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Abstract

Cigarette smoke (CS) exposure is a major risk factor for the
development of emphysema, a common disease characterized by
loss of cells comprising the lung parenchyma. The mechanisms of
cell injury leading to emphysema are not completely understood but
are thought to involve persistent cytotoxic or mutagenic DNA
damage induced by CS. Using complementary cell culture and
mouse models of CS exposure, we investigated the role of the
DNA repair protein, xeroderma pigmentosum group C (XPC), on
CS-induced DNA damage repair and emphysema. Expression of
XPC was decreased in mouse lungs after chronic CS exposure
and XPC knockdown in cultured human lung epithelial cells
decreased their survival after CS exposure due to activation of the
intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis
were increased in XPC-deficient mouse lungs and were further
increased by CS exposure. XPC deficiency was associated with
structural and functional changes characteristic of emphysema,
which were worsened by age, similar to levels observed with chronic
CS exposure. Taken together, these findings suggest that repair of
DNA damage by XPC plays an important and previously

unrecognized role in the maintenance of alveolar structures. These
findings support that loss of XPC, possibly due to chronic CS
exposure, promotes emphysema development and further
supports a link between DNA damage, impaired DNA repair,
and development of emphysema.
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Clinical Relevance

These findings support a novel role of xeroderma
pigmentosum group C (XPC) in emphysema development and
more globally expounds on the poorly understood link between
cigarette smoke and DNA damage repair on emphysema
development and susceptibility to lung cancer. Furthermore,
our findings are of considerable interest to the DNA repair
field, as they expand upon a rather new mechanism for XPC in
repair of DNA oxidative damage caused by cigarette smoke.

Exposure to chronic cigarette smoke (CS) is
the major risk factor for chronic obstructive
pulmonary disease (COPD), such as
emphysema, which is the third leading cause
of death in the United States, and predicted
to be the third-highest cause of death

globally by 2020 (1). Emphysema is
characterized by progressive loss of alveolar
and lung parenchymal structures involved
in gas exchange and decreased lung
elastance. The pathogenesis of emphysema
involves inflammation, increased oxidative

stress, excessive structural cell apoptosis,
altered autophagy, and premature
senescence (2–4). Increased DNA damage,
as observed in smokers with and without
COPD (5–7), activates DNA damage
responses, which, in turn, regulate
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apoptosis, autophagy, and senescence (2,
5–7). Because only certain individuals are
susceptible to developing emphysema,
individual differences in DNA repair
and damage response are likely to be
important in the resilience of the lung to
the cytotoxic effects of CS. We postulate
that a deficient function of proteins
involved in DNA damage repair may
increase susceptibility to CS-induced
emphysema.

Given their direct exposure, the lungs
are particularly vulnerable to CS effects. CS
causes one DNA-damaging lesion for every
106–107 DNA bases, well above the level of
DNA damage associated with biological
relevance (8). Much of the DNA damage
induced by CS is direct formation of
DNA–chemical adducts. However, indirect
mechanisms are also involved in inducing
DNA damage by altering chemical
metabolism and by inducing local CS-
induced inflammation, causing oxidative
stress and the formation of reactive oxygen
species and reactive nitrogen species. Many
DNA lesions caused by CS are large, bulky,
and structurally distorting, requiring the
nucleotide excision repair (NER) pathway
for repair. CS also increases oxidative stress
directly and indirectly, by increasing local
inflammation, reactive oxygen species, and
reactive nitrogen species. Oxidative DNA
lesions include oxidized DNA bases (i8-
oxo-7,8-dihydroguanine) and abasic sites,
both of which are repaired via the base
excision repair (BER) pathway. CS
exposure has been associated with DNA
single-strand breaks and double-strand
breaks (DSBs), which often require other
DNA repair pathways, such as
nonhomologous end-joining or
homologous recombination repair for
resolution. Furthermore, CS exposure is
associated with altered DNA promoter
methylation, silenced gene expression,
mutations, and allelic loss, all of which may
further impact the DNA damage response
and, ultimately, cell fate (8). Although CS-
induced DNA damage is thought to be a
dominant factor in development of CS-
induced lung disease, how DNA damage
and its repair impacts COPD is largely
uncharacterized.

