the transcriptional machinery to maintaining active genes close to the nuclear periphery 

[27, 30, 31, 35, 36]. In yeast the presence of H2A.Z-containing nucleosomes at gene 

promoters is inversely proportional to their transcription rates [29-31]. However, the 

opposite applies to human cells and Drosophila where H2A.Z shows a high degree of 

colocalization with Pol II [33, 34, 36] and is required for transactivation during hormone 

receptor signaling [37]. Yeast H2A.Z is thought to mark promoters that have undergone Pol 

II transcription initiation, as untranscribed genes do not contain Htz1. Since most genes in 

yeast are actively transcribed, this explains the wide-spread presence of Htz1 at most 

promoters.

Replacement of H2A by H2A.Z at nucleosomes is catalyzed by the Swr1 complex [38-40] 

and its metazoan orthologs SRCAP and p400 [41, 42] and requires prior acetylation of 

histones H3 and H4 [32, 43, 44]. The Ino80 chromatin remodeler mediates the reverse 

reaction, substituting H2A.Z with H2A [45].

3.3 Histone modifications

Histones are subject to a vast number of post-translational modifications (PTMs), such as 

methylation of arginine (R) residues; methylation, acetylation, ubiquitination, ADP-

ribosylation and sumoylation of lysine (K) residues; and phosphorylation of serine (S) and 

threonine (T) residues (Fig. 1) (reviewed in [46]). Modification of histones are carried out by 

specialized enzymes, some of which display rather broad specificities such as the Gcn5 

histone acetyltransferase, while yet others are known to modify single sites only, eg. the Set1 
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and Set2 lysine methyltransferases (KMTs) (Table 1). Certain modifications are generally 

associated with actively transcribed (euchromatin) or repressed chromatin (heterochromatin) 

states. Most modifications exhibit distinct spatial and/or temporal distributions and are 

associated with enhancers, promoters, open reading frames (ORFs), differentiation states or 

cell-cycle stages (Fig. 2). Histone modifications by themselves can alter the charge 

distribution and DNA contacts with histone octamers, thus influencing chromatin structure 

directly. Most prominently, acetylation of histone H4K16 has been shown to directly prevent 

folding of chromatin into higher-order structures [47]. Furthermore, histone modifications 

also serve to recruit downstream effectors that influence chromatin structure. A number of 

domains have been identified that can interact specifically with modified histones (Table 1) 

(reviewed in [48, 49]).

3.4 Histone modifications and transcription

Histone modification states associated with both silenced chromatin as well as active genes 

have been characterized in great detail over the last few years. In the section below we aim 

to focus particularly on histone modifications associated with transcriptionally active 

chromatin (Fig.2).

3.4.1 Histone acetylation—Newly synthesized histone H4 is acetylated at K5 and K12, 

while soluble histone H3 is modified at K56 [50, 51]. These marks are important for their 

deposition and are quickly removed following incorporation into chromatin. A second group 

of HATs acetylates histones at multiple sites in a chromatin-specific context (reviewed in 

[52]).

Histone acetylation disrupts the electrostatic interactions existing between the positively 

charged histones and the negatively charged DNA by neutralizing the positive charges of 

lysine residues [53, 54]. Thus it is not surprising that, taken as a group, acetylation correlates 

with transcription activation (Table 1). Acetylated lysines are generally recognized by 

bromodomains that are found in a large number of other factors, eg. the RSC and SWI/SNF 

remodeling complexes (reviewed in [49]).

3.4.2 Histone H3K4 methylation and H2B monoubiquitination—Methylation of 

H3K4 in yeast is carried out by a single methyltransferase, the Set1 complex (COMPASS) 

within a pathway highly conserved from yeast to humans [55, 56]. In comparison, 

Drosophila have three H3K4 methylase complexes, namely Trithorax (Trx), Trithorax-

related (Trr) and dSet1. Mammals contain at least six such complexes: SET1A, SET1B, as 

well as MLL1- 4. SET1A and SET1B are orthologs of dSet1; MLL1 and MLL2 are related 

to Trx, while MLL3 and MLL4 derived from Trr (reviewed in [57]). All COMPASS-like 

complexes are built around the catalytic Set1 or MLL protein and core subunits Cps60/

ASH2, Cps30/WDR5 and Cps50/RBBP5, in addition to several complex-specific subunits 

[57]. H3K4 monomethylation only requires a core complex consisting of Set1, Cps30 