The DNA repair protein xeroderma
pigmentosum group C (XPC), is essential to
global genomic (GG) NER (GG-NER).
Along with its complexing proteins HR23B
and Centrin2, XPC identifies bulky, strand-
distorting DNA lesions throughout the

genome and initiates downstream damage
repair by NER (9). However, more recently,
XPC has also been implicated in BER by a
mechanism that has not been fully
elucidated. Decreased repair of the oxidized
DNA base, i8-oxo-7,8-dihydroguanine, has
been observed in vitro in both mouse and
human cells (10). Furthermore, mice
deficient in XPC accumulate oxidative
DNA damage and XPC deficiency is
associated with hypersensitivity to DNA
oxidizing agents (11). XPC has been
implicated in decreased BER activity
in vitro (12, 13), by binding to oxidatively
damaged DNA (14) and possibly
augmenting the activity of the BER
glycosylases, including 8-oxoguanine DNA
glycosylase (15).

We hypothesized that XPC protects the
lung from CS-induced emphysema-like
changes through increased DNA repair and
decreased apoptotic cell death. Using
complementary cell culture and mouse
models of CS exposure, we show that loss of
XPC increases susceptibility to CS-induced
apoptosis, and that this effect can be
abrogated by the use of the antioxidant
chemical, N-acetyl cysteine (NAC). XPC
expression is reduced in response to
exposure to chronic CS, and the absence of
XPC causes age-dependent functional and
morphologic changes consistent with
emphysema, similar to those observed with
chronic CS exposure. These data support a
role for XPC-dependent DNA repair of
oxidative DNA damage to protect against
CS-induced emphysema.

Some of the results of these findings
have been previously reported in the form of
abstracts (16, 17).

Methods

Compounds and reagents purchased from
Thermo-Fisher Scientific, unless otherwise
stated.

In Vivo Studies
Animal studies were approved by the
Indiana University Institutional Animal
Care and Use Committee. Mice
(C57BL/6;129) heterozygous for XPC
(Jackson Laboratory) were bred to provide
XPC2/2 (knockout [KO]) and XPC1/1

(wild-type [WT]) mice with genotype
confirmed by PCR (see the supplemental
METHODS). Littermate male and female
XPC-KO and WT mice (aged 6–8 wk) were

exposed to air control/ambient air (AC) or
CS for indicated durations (18). Briefly,
mice were exposed to reference cigarettes
(3R4F; Tobacco Research Institute) 5 h/d,
5 d/wk via TE-10 smoking device (Teague
Enterprises). Lung compliance was
determined by flexiVent device (SCIREQ
Inc.). Lung harvest and BAL were
performed as previously described (19).
Mean linear intercept and volume-to-surface
area were determined as previously
published (18, 20) and detailed in the
supplemental METHODS. Results were
collected and analyzed in a blinded fashion
by separate investigators.

Cell Culture and Treatment
Beas2B cells (SV40-transformed human
bronchial epithelial cells; ATCC) were
maintained as previously described (19).
SV40-transformed skin fibroblast cell lines
derived from patients who were XPC1/1

(GM637), XPC2/2 (GM15983), and
established from GM15983 by stable
transfection with XPC cDNA using pXPC3
plasmid (GM16248), were obtained from
Coriell Cell Biorepositories and maintained
according to recommended conditions.
Transduction of shRNA lentiviral particles
and cell selection was performed using
manufacturer instructions (Sigma-Aldrich).
NER function was determined using dual
luciferase activity as published (21) with
modifications (supplemental METHODS). CS
extract (100%) was prepared by bubbling
smoke from two 3R4F cigarettes or
ambient air into 20 ml PBS, adjusting pH
to 7.4, and passing through a 0.2-mm
filter (22). Incubation of cells with the
indicated concentrations (v:v) occurred
after 16 hours of serum starvation for the
durations indicated. Clonogenic survival
assays were performed as previously
described (23).

Apoptosis Measures
Lung tissue, frozen and embedded in
optimum cutting temperature compound,
was evaluated for TUNEL staining (Roche
Diagnostics). Images were obtained at 2003
magnification (DAPI and FITC filters)
using a Nikon Eclipse 90i microscope,
captured by digital camera using NIS
Elements (Nikon Instruments, Inc.). A total
of 10 pictures per deidentified specimen
were analyzed by a blinded investigator for
DAPI- and FITC-positive nuclei. Detection
of annexin V–propidium iodide (PI) was
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performed as previously described (21) by
flow cytometry and quantified by CellQuest
Pro (FACSCalibur; BD Biosciences).

Western Blot Analysis
Immunoblotting was performed on
mouse lung homogenates and whole cell
extracts as previously described (23) using
validated antibodies (supplemental
METHODS). Densitometry was quantified
using Image Lab Software (Bio-Rad).

qRT-PCR for mRNA Analysis
RNA was isolated by TRIzol separation
and cDNA generated (High Capacity
RNA-to-cDNA kit; Thermo Fisher).
Validated 6-carboxyfluorescein–labeled
gene primer/probe sets (supplemental
METHODS) were used for qRT-PCR,
per the manufacturer’s instructions
(Taqman). Gene expression was quantified
by DDCT Relative Quantification (ABI
7,500; Applied Biosystems). Each assay
was performed in triplicate using
3 replicates and the means compared
using ΔCt (DataAssist Software).

Statistical Analysis
Unless otherwise noted, statistical analysis
was by ANOVA using SigmaPlot (Systat
Software, Inc.) with statistical significance
defined as P less than 0.05.

Results

Chronic CS Decreases XPC
Expression in Mouse Lungs
Chronic CS exposure in mice alters the
expression of several genes involved in DNA

repair (24). We first evaluated whether XPC
expression was altered by chronic CS
exposure in a widely used mouse model,
where mice of C57Bl/6 background strain
are exposed to CS for 6 months to develop
emphysema-like lung disease (18, 24).
Expression of XPC and other DNA repair
proteins was measured by qRT-PCR and
determined by DDCt. There was a
statistically significant decrease in XPC
expression in mouse lung homogenates
from C57Bl/6 mice exposed to 6 months of
CS compared with those exposed to
ambient air (Figure 1A). This change in
XPC expression was unique, as the
expression of other genes involved in DNA
repair via GG-NER (Figures 1B and 1C),
transcriptionally coupled NER (TC-NER)
(Figure 1E), GG- and TC-NER (Figure 1D),
and BER (Figure 1F) showed no significant
change in this model of chronic CS
exposure.

XPC Deficiency Increases Cell
Susceptibility to Cell Death through
Apoptosis during CS Exposure
The DNA repair protein, XPC, is
involved in repair of bulky, strand-distorting
DNA lesions, such as 4-aminobiphenyl and
benzo(a)pyrene diol epoxide, through the
NER pathway (8, 9) and has more recently
been implicated in repair of oxidative DNA
damage, such as 8-oxoG, through BER (10).
We next investigated the mechanism by
which XPC deficiency may impact DNA
repair after cytotoxic CS exposure. We
developed clonally expanded, stable XPC
knockdown (KD) (shXPC) and nontargeted
control (shCtrl) cell lines using lentiviral
transfection of shRNA in Beas2B cells

(an immortalized human lung epithelial
cell line). Using Western blot analysis
and qRT-PCR we determined that
compared with control cells, both XPC KD
cell lines generated (shXPC 119B-1 and
shXPC 119B-3) exhibited significantly
decreased XPC protein and RNA
expression, respectively (Figures 2A
and 2B). Cells deficient in XPC were
also deficient in NER activity catalyzed
repair of a ultraviole-damaged plasmid, as
indicated by decreased firefly luciferase
expression after transient transfection
(Figure 2C).