(Swd3) and Cps50 (Swd1). Di- and trimethylation of H3K4 by Set1/COMPASS is a highly 

regulated process that depends on prior monoubiquitination of H2B on Lys123 (H2Bub) by 

the Rad6/Bre1 E2/E3 ubiquitin ligase complex [58, 59]. H2B ubiquitination itself is the 

product of a complex regulatory cascade for which Pol II functions as a central recruitment 
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platform. H2Bub requires active Pol II transcription as shown by its dependence on the 

activity of Kin28, a Pol II Ser5-specific CTD kinase that marks the transition from Pol II 

initiation to elongation [60]. Transcribing Pol II stimulates recruitment of the PAF complex 

through its association with phosphorylated elongation factor Spt5 [61, 62]. PAF in turn 

associates with the Rad6/Bre1 ubiquitin ligase. Both Spt5 and Rad6 are regulated by the 

Bur1/Bur2 protein kinase complex, which further links PAF binding and H2B ubiquitination. 

H2Bub is recognized by COMPASS component Cps35 (Swd2), which then recruits the other 

COMPASS subunits to enable H3K4 di- and trimethylation (reviewed in [57]). Methylation 

of H3K4 requires H2B ubiquitination, but not vice versa, as the levels of H2Bub are not 

affected in an H3K4R site mutant that cannot be methylated and therefore mimics an 

unmodified lysine residue.

In flies and mammals dSet1 and SET1A/B are the primary H3K4 di- and trimethylase 

complexes, respectively. Analogous to yeast, they also rely on the PAF complex and H2B 

ubiquitination (though on K120 rather than K123) for H3K4 trimethylation [57]. 

Interestingly, the C. elegans ortholog of dSet1 plays a role in the regulation of life span, as 

lower levels of H3K4 methylation have been linked to extended life spans [57]. Whether this 

process depends on H2B ubiquitination and/or H3K4 di- and trimethylation remains to be 

seen.

The MLL complexes lack the ortholog of yeast Cps35 (mammalian WDR82) and are likely 

recruited independently of H2Bub. Instead, they function as transcriptional coactivators, 

involved in processes such as activation of the developmentally important Hox genes or 

nuclear receptor transactivation (reviewed in [57]). Misregulation of any of these complexes 

can have serious consequences: chromosomal translocations of the MLL1 gene are 

associated with acute myeloid and lymphoid leukemia, while mutations in MLL4 have been 

linked to non-Hodgkin's lymphoma [57].

Trimethylated H3K4 is a hallmark of active promoters and the 5′ ends of ORFs and 

correlates well with increased levels of gene expression [63]. H3K4me2 is found throughout 

coding regions, while H3K4me1 localizes mostly towards the 3′ ends of ORFs [64].

In higher eukaryotes H3K4 monomethylation has also become a reliable indicator of gene 

enhancers [65, 66]. Furthermore, promoters of developmentally important genes in 

mammalian stem cells are marked by both H3K4me3 as well as H3K27 trimethylation (a 

repressive modification). Such “bivalency” is critical for proper gene regulation and stem 

cell commitment during differentiation (reviewed in [57]). However, we have yet to define 

the COMPASS-like complex(es) involved in the regulation of H3K4 methylation of either 

phenomenon.

H3K4 methylation does not affect either elongation rate or processivity of Pol II by itself 

[67]. Rather it functions as a signaling platform that is recognized by a host of other factors 

through recognition modules that may specifically recognize a single modification state or 

exhibit somewhat broader specificity. Thus, unmethylated H3K4 recruits proteins through 

their PHD, WD40 or ADD domains. Many more proteins are known to bind to methylated 

H3K4 through PHD, Chromo, Tudor, MBT and Zf-CW domains (reviewed in [48]). Proteins 
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recruited through H3K4 methylation fulfill a number of different functions: many have been 

shown to be involved in chromatin remodeling and histone modification and play important 

roles during transcription, such as the human CHD1 and BPTF ATPases, or Sgf29 and Yng1 

which are part of the yeast SAGA and NuA3 HATs, respectively [68-72]. However, other 

proteins involved in diverse processes such as DNA methylation (Dnmt3L) or recombination 

(RAG2) are also recruited by H3K4 methylation [73, 74].

3.4.3 Histone H2B monoubiquitination—Monoubiquitination of histone H2B is a 

modification found both at promoters and over open reading frames [60, 75-78] and has 

functions independent of its involvement in histone H3 lysine methylation. While 

incorporation of ubiquitin does not greatly affect nucleosome structure [79, 80], recent work 

shows that H2Bub prevents compaction of the chromatin fiber into a higher-order structure 

[81]. In this respect the effects of H2B ubiquitination are similar to those of H4K16 

acetylation, although these two histone modifications function in parallel pathways [81]. 