To determine the impact of XPC on cell
response of lung epithelial cells to CS, we
exposed Beas2B cells with WT XPC (shCtrl)
or XPC KD (Beas2B clones 119B-1 and
199B-3) to an aqueous extract of CS or
ambient air control. Compared with
controls, cells with XPC KD had
significantly decreased clonogenic survival
when exposed to increasing concentrations
of CS. (Figures 3A and 3B). To determine
whether this effect is associated with
increased cell death rather than impaired
clonal proliferation, we measured apoptosis
using flow cytometry–based staining for
phosphatidylserine with annexin V and for
membrane permeability with PI. Compared
with controls, XPC-deficient cells had
significantly higher percentages of annexin
V–positive and annexin V–PI dually
positive cells in a dose-dependent CS
exposure study (Figure 3C). XPC-deficient
cells exhibited between 4.5- to 14-fold
increased apoptosis after exposure to CS
(10%; v:v, P, 0.05; Figure 3D). CS-induced
apoptosis in XPC-deficient cells was
associated with activation of the intrinsic
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Figure 1. Effect of chronic cigarette smoke (CS) on lung xeroderma pigmentosum group C (XPC) expression. XPC RNA expression by qRT-PCR from
whole-lung homogenates of mice exposed to 6 months of CS compared with lungs from mice exposed to ambient air (A). RNA expression by qRT-PCR
of other DNA repair proteins involved in global genomic (GG)–nucleotide excision repair (NER) (B and C), GG- and transcriptionally coupled (TC)-NER (D),
TC-NER (E), and base excision repair (BER) (F) from whole-lung homogenates of mice exposed to 6 months of CS compared with lungs from mice
exposed to ambient air (n = 5 per group, three replicates performed in triplicate). *P = 0.027; statistical analysis performed by one-way ANOVA using
DCt values. AC = air control/ambient air; Avg. = average; CSB = Cockayne syndrome B; Ogg1 = 8-oxoguanine DNA glycosylase; Rad23B = ultraviolet
excision repair protein RAD23 homolog B; RQ = relative quantification; XPA = xeroderma pigmentosum group A.
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apoptosis pathway, with increased
cleaved caspase-3 (four- to fivefold),
cleaved caspase-9 (1.3- to 1.7-fold),
and cleaved poly(ADP-ribose) polymerase
(seven- to ninefold), noted at 24 hours after
CS (5%) (Figure 3E). CS-exposed cells
treated with NAC (5 mM) had significantly
less apoptosis (Figure 3F), suggesting that
CS-induced apoptosis was due at least in
part to increased oxidative stress.
Consistent with prior studies (25), exposure
to CS for 24 hours led to activation of the
extrinsic apoptosis pathway, as measured

by cleaved caspase-8 (Figure 3G). However,
the abundance of cleaved caspase-8 did not
vary with XPC expression (Figure 3G),
suggesting little effect of XPC on the
extrinsic apoptosis pathway.

XPC Deficiency Increases Apoptosis
in Mouse Lungs Exposed to AC and
CS Associated with Altered
Autophagy Markers
To determine if XPC deficiency
increases susceptibility to CS-induced
lung injury in vivo, littermate mice

(C57Bl/6;129, male and female) either
WT or deficient in XPC (WT or KO),
aged 6–8 weeks, were exposed to chronic
CS (TE-10 smoking device, 5 h/d, 5 d/wk)
or ambient air for 1–9 months.
Apoptosis was measured by Western blot
analysis of cleaved caspases-9, -3, and -7
in lung homogenates of XPC KO and
WT mice after exposure to 1 month of
CS (mice aged 2.5–3 mo; Figure 4A).
CS exposure led to increased cleaved
caspase-9 in the lungs of both WT and
XPC-deficient mice and, compared with
WT animals, XPC-deficient mice
showed increased cleaved caspase-9
abundance in their lung homogenates,
after either AC or CS exposures (P, 0.001,
Figure 4B). XPC-deficient mice had
increased cleaved caspase-3 abundance in
their lung homogenates, after either
ambient air or in CS exposures
(P, 0.001; Figure 4C), as well as
increased cleaved caspase-7 lung levels
(P = 0.002; Figure 4D). As a
complementary assay for apoptosis, that
also allowed us to focus on lung
parenchyma, rather than large airways,
frozen lung sections from XPC KO and
WT mice were evaluated for apoptotic
cell death, using TUNEL staining.
Quantification was performed in a
blinded fashion, using automated
image analysis of lung parenchyma
only. This showed a genotype-specific
increase in TUNEL-positive cells, with
staining highest in XPC KO mice exposed
to 9 months of CS (Figure 4E). XPC
deficiency alone was sufficient to increase
TUNEL staining, independent of CS
exposure (P = 0.03).