Furthermore, H2B ubiquitination has been shown to promote reassembly of nucleosomes in 

the wake of elongating Pol II [76, 79, 82]. Reduced nucleosome occupancy was observed for 

an H2BK123A site mutant, whereby the most highly expressed genes showed the largest 

reductions in nucleosome occupancies [76]. Reassembly seems to involve the Chd1 

remodeling enzyme, although it is currently not clear how this is achieved mechanistically 

[83]. Pol II elongation is further helped by increased DNA accessibility as a result of 

H2Bub-dependent stimulation of FACT activity [82, 84]. No bona fide ubiquitin-binding 

domain has been identified so far, although H2Bub is required for the binding of the 

COMPASS Cps35 subunit to chromatin [85].

3.4.4 Histone H3R2 methylation—Three modification states exist for arginine residues: 

monomethylation, symmetric dimethylation (Rme2s) and asymmetric dimethylation 

(Rme2a). Symmetric H3R2 methylation has only been observed in higher eukaryotes so far 

and is mediated by PRMT5 and PRMT7 [86]. In contrast, asymmetric H3R2 methylation 

exists in both yeast and metazoans, although the methyltransferase responsible, PRMT6, has 

only been identified in higher eukaryotes [87, 88].

The status of histone H3R2 methylation plays an important role for H3K4 methylation and 

thus for gene expression. Asymmetric H3R2me2 is mutually exclusive with trimethylated 

H3K4 and accumulates over mid- to 3′-regions of ORFs as well as over the promoters of 

inactive genes [87, 89]. In yeast, H3R2me2a abolishes binding of the COMPASS subunit 

Cps40 (Spp1) to mono- and dimethylated H3K4 through its PHD domain due to steric 

hindrance [89]. This interaction is however necessary for efficient H3K4 trimethylation [90]. 

Similarly, in humans presence of H3R2me2a inhibits binding of the MLL methyltransferase 

complex via the WD40 domain of its WDR5 subunit, with negative consequences for 

H3K4me3 [87, 88]. Vice versa, presence of the H3K4me3 mark also interferes with 

PRMT6-mediated methylation of H3R2 [87, 88].

Symmetric methylation of H3R2 has the opposite effects when compared to H3R2me2a. It is 

found at the −1 nucleosome of promoters as well as at promoter-distal sites [86]. H3R2me2s 

enhances binding of WDR5 which results in increased levels of H3K4me3. Conversely, 

depletion of H3R2me2s via knock-down of PRMT5 and PRMT7 also reduced H3K4me3 
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levels. Furthermore, the presence of H3R2me2s also blocked binding of RBBP7, a 

component of several co-repressor complexes such as the Sin3a histone deacetylase complex 

[86].

3.4.5 Histone H3K79 methylation—Methylation of H3K79 is mediated by Dot1 [91, 

92] which preferentially methylates histone H3 in a nucleosomal context [93]. Similarly to 

H3K4, efficient trimethylation of H3K79 requires prior ubiquitination of histone H2B 

[94-96], which is thought to improve Dot1 processivity, possibly through allosteric changes 

[97-99]. Interestingly, H2Bub seems to stimulate Dot1-mediated H3K79 methylation both 

directly and indirectly: Dot1 directly binds ubiquitin [100], but it also associates indirectly 

with H2Bub through other proteins such as proteasomal ATPases Rpt4 and Rpt6 [101] or the 

Set1/COMPASS subunit Cps35 when overexpressed [85]. Currently, methylated H3K79 is 

the only histone methyl mark where no corresponding demethylase has been identified, 

although there are indications that H3K79 methylation can be reversed in vivo [102].

While we have a relatively good understanding of the role of H3K79 methylation in DNA 

damage response and cell cycle regulation, its link to transcription is less clear. In yeast, 

methylated H3K79 is depleted from telomeric, mating-type and ribosomal DNA, but 

ubiquitous everywhere else which accounts for ∼90% of the yeast genome [63, 103]. Also, 

H3K79 methylation restricts recruitment of Sir proteins to heterochromatic regions and thus 

generally coincides with euchromatin [103]. H3K79 methylation is associated with 

transcribed genes in flies, mice and humans [104-106].

Several DOT1L-associated complexes have been identified in mammals that also contain the 

Pol II Ser2-specific CTD kinase P-TEFb, thus further suggesting involvement of Dot1 in 

transcription elongation [107, 108]. Purification of the DOT1L-containing complex DotCom 

also pulled down members of the Wnt pathway. P-TEFb was not isolated with this particular 

complex. However, DOT1L was nevertheless required for the expression of Wingless target 

genes, thus further supporting its role in transcription activation [109]. Similarly, a recent 

paper also implicates DOT1L in the regulation of JAK-STAT-dependent genes [110]. In mice 

DOT1L-mediated H3K79 methylation directly regulates expression of dystrophin, leading to 

defects during cardiac development when mutated [111]. However, the mechanism linking 

H3K79 methylation to transcription activation and elongation remains unclear and requires 

further investigation. Only a single recognition module for methylated H3K79 has been 

identified: however, the Tudor domain of 53BP1 has been shown to be involved in DNA 

repair rather than transcription [112].

3.4.6 Histone H3K36 methylation—Methylation of H3K36 is a widespread histone 

modification associated with ORFs [63]. Methylation of H3K36 is mediated by Set2, the 

sole histone H3K36 methyltransferase in yeast [113, 114]. While mono-and dimethylation of 

H3K36 by the Set2 catalytic domain require no other factors, H3K36me3 is dependent on 

full-length Set2 and its association with Pol II [115]. In particular, phosphorylation of the 

Pol II CTD by Ctk1 on Ser2 specifically stimulates Set2 binding [116-119] and is thought to 

positively affect Set2 protein stability [120]. Ctk1 is required for proper H3K36 

trimethylation [115, 117, 119], which accumulates towards the 3′ ends of ORFs [63] (Fig.
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2). H3K36 methylation is also affected by the proline isomerase Fpr4, which acts on H3P38 

and antagonizes H3K36me levels in vivo [121].

H3K36me2 and H3K36me3 are generally associated with actively transcribed genes, yet 

only H3K36me3 levels correlate with transcription rates [63, 122]. H3K36 methylation is 

associated with transcribed genes and hence usually referred to as an activating histone 

mark. However, it actually exerts a repressive effect on chromatin structure as H3K36 di- 

and trimethylation signal for the deacetylation of histones H3 and H4 in the wake of Pol II 

passage through activation of the Rpd3S histone deacetylase complex [123-125]. Methylated 

H3K36 can be read by a number of different recognition modules. Rpd3S contains a 

chromo-as well as a PHD domain on its Eaf3 and Rco1 subunits. While the Eaf3 

chromodomain recognizes H3K36me3 specifically, it functions in combination with the 

Rco1 PHD domain to bind H3K36 methylated nucleosomes [123, 126]. An increasing 

number of PWWP-domain proteins also bind preferentially to H3K36 trimethylated 

nucleosomes, such as the BRPF1 subunit of human MOZ acetyltransferase, which together 

with H3K36me3 is important for Hox gene expression [127, 128]. Other examples include 

the chromatin-associated Psip1 short (p52) isoform which plays a role in alternative splicing 

[129] and the Ioc4 subunit of the yeast Isw1b chromatin remodeler [130, 131] which relies 

on H3K36 methylation to maintain ordered chromatin over transcribed ORFs (see below) 

[130].

In contrast to yeast, eight different H3K36 methyltransferases have been identified in higher 

eukaryotes so far: NSD1-3, SETD2/3, ASH1L, MES4, SETMAR and SMYD2 (reviewed in 

[132]). While in vivo substrate specificities have not been determined for all enzymes as yet, 

SETD2 is thought to be the only human methyltransferase mediating H3K36 trimethylation 

in cells [133]. SETD2 is also the closest ortholog of yeast Set2 and interacts with Pol II 

during transcription elongation [134]. All other enzymes seem to be mono- and 

dimethylases. Some also act on other histone as well as non-histone targets: NSD1, for 

example has been reported to methylate NFκB as well as histone H4K20 [132]. NSD2 

methylates H3K36 in a nucleosomal context, but prefers H4K44 when confronted with 

histone octamers. NSD2 is an interesting enzyme, as addition of short DNA molecules that 

may function as allosteric effectors, results in subsequent preferential H3K36 dimethylation 

of histone octamers [135]. The higher complexity of H3K36 methylases in humans also 

suggests more wide-spread biological involvement when compared to yeast. Indeed, in 

metazoans H3K36 methylation has been implicated in a number of processes, including 

gene activation and repression, alternative splicing, dosage compensation, as well as DNA 

replication, recombination and repair [132]. At the same time, dysfunctional H3K36 

methylation has been linked to a large number of diseases, including for example severe 

developmental defects, breast, lung and prostate cancer, acute myeloid leukaemia, and 

neuroblastoma (reviewed in [132]). Efforts to elucidate the mechanisms governing these 

processes are still in the beginning stages.