Because apoptosis may be
preceded by unmitigated or unsuccessful
autophagy during CS-induced lung
injury (3, 26, 27), we investigated
whether XPC deficiency increased signs
of autophagy in mouse lungs after
chronic CS exposure. Measurements
of autophagy marker abundance by
Western blot and densitometry showed
significant increases in both the
microtubule-associated protein light chain
3B (LC3B)-II (Figures 4E and 4F) and p62
(Figures 4G and 4H) levels in XPC-
deficient mouse lungs, independent of
CS exposure. The increase in LC3B-II
may reflect either increased autophagosome
formation or decreased degradation in
the lysosome, whereas increased p62
typically reflects decreased lysosomal
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Figure 2. Stable lentiviral XPC knockdown (KD) cell culture models. XPC expression levels are
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degradation of autophagosome. Together,
our results demonstrate that
XPC-deficient mice possess impaired
autophagic flux and aggresome
accumulation, which have been recently
described in the lungs of mice and humans
with emphysema (26).

XPC Deficiency Increases Age-
Dependent Lung Compliance and
Exacerbates Lung Dysfunction
Similar to that Caused by Chronic CS
Because increased apoptosis and impaired
autophagy have been implicated in the
development of emphysema associated with
CS, we investigated the impact of XPC
deficiency on lung alveolar structure and
function after chronic CS exposure. CS
caused an expected decrease in weight gain
and increase in lung inflammation measured
by cellularity of the BAL fluid, independent
of genotype (see Figure E1 in the data
supplement). Compared with AC, exposure
to CS in this mouse strain caused an increase
in lung compliance, independent of XPC
expression, after 1 month (P = 0.035) and
6 months (P = 0.008) of chronic CS exposure
(Figure 5A). The increased lung compliance
observed with chronic CS reached a plateau
by 9 months of chronic CS exposure
(Figure 5A) and persisted in mice exposed to
5 months of CS followed by 4 months of
removal from CS exposure (“51 4,”
Figure 5B), consistent with fixed airway
disease. Subgroup analysis showed increased
lung compliance in male compared with
female mice after 9 months of CS exposure
in both XPC KO and WT mice, consistent
with recently published observations (28)
(Figure 5A and Figure E2). Interestingly,
XPC-deficient mice aged 10.5–11 months
(XPC KO AC that were exposed to 9 mo of
ambient air) showed a CS-independent
increase in lung compliance (Figures 5A and
5B), consistent with an aging effect on lung
function. Consistent with this effect, age-
dependent progressive airspace enlargement
was observed in XPC KO mouse lungs by
hematoxylin and eosin (H&E) stain, which

was further increased in XPC KO mice
exposed to 9 months of chronic CS and
persisted in XPC KO mice exposed to
5 months of CS followed by 4 months of
AC (Figure 5C). Stereological quantification
performed on H&E-stained sections derived
from multiple planes throughout the lung
showed an increase in lung volume to
surface area in XPC KO mice exposed to
5 months of CS followed by 4 months
of AC compared with WT AC mice
(Figure 5D), and showed a trend to have an
increased mean linear intercept (Figure 5E).
There were no changes indicative of lung
fibrosis by H&E (Figure 5C) and trichrome
staining (data not shown). The increased
lung compliance and alveolar rarefaction
observed in XPC KO mice supports a role
for XPC in age-related increases in lung
compliance due to alveolar rarefaction,
which may be further exacerbated by
chronic CS and similar to changes caused
by chronic CS exposure.

Discussion

In this study, we show that XPC plays an
important role in the response of lung
epithelial cells to CS-induced DNA damage
and response, ultimately determining cell
fate and development of lung disease. Using
a mouse model of chronic CS, we are the
first to show that the DNA repair protein,
XPC, plays a role in protecting the lungs
from age-induced emphysema changes, and
may play a role in CS-induced emphysema.

The development of oxidative and
bulky DNA adducts after CS exposure has
been well established. These DNA adducts
are believed to be the primary drivers of a
number of smoking-related diseases,
particularly lung cancer, in which this
connection has perhaps been best studied.
Although the link between CS exposure and
emphysema has been well established, low
penetrance has been observed, with only
20%–25% of smokers developing chronic
obstructive lung disease, suggesting a

possible role for gene–environment
interactions in its development (29). Our
findings suggest that chronic CS exposure
itself may be sufficient to suppress
DNA repair through decreased XPC
expression, possibly through promoter
hypermethylation, as has been previously
described as modulating XPC expression
(30). Decreased XPC expression was
previously observed 24 hours after in vitro
exposure to CS condensate due to
proteasomal degradation (31). This
suggests that XPC expression may be
altered both early after CS exposure, by
post-translational modification, as well as
later through transcriptional regulation,
leading to decreased DNA damage repair,
causing increased pulmonary cell death,
altered autophagic function, and
development of emphysema. However,
genetic susceptibility may also play a role,
as altered expression of DNA repair genes
have been noted in mouse models of
chronic CS (24), and a recent study
observed a correlation between the XPC
polymorphism (rs2228001) in Russian
ethnic Tatar smokers with COPD (32).

Our study provides a direct,
mechanistic link between decreased DNA
repair and morphologic and histologic
measures of accelerated emphysema
development. Others have postulated a link
between impaired DNA repair, particularly
of oxidant DNA damage, and COPD
development. Increased DNA damage is
observed in humans and mice exposed to
CS, and increased levels of DNA damage
have been observed in the lungs of patients
with COPD, largely ascribed to increased
oxidative stress causing oxidized bases and
DNA DSBs (5, 6, 33, 34). Downregulation
of DNA repair gene expression has been
implicated in mice exposed to chronic CS
(24), and one group showed decreased
expression of Ku80 (X-ray repair cross-
complementing protein 5), a required
protein for DNA DSB repair by
nonhomologous end joining, both in mice
exposed to chronic CS and in human

Figure 3. (Continued). plot is shown (C), as well as quantification of flow cytometry results, represented by percent cells staining with annexin V and PI
(shCtrl, white; shXPC, gray) and annexin V alone (shCtrl, white striped; shXPC, gray striped) (D) (n = 3 independent experiments, mean [6SEM]). #P,
0.001, **P, 0.01, *P, 0.05 by two-way ANOVA. Activation of the intrinsic apoptosis pathway, including initiator (cleaved [poly(ADP-ribose) polymerase
(PARP)] and cleaved caspase-9) and the effector proteins (cleaved caspase-3) in Beas2B cells exposed to 5% CS, with or without KD of XPC (E). Fold
changes compared with shCtrl exposed to AC are shown below the respective blots. Activation of the intrinsic apoptosis pathway (cleaved PARP, cleaved
caspase-9, cleaved caspase-3) in cells (shCtrl and shXPC) treated with 5% CSE with and without addition of N-acetylcysteine (NAC; 5 mM) (F). Fold
changes compared with AC for each cell type shown below the respective blots. Activation of the extrinsic apoptosis pathway (cleaved caspase-8) in
Beas2B cells treated with 5% CSE, with or without KD of XPC (G). Fold changes compared with AC for each time point shown below the respective blots.
Immunoblots are representative of three independent experiments.
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patients with COPD (5). In addition,
oxidative stress alters DNA repair function
by epigenetic modifications, and is also
associated with premature aging from
telomere shortening caused by impaired
DNA repair; telomere shortening has been
linked to cigarette smoking, COPD, and
lung cancer development (35, 36). Our
model provides a role for XPC in
prevention of CS-induced COPD. However,
given wide interindividual variations in
DNA damage in smokers, the lack of a
single gene mutation to define an at-risk
population, and evidence of alterations in
other DNA repair proteins, it is possible
that a number of factors, including acquired
gene mutations and epigenetic
modifications, are involved in a phenotype
of decreased DNA repair capacity, which,
in smokers, leads to acceleration of CS-
induced lung diseases, including COPD.