4. Maintenance of genome integrity

Chromatin represents a barrier for efficient Pol II transcription, which is alleviated by the 

action of a number of positive transcription elongation factors. At the same time chromatin 
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structure needs to be restored in the wake of Pol II passage. Failure to do so leads to gross 

perturbations in the nucleosomal organization of genes and exposure of intragenic (cryptic) 

promoter-like sequences that initiate aberrant transcription from inside open reading frames 

(Text box 1) [136].

Text box 1 What is cryptic transcription?

The term “cryptic” transcription is used to refer to two different, yet overlapping processes. 

It was first used to describe the presence of transcripts initiated from intragenic promoters 

that are usually inaccessible for assembly of the transcription machinery [136]. Transcription 

from these promoters may occur in either the sense or antisense direction, and sometimes in 

both [137, 138]. Furthermore, intragenic promoters can be found anywhere over ORFs and 

are not necessarily associated with the nucleosome-free regions of genes (see below). RNAs 

produced from cryptic promoters are stable and often, but not always polyadenylated, as 

cryptic transcripts have been identified from mRNA as well as total RNA fractions. Also, the 

Winston lab has shown that at least some of these intragenic transcripts are translated into 

proteins [137], although whether these protein products have any functional roles remains to 

be determined.

More recently a lot of attention has been focused on the wide-spread, “pervasive” 

transcription of non-coding RNAs (ncRNA), that are also often referred to as cryptic 

transcripts (reviewed in [139, 140]). For the purposes of this review we will refer to the 

intragenic transcripts described above as “cryptic” and to all others as “pervasive”. Generally 

these pervasive ncRNAs are further categorized as cryptic unstable transcripts (CUTs) or 

stable unannotated transcripts (SUTs). SUTs can be identified in wildtype yeast [141, 142], 

whereas CUTs are observed in yeast strains with impaired RNA degradation pathways, such 

as the exosome mutant rrp6Δ [143]. More recently, a third group of ncRNAs has been 

identified that relies on the Xrn1 5′-3′ RNA exonuclease for degradation and is therefore 

named Xrn1-sensitive unstable transcripts (XUTs) [144]. There is a certain amount of 

overlap between these groups as ∼ 30% of SUTs and ∼ 10% of CUTs are also XUTs [144]. 

Presumably, this also applies to the intragenic cryptic transcripts, as we have no information 

as to the regulation of their degradation.

CUTs, SUTs and XUTs are polyadenylated transcripts. They are generally initiated from 

nucleosome-free regions at either the promoter or the 3′ intergenic region and transcription 

occurs mostly from the antisense strand [141, 144]. In the case of divergent CUTs 

transcribed in both the sense and antisense direction, expression of sense CUTs correlates 

negatively with gene transcription rates, whereas the reverse is true for antisense CUTs, 

suggesting a mechanism of transcriptional interference with normal gene expression [141, 

142]. A recent study found, however, that in yeast transcription is highly directional and 

favors the sense orientation. This preference is dependent on functional Rpd3S histone 

deacetylase [145].

Determining the functional significance of these ncRNAs is an ongoing focus of research, 

but a regulatory role in gene expression has been identified for a number of ncRNAs. For 

example, PHO84 antisense transcripts inhibit sense transcription of the PHO84 gene both in 
cis and in trans [146, 147]. In both instances silencing of PHO84 requires production of the 

Smolle and Workman Page 9

Biochim Biophys Acta. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antisense transcript. However, cis inhibition relies on the Hda1/2/3 histone deacetylase 

which leads to promoter deacetylation [146]. In contrast, trans silencing requires functional 

Set1 as increased H3K4 trimethylation promotes production of the antisense transcript 

[147]. Pervasive transcription has also been identified in higher eukaryotes (reviewed in 

[139, 140]), eg. the human HOTAIR transcript that is involved in the silencing of the HOXD 
locus in trans through interactions with PRC2 [148]. While most known examples of 

ncRNAs are linked to repression, several ncRNAs promote gene expression. The Drosophila 
roX RNAs mark the male X chromosome and cooperate with the MSL complex to enhance 

transcription elongation over genes involved in male dosage compensation [149]. Another 

example is HOTTIP which directly binds to the WDR5 subunit of MLL H3K4 methylases to 

activate transcription of HOXA in cis and results in increased levels of H3K4me3[150].