A number of studies have highlighted
the role of CS-induced oxidative stress in
emphysema development. Oxidative stress,
caused either directly from CS exposure or
indirectly from infiltrating inflammatory
cells or damaged/dying cells within the
lungs, has been linked to alveolar epithelial
cell death through apoptosis and matrix
proteolysis (2, 4). These findings have been
further supported by models that perturb
the oxidant response. For instance, mice
lacking the antioxidant transcription factor,
Nrf-2, show accelerated emphysema
development (37), and glutathione
depletion increases inflammation and
emphysema development in a mouse model
of chronic CS (38). Inflammation,
apoptosis, and increased emphysema
development are observed in mice with
inactivation of superoxide dismutase in
several different emphysema models (CS,
ceramide, and elastase), with these effects
attenuated with the addition of superoxide
dismutase (39–41). However, countering
this effect may be more complicated than
simply limiting oxidative stress, as
antioxidant diet was associated with
decreased emphysema, but increased
mortality in a mouse model of chronic CS
exposure (42). It should be noted that the
impact of CS and oxidative stress is not
limited to alveolar epithelial cells, and
similar effects have been observed in lung
endothelial cells (43), which play a
significant role in emphysema development
as well. In addition, considering the
changing patterns of cigarette smoking, it is
important to note that similar effects have
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Figure 4. Impact of XPC on autophagy and apoptosis in CS and AC-exposed mouse lungs. (A)
Representative Western blots of cleaved caspase-9, cleaved caspase-7, and cleaved caspase-3 in
mouse lung homogenates from XPC knockout (KO) and wild-type (WT) mice exposed to 1 month of AC
or CS with loading control (vinculin). (B) Quantification of cleaved caspase-9 in mouse lung
homogenates relative to WT AC (mean6 SEM). XPC WT versus KO, P, 0.001; **P, 0.01; *P, 0.05.
(C) Quantification of cleaved caspase-3 expression relative to WT AC mouse lung homogenates
(mean6 SEM). XPC WT versus KO, P, 0.001; **P, 0.01; *P, 0.05. (D) Quantification of cleaved
caspase-7 expression relative to WT AC mouse lung homogenates (mean6 SEM). XPC WT versus KO,
P= 0.002; *P, 0.05. Means of eight mouse lung homogenates per group, each averaged from
five independent Western blots. (E) Quantification of immunofluorescence staining by TUNEL in the
lung parenchyma of XPC KO and WT mice exposed to 9 months of AC or CS (10 pictures per stain;
mean6 SEM; *P, 0.05). (F) Representative Western blot showing microtubule-associated proteins
1A/1B light chain 3B (LC3B) expression (LC3B-I and LC3B-II) in the lungs of XPC KO and WT mice
exposed to 9 months of AC or CS along with loading control (vinculin). (G) Relative LC3B expression in
lung homogenates from XPC WT (white, AC; black, CS) and XPC KO (light gray, AC; dark gray, CS)
mice (mean of five blots [6SEM]; *P, 0.05). (H) Representative Western blot showing p62 expression
in the lungs of XPC KO and WT mice exposed to 9 months of AC or CS along with loading control
(vinculin). (I) Relative p62 expression by Western blot of lung homogenates from XPC WT (white, AC;
black, CS) and XPC KO (light gray, AC; dark gray, CS) mice (mean of three blots [6SEM]; P, 0.05).
Statistical comparisons by two-way ANOVA.
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been observed recently after exposure to
nicotine-containing e-cigarettes (22).

Emphysema is characterized by
increased apoptosis, and our findings
support a protective role of XPC in
decreasing CS-induced apoptosis in vitro
and in vivo. Emphysema is characterized by
inflammation and oxidative stress, both of
which cause DNA damage, including

oxidized bases and abasic sites. In addition
to its canonical role as the initiating and
rate-limiting step in GG-NER, XPC has
been more recently implicated in repair of
oxidized bases through BER (11, 12, 14, 15).
In this study, we find that XPC protects
against CS-induced cell death through
decreased activation of the intrinsic
apoptosis pathway, similar to the protective