4.1 Properties of cryptic promoters

Cryptic promoters are diverse and do not fall into a single group. Some, such as the 

promoter present within the FLO8 gene contain a TATA-box while others, eg. at the STE11 
locus do not [136, 151]. Recent work has shown that cryptic promoters are regulated 

independently from their respective canonical promoter [151]. Furthermore, transcription 

initiation from cryptic promoters relies on the same components of the transcriptional 

machinery as their canonical counterparts [151]. It may be expected that transcription from 

cryptic promoters interferes with the production of the corresponding full-length transcripts. 

However, several gene expression microarray experiments of mutants with known cryptic 

transcript phenotypes did not exhibit large-scale changes in overall gene expression and 

therefore argue against this idea [130, 137, 138, 152, 153]. This may be explained by the 

observation that cryptic transcript genes tend to be infrequently transcribed [137, 138].

4.2 Histone chaperones

The Winston laboratory used a genetic screen to systematically identify genes required for 

the repression of cryptic transcription. In agreement with the data published from a number 

of laboratories, the strongest phenotypes were associated with mutations in histones, 

regulators of histone genes, transcription elongation factors, histone chaperones, chromatin 

remodelers and histone modifiers [137, 154]. These observations argue that any mutation 

that results in reduced nucleosome occupancy and increased DNA accessibility results in the 

production of cryptic transcripts (Fig. 3). Indeed, aberrant intragenic transcription was first 

identified in mutants of the Spt6 and Spt16 (FACT) histone chaperones, known to play a role 

in nucleosome reassembly during transcription elongation [136, 155, 156]. Similar findings 

were also obtained for a Rtt106-deficient strain: Rtt106 is a histone chaperone associated 

with coding sequences and involved in histone H3 deposition over ORFs [154, 157]. 

Furthermore, the cryptic transcript phenotype of a rtt106Δ strain was exacerbated by the 

additional mutation of SPT6 [157].

4.3 Set2-Rpd3S pathway

Deletion of components involved in the Set2-Rpd3S pathway such as Set2 or Rco1 exhibit 

the same phenotype [123, 124]. Either mutation results in the generation of hyperacetylated 

chromatin over open reading frames which is thought to adopt a less compact structure and 

thus allow for intragenic transcription initiation.Similarly, mutation of key residues in 
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histones H4 (K44), H2A (L116, L117) and H3 thought to interfere with nucleosome binding 

by Set2 result in lower levels of H3K36 di- and trimethylation, increased levels of histone 

H4 acetylation and the appearance of cryptic transcripts [158-160] (Fig. 3B). Deletion of 

Ctk1, a kinase that specifically phosphorylates Ser2 of the Pol II CTD and vital for 

recruitment of Set2 to elongating Pol II also causes a severe cryptic transcript phenotype due 

to a complete lack of di- and trimethylated H3K36 in this mutant [137].

Recent work from our laboratory has shown that H3K36 methylation plays a more 

fundamental role in preserving chromatin architecture than previously thought. We found 

that H3K36 methylation affects histone dynamics, as it prevents the incorporation of new, 

acetylated histones over transcribed ORFs and thereby promotes the retention of H3K36 

methylated nucleosomes in cis (Fig. 3A) [153]. Furthermore, increased histone exchange 

over ORFs seems to be responsible for the bulk of histone hyperacetylation in a SET2 
mutant, suggesting that higher histone turnover contributes significantly to the increased 

acessibility of cryptic promoters (Fig. 3B) [153].

Retention of H3K36-methylated nucleosomes over ORFs relies on chromatin remodelers 

Isw1b and Chd1. Deletion of these remodelers results in increased histone turnover, histone 

acetylation and wide-spread cryptic transcription, while having no or little effect on H3K36 

methylation levels (Fig.3C) [130, 161]. Both remodelers act within the Set2 pathway as 

deletion of either in a set2Δ background shows similar levels of cryptic transcription and 

histone acetylation when compared to a set2Δ single deletion [130]. Isw1b is recruited 

directly by H3K36 methylated nucleosomes in vivo and in vitro [130, 131]. Chd1 has not 

been shown to interact preferentially with H3K36 methylated nucleosomes [162, 163], but it 

is known to bind to several transcription elongation factors such as the PAF complex and 

Spt5 [164] and thus may be brought in by Pol II itself.

Suppression of cryptic initiation by H3K36 trimethylation has also been observed in higher 

eukaryotes. Self-renewal of embryonic stem cells (ESCs) is partly regulated through control 

of histone methylation. The H3K4me3-specific demethylase KDM5B (JARID1B) is 

recruited to intragenic regions by interaction of its chromodomain protein MRG15 with 

trimethylated H3K36 nucleosomes [165]. KDM5B is important for maintaining low levels 

of H3K4 trimethylation over ORFs, as knock-down of either KDM5B or MRG15 results in 

marked increases of H3K4me3, recruitment of non-phosphorylated Pol II and increased 

cryptic transcription [165]. KDM5B also interacts with the Rpd3S orthologs HDAC1 and 

Sin3A, providing a further link to the Set2-Rpd3 pathway. In contrast to yeast, increased 

cryptic transcription in ES cells concurrently reduced levels of the functional full-length 

mRNA [165] .

4.4 Cryptic transcription and H2Bub

Other mutations known to cause cryptic transcription are bur2Δ and deletion of the PAF 

complex subunit Ctr9. Both are elongation factors known to play roles in histone H2B 

ubiquitination and early transcription elongation [166, 167]. Interestingly, mutations in both 

BUR2 and the PAF complex result in significant reductions of H3K36 tri- but not 

dimethylation [168]. While dimethylated H3K36 is sufficient to prevent cryptic transcription 

[162], deletion of BUR2 or PAF1 exhibited additive effects on cryptic transcription in a 
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set2Δ background when compared to set2Δ alone. These results suggest that Bur2 and the 

PAF complex do not act within the Set2 pathway, but act in parallel with Set2 [168].

A recent study on the effects of H2Bub on chromatin organization concluded that the 

presence of H2Bub stabilizes nucleosomes. Furthermore, yeast strains with a histone 

H2BK123A mutation or deletion in the gene encoding the ubiquitin-conjugating enzyme 

Rad6 displayed reduced levels of histone H3 over coding regions genome-wide [76]. These 

results suggest that in both bur2Δ and ctr9Δ strains cryptic transcription may be a 

consequence of increased nucleosomal disassembly and/or decreased reassembly in the 

wake of Pol II passage, analogous to histone chaperone defects. In agreement with these 

data, cryptic transcription has been reported for strains with a histone H2BK123R mutation 

or deletions in the H2B ubiquitination pathway (rad6Δ, bre1Δ, lge1Δ) [82, 154], although 

another report did not detect cryptic transcripts for either bre1Δ or lge1Δ [162]. This 

discrepancy is presumably accounted for by different experimental approaches.

Chd1 was recently shown to play a role in the maintenance of H2Bub levels over coding 

regions [83], which indicates that it may be part of the same pathway (Fig. 3D). However, it 

is worthwhile to point out that deposition of H2Bub and H3K36me3 marks over ORFs is 

highly correlated, as both are enriched over long and highly transcribed genes [77]. Chd1 

prevents histone exchange in yeast [130, 161]. Furthermore, Drosophila CHD1 can catalyze 

the transfer of histones from the histone chaperone NAP1 onto DNA in vitro [16] and it is 

also important for the replication-independent deposition of histone variant H3.3 in male fly 

pronuclei [169]. Taken together, these results suggest that nucleosomal reassembly may be 

impaired in a chd1Δ mutant. Genome-wide ChIP-seq experiments observed relatively small 

reductions in positioned nucleosomes over ORFs [83, 152], but ChIP-chip data show a clear 

redistribution of nucleosome occupancy from the 3′- towards the 5′-end of ORFs [130]. The 

mechanism by which Chd1 affects the initiation of cryptic transcription is not entirely clear 

at this time. Given the fact that a chd1Δ strain also exhibits a weak cryptic transcript 

phenotype [130, 137, 163] and seems to be involved in the Set2 pathway, it will be 

interesting to determine its contribution to the H2Bub pathway.

5. Future directions

Our knowledge about histone modifications and how they are established, recognized and 

reversed has exploded over the last decade. Yet a number of enzymes have remained elusive. 

How recognition of histone modifications by downstream effector molecules is influenced 

by other, co-existing modifications will remain an interesting area of study, especially in 

higher eukaryotes where several histone modifiers and remodelers often tend to be part of 

the same complexes.

Cryptic promoters are common throughout the yeast genome. A small number are expressed 

even in wildtype cells. The question remains what function they serve, especially since we 

know that some at least are translated into proteins. Some cryptic transcripts are present in 

wildtype yeast in response to stress conditions [137] although their function remains elusive. 