mechanism proposed for XPC in response
to other DNA-damaging agents (44). The
increase in CS-induced apoptosis is further
reduced with the addition of the
antioxidant NAC in vitro, further
supporting a likely role of XPC in
augmentation of base-excision repair of
oxidatively modified DNA bases. Although
a number of studies have shown that CS
increases apoptosis in vitro and in vivo
(2, 3, 39, 43), one group previously published
data showing increased DNA damage
without induction of apoptosis in CS
extract–treated Beas2B cells (45). However,
this more likely reflects differences in
techniques and assay sensitivity, and
further supports the heterogeneity observed
in development of emphysema in smokers.
Our in vitro data show mild activation of
the extrinsic apoptosis pathway by CS
extract exposure, as previously observed
(25), but this effect was independent of
XPC, indicating specificity for XPC in
protecting against CS-induced activation of
the intrinsic apoptosis pathway. We also
saw evidence of a role for XPC in regulating
autophagy, which has been shown to play a
role in CS-induced emphysema (27, 29),
and can culminate in apoptosis when
unmitigated or impaired by lack of a proper
lysosomal degradation step, as described
after CS exposure (3). In this model, we
observed a modest increase in both LC3B
and p62 by both XPC deficiency and CS
exposure. These findings are more
consistent with impaired autophagic flux
causing aggresome accumulation, as has
been recently implicated in the
development of CS-induced emphysema in
mice and in humans (26). This might
represents a cellular adaptation to DNA
damage, which, in XPC deficiency,
overwhelms the DNA repair capacity
activating apoptosis, as observed in our
mouse and cell models. The relatively
modest changes in lung apoptosis and
autophagy in vivo may be due to the mild
nature of the emphysema in this exposure
model, the cell-specific nature of the effect,
which may be diluted when evaluating the
whole organ, or the temporal heterogeneity
of cell injury events, limitations that may be
in part addressed in the future by using
inbred mouse strains and more potent CS
exposure regimens.

Decreased DNA repair has been
investigated in the lung, most notably for its
role in genomic instability and lung cancer
development. A number of studies have
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demonstrated that decreased DNA repair,
including decreased NER capacity, is linked
to higher odds of lung cancer development
(46), and gene expression analysis showed
decreased expression of a number of DNA
repair proteins, including XPC, in lung
adenocarcinoma tumors compared with
surrounding noncancerous lung (47).
Common polymorphisms of XPC have
been linked to development of lung cancer
in humans (48), and mouse models of XPC
are noted to develop spontaneous adenomas
(49). Our findings suggest that, in addition
to its potential role in cancer development,
XPC deficiency accelerates emphysema-like
changes in the lungs similar to those observed
with CS. Impaired DNA repair through
decreased XPC expression and function may
explain the long-established link between
COPD and lung cancer (50).

Our study has some limitations that are
related to well-established CS exposure
models, which are not exactly reproducing
the human experience of intermittent
exposure to CS over decades. Although the
use of an aqueous extract of CS has been well
established to investigate the impact of CS
on cells in vitro, it is possible that results
may differ if cells were exposed to

aerosolized CS in an air–liquid interface
model using primary cells obtained from
lung biopsies. However, such cells are
difficult to stably transfect to reduce XPC
expression in a consistent manner, which is
why we have chosen the present model,
complemented with in vivo experiments
for relevance. Although our study was
not sufficiently powered, we, similar to
others, noted an effect of sex on the
magnitude of emphysema development in
response to CS (28), even in this genetically
heterogeneous mouse strain, with male mice
being more susceptible to CS than female
counterparts, regardless of XPC levels.

In summary, our findings support a
role for impaired DNA repair due to
decreased XPC expression in loss of lung
structure and function, consistent with
emphysema development. They also suggest
that XPC function not only in GG-NER, but
also in repair of oxidative lesions through
BER, is important in protecting the lung
from cell death and dysregulated autophagy.
Given the previously established link
between XPC and lung cancer
development, this is intriguing as a possible
role for XPC in development of both
emphysema and lung cancer. Our findings

would support a model in which decreased
repair of oxidative DNA lesions, caused by a
CS-induced decrease in XPC expression and
function, causes early alveolar loss due to
apoptosis, leading to emphysema. However,
we hypothesize that unrepaired DNA
lesions in cells that survive are either
tolerated or repaired through alternative,
lower-fidelity pathways, leading to genetic
instability and a predisposition to cancer.
Further investigations into the role of DNA
repair, XPC, and CS in the development of
these diseases are necessary to discover
predictive biomarkers and novel targets to
prevent progression. n
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