Furthermore, aberrant intragenic transcription in yeast shares some similarities with the 

production of alternatively spliced transcripts found in higher eukaryotes. Nucleosomal 
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organization and H3K36 methylation play important roles in the regulation of alternative 

splicing. Interestingly, highly constitutive exons display higher levels of nucleosome 

occupancy and H3K36me3than alternative ones (reviewed in [170]). While H3K36 

trimethylation is not the only histone modification to affect splicing, it may also regulate 

histone dynamics in metazoans and thus presumably impact alternative splicing. If so, it will 

be interesting to learn if lessons from yeast will be applicable.
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Highlights

• Histone modifications influence chromatin organization during transcription 

elongation.

• Histone chaperones and H2B ubiquitination maintain nucleosome levels over 

gene bodies.

• Disruption of histone H3K36 methylation leads to increased histone exchange 

and altered, hyperacetylated chromatin.

• Perturbation of chromatin structure over gene bodies exposes cryptic 

promoters.

• Cryptic transcripts are polyadenylated and even translated - their function is 

unclear though.
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Figure 1. 
Posttranslational modifications associated with yeast histones. Alternative residue numbers 

that refer to mammalian histones are shown in red. Ubiquitination of histone H2A on K119 

does not exist in yeast (*).
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Figure 2. 
Genome-wide distribution patterns of histone modifications involved in transcription. 

Distributions are shown relative to an average yeast gene: the promoter, transcription start 

site (arrow), coding sequence (ORF) and 3′ intergenic region are shown. All data sets refer 

to yeast with the exception of H3K9, H3K27 and H4K20 methylation.
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Figure 3. 
Perturbation of chromatin structure leads to aberrant intragenic transcription. (A) Histone 

chaperones like FACT, Spt6 and Rtt106 aid transcription elongation by disassembly of 

nucleosomes in front of Pol II and subsequent reassembly in its wake. Kin28 and Ctk1 

specifically phosphorylate Ser5 and Ser2 within the CTD heptad repeats, respectively. Set2 

is recruited to the elongating polymerase through the Ser2 phosphorylated form of the CTD 

and methylates Lys36 on histone H3. Methylated H3K36 recruits chromatin remodelers such 

as Isw1b and ensures the retention of these nucleosomes over ORFs . Maintaining H3K36 

methylated nucleosomes disfavours incorporation of free, acetylated histones in their stead. 

Any remaining histone acetylation is removed by the Rpd3S histone deacetylase. Rpd3S 

associates with the Ser5 phosphorylated form of the Pol II CTD and recognizes methylated 

H3K36 through the chromo- and PHD-domains of its Eaf3 and Rco1 subunits, respectively. 

H3K36 di- and trimethylation stimulates Rpd3S activity and hence the removal of acetyl 

marks from transcribed chromatin [171]. (B) Mutations in key proteins involved in this 

pathway lead to perturbations in chromatin structure. Deletion of SET2 completely abolishes 

H3K36 methylation and simultaneously allows for the incorporation of free, acetylated 

histones. Rpd3S is still recruited to ORFs through its association with Pol II. However, in the 

absence of H3K36 methylation it can no longer catalyze the removal of acetyl marks from 

histones H3 and H4. Alterations in the chromatin architecture and increased exposure of 

internal promoter-like sites lead to PIC formation and initiation of cryptic transcription from 

inside of open reading frames. (C) Absence of chromatin remodelers Isw1b and/or 

Chd1impairs the retention of H3K36-methylated nucleosomes in cis and leads to increased 

incorporation of free, acetylated histones over ORFs despite continued Set2 and Rpd3S 

activities. The resulting alterations in chromatin structure lead to PIC formation and cryptic 

transcription. (D) H2Bub exerts a stabilizing influence on nucleosomes. Establishment 
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requires a complex cascade of factors: H2Bub requires active Pol II transcription as shown 

by its dependence on Ser5 CTD phosphorylation by Kin28. Transcribing Pol II further 

stimulates recruitment of the PAF complex through its association with phosphorylated Spt5 

[61, 62]. PAF in turn associates with the Rad6/Bre1 ubiquitin ligase. Both Spt5 and Rad6 are 

also regulated by the Bur1/Bur2 protein kinase complex, further linking PAF binding and 

H2B ubiquitination. Chd1 may also be involved in this pathway since it is known to interact 

both with PAF and Spt5 [164]. Disruption of this cascade is envisaged to result in lower 

levels of H2Bub over ORFs and consequently reduced nucleosome occupancy which is 

thought to expose cryptic promoters.
